Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers

Demir Karaman, Ezgi and Işık, Zerrin (2023) Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers. Medical Sciences, 11 (3). p. 44. ISSN 2076-3271

[thumbnail of medsci-11-00044.pdf] Text
medsci-11-00044.pdf - Published Version

Download (1MB)

Abstract

Combining omics data from different layers using integrative methods provides a better understanding of the biology of a complex disease such as cancer. The discovery of biomarkers related to cancer development or prognosis helps to find more effective treatment options. This study integrates multi-omics data of different cancer types with a network-based approach to explore common gene modules among different tumors by running community detection methods on the integrated network. The common modules were evaluated by several biological metrics adapted to cancer. Then, a new prognostic scoring method was developed by weighting mRNA expression, methylation, and mutation status of genes. The survival analysis pointed out statistically significant results for GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes. The literature search reveals that the identified biomarkers are associated with the same or different types of cancers. Our method does not only identify known cancer-specific biomarker genes, but also proposes new potential biomarkers. Thus, this study provides a rationale for identifying new gene targets and expanding treatment options across cancer types.

Item Type: Article
Subjects: GO for STM > Medical Science
Depositing User: Unnamed user with email support@goforstm.com
Date Deposited: 31 Oct 2023 12:04
Last Modified: 31 Oct 2023 12:04
URI: http://archive.article4submit.com/id/eprint/1975

Actions (login required)

View Item
View Item