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Abstract: Combining omics data from different layers using integrative methods provides a better
understanding of the biology of a complex disease such as cancer. The discovery of biomarkers
related to cancer development or prognosis helps to find more effective treatment options. This
study integrates multi-omics data of different cancer types with a network-based approach to explore
common gene modules among different tumors by running community detection methods on the
integrated network. The common modules were evaluated by several biological metrics adapted
to cancer. Then, a new prognostic scoring method was developed by weighting mRNA expression,
methylation, and mutation status of genes. The survival analysis pointed out statistically significant
results for GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes. The literature
search reveals that the identified biomarkers are associated with the same or different types of cancers.
Our method does not only identify known cancer-specific biomarker genes, but also proposes new
potential biomarkers. Thus, this study provides a rationale for identifying new gene targets and
expanding treatment options across cancer types.

Keywords: multi-omics data; network-based integration; community detection; survival analysis;
cancer biomarker

1. Introduction

Cancer is a heterogeneous disease caused by changes in cell behavior, uncontrolled
growth and genomic alterations such as mutations. It contains many different forms,
variables and multiple subgroups. In 2020, a total of 19.3 million new cancer cases occurred
in the world and there were almost 10 million cancer-related deaths [1]. The most diagnosed
cancers were breast (11.7%), lung (11.4%) and colorectal (10%), while cancer-related deaths
occurred most oftenwith lung (18%), colorectal (9.4%), liver (8.3%), stomach (7.7%), and
breast (6.9%) cancers [1]. If the incidence rates continue at the same frequencies, it is
estimated that there may be 28.4 million new cancer cases in 2040 [1]. For a better prognosis
and treatment process in such a disease, it is important to categorize tumors into genetically
similar subgroups and associate these subgroups with clinical outcomes. Identifying key
genomic similarities shared between cancer types will allow extending effective treatments
in one cancer type to others due to sharing similar genomic profiles [2].

The complex biology of cancer diseases cannot be explained by analyzing a single omic
data type. A wealth of omics data from genomes, transcriptomes, proteomes, metabolomics,
ionomics and epigenomes provide a comprehensive perspective for researchers to better
explore cancer biology [3]. The availability of such data requires integrative methods to
make further evaluations. The use of cancer informatics methods, which integrate and
interpret genome-scale molecular data, may reveal possible biomarkers related to tumor
prognosis, diagnosis, etc. For this purpose, various clustering algorithms and advanced
analysis techniques can be applied to integrated data [4].
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In recent years, biological networks, as a simple but effective representation of complex
interactions and regulatory relationships between molecules, have been used extensively
to understand the system-level characteristics of diseases [5]. Integrating different types of
omics data on these networks and applying network-clustering methods to the integrated
data may give more effective results inrevealing biomarkers of cancer development or
prognosis [6].

Multi-omics data integration methods can be grouped as deep learning networks,
network-based, clustering, features extraction, transformation and factorization [7]. These
methods address various applications such as disease subtyping, biomarker discovery,
pathways analysis and drug repurposing [7,8].

Here, we focus on specific studies that integrate different types of omics data using
network-based approaches and use them for biomarker discovery. Kim et al. [9] proposed a
random walk approach on an integrated gene–gene graph with expression and methylation
profiles; their analysis identified cancer-specific pathways covering genes related to breast
cancer. Another research identified differentially expressed and methylated genes and
miRNAs for lung adenocarcinoma, integrated the common genes into the PPI network
structure and determined potential target genes as a result of survival analysis [10]. There
are some studies that aim to find diagnostic and prognostic biomarkers in endometrial,
prostate, and colorectal cancers by applying a similar approach using DNA methylation
and gene expression data [11–13]. Sun et al. [14] performed an integrated analysis of
genome-wide DNA methylation and gene expression for hepatocellular carcinoma, applied
a weighted gene co-expression network analysis (WGCNA) and survival analysis; and
found gene signatures associated with overall survival. Champion et al. [15] developed a
new algorithm and identified potential cancer drivers for eleven cancer types, including
breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COAD), lung squamous-cell
carcinoma (LUSC), and kidney renal clear-cell carcinoma (KIRC), with the integration of
copy number, DNA methylation and gene expression data. Dimitrakopoulos et al. [16]
proposed a network-based integration of the multi-omics data (NetICS) method to prioritize
cancer genes. The SNF method [17], which was also applied in this study to integrate gene
expression and DNA methylation data, is one of the commonly used methods developed
for subgroup identification. Furthermore, it has also been applied to prioritize candidate
disease genes [18] and to identify candidate cancer biomarkers [19].

There are studies that apply community detection methods instead of traditional
clustering algorithms for cancer biomarker discovery. Tanvir and Mondal [20] determined
possible biomarkers for COAD, BRCA and glioblastoma multiforme (GBM) by running
seven community detection algorithms on gene co-expression networks. Another study
applied a community detection algorithm to a differential gene regulatory network created
for breast cancer and suggested diagnostic biomarkers [21]. Yu et al. [22] applied the
MCODE algorithm to co-expression networks of multiple cancers to find biomarkers.
However, these studies only consider gene expression data rather than an integrated
multi-omics network. In addition, while evaluating clustering algorithm performances in
most studies, statistical metrics were used instead of biological metrics. Despite that, the
extent to which genes in the same module are biologically homogeneous is important for
biomarker discovery.

Although different types of omics data were used as biomarkers, the expression data
of several genes wereused as a scoring value in the survival analysis [23–25]. To the best
of our knowledge, there is no integrative scoring method which concurrently combines
different omics data for performing the survival analysis.

In this study, different types of omics data of lung, breast, colorectal and kidney
cancers, which are at the forefront in terms of both mortality and incidence, were analyzed.
RNA-sequencing and DNA methylation data are integrated into a network. Various
network clustering algorithms were applied to the integrated data. Biological metrics
were used to evaluate clustering results. For this purpose, a metric called “bioscore” has
been developed that examines only cancer-specific biological functions and pathways in
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clustering evaluation. The same analysis workflow was applied to the validation set and
prospective biomarkers were selected. In addition, the mutation status of these biomarker
genes was also investigated. Finally, survival analysis was conducted with a new prognostic
scoring method developed by using different omics data. The obtained biomarkers were
compared with studies in the literature. Some studies present these genes as biomarkers
for lung, colorectal, breast and kidney cancers, in line with our study. On the other hand,
there are other studies suggesting some genes as biomarkers for other cancer types such as
prostate, gastric, hepatocellular, ovarian, and bladder. From this point of view, our study
helps to reveal genomic similarities among various cancer types. Moreover, some potential
novel biomarkers have been found that need to be confirmed by further wet-lab studies.

2. Materials and Methods

The data set and stages of the method are presented in this section. Gene expression,
DNA methylation and somatic mutation data of four cancer types (BRCA, KIRC, LUSC,
COAD) were obtained from the publicly available TCGA projects [26]. The dataset was
divided into two parts for using different patient samples in training and validation
of the model.

Figure 1 provides an overview of the methods used in the study. First, differentially
expressed genes and methylated probes were identified. Then, probes with significant
methylation changes were paired with the 10 closest upstream and downstream target
genes with significant expression changes. Using these probe-gene pairs, the mean value
of the probes was assigned to each gene. After that, common differentially expressed
and methylated genes were identified. Co-expression and co-methylation networks were
constructed with these genes. Co-expression and co-methylation networks were integrated
by Similarity Network Fusion (SNF) [17]. Network clustering algorithms run on the
resulting integrated networks for each cancer type. Clustering results were evaluated by
using biological metrics and the most biologically significant modules were determined.
The same pre-processing and analysis methods were applied to both the training and the
validation data sets. Common genes (i.e., biomarkers) identified in the same module for
both training and validation datasets in four cancer types were extracted. The mutation
status of each biomarker gene was examined and the genes covering most mutations
for all cancer types were determined. In addition, survival time analysis was applied to
observe the effects of biomarker genes; eventually, a scoring method was proposed for
survival forecasting.

2.1. Data Analysis

We retrieved DNA methylation, gene expression and somatic mutation data for four
different cancer types available on the TCGA website: COAD, KIRC, BRCA and LUSC [26].
We selected these tumors based on analysis of the Pan-Cancer Project [2], which focused
on 12 tumor types. Due to the higher number patient samples for three omics data and
literature comparability, we focused on four of them (COAD, KIRC, BRCA, LUSC). The
TCGAbiolinks package was used to retrieve TCGA data from the GDC data portal [27].
Then, patients having both gene expression and DNA methylation data types were de-
termined. Data from untreated patients were used because some treatments may cause
changes in omics data. To avoid misleading results, untreated patients in stage-I and
stage-II were filtered out. The data were divided into two sets, training and validation,
by random split. Table 1 shows the number of samples for both training and validation
datasets. In addition, baseline clinical characteristics were presented in the File S1. The
Chi-Square test was used to compare the differences in clinical variables between the
training and validation data sets.
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were obtained. (b) Differentially expressed genes (DEG) were obtained. (c) Differentially expressed 
and differentially methylated genes (DEMG-hypo/hyper) were obtained by taking the common 
ones between these two groups. (d) Clustering algorithms were implemented to detect modules on 
the DEMG-hyper and DEMG-hypo networks for both training and validation sets. (e) Common 
genes of all cancer types and that were included in the same modules in the training and validation 
datasets were determined. (f) The mutation status of each gene was examined. (g) The potential 
biomarker genes were identified through survival analysis based on the developed prognostic 
scoring method. 
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Figure 1. Overview of the study workflow. (a) Differentially methylated genes (DMG-hypo/hyper)
were obtained. (b) Differentially expressed genes (DEG) were obtained. (c) Differentially expressed
and differentially methylated genes (DEMG-hypo/hyper) were obtained by taking the common ones
between these two groups. (d) Clustering algorithms were implemented to detect modules on the
DEMG-hyper and DEMG-hypo networks for both training and validation sets. (e) Common genes of
all cancer types and that were included in the same modules in the training and validation datasets
were determined. (f) The mutation status of each gene was examined. (g) The potential biomarker
genes were identified through survival analysis based on the developed prognostic scoring method.

Table 1. The number of cases by cancer types in the data set.

Cancer Type Numberof Training Samples Numberof Validation Samples

Tumor Normal Tumor Normal

COAD 74 19 78 19
KIRC 90 24 91 24
BRCA 261 83 279 83
LUSC 153 7 152 7

2.1.1. Identification of Differentially Expressed Genes

Differential gene expression analysis was performed to identify gene expression
changes between the tumor and normal samples. In this analysis, the edgeR package is
used and both exacttest and log2 foldchange were calculated. The p-values were adjusted
using Benjamini and Hochberg’s approach [28]. Statistically significant gene lists were
obtained by filtering genes with the absolute log2 foldchange value > 1.0 and FDR < 0.05.

2.1.2. Identification of Differentially Methylated Probes

We aimed to identify DNA methylation changes in distal regulatory regions and corre-
late these signatures with mRNA expression in nearby genes. Identification of differentially
methylated probes, binding of distal probes with significant methylation changes to target
genes, and selection of probe-gene pairs were performed by using the ELMER package [29].

ELMER analysis [29] uses a data structure called “MultiAssayExperiment” (MAE)
which stores different assays of all samples in a single object. A “MAE” object containing
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DNA methylation and gene expression data was created using the “createMAE” function.
Using the “get.feature.probe” function provided by ELMER, only distal probes (at least
2 Kbp away from the transcription start site) were selected; thus, we aimed to identify
distant interactions that regulate genes. In this function, the “genome” parameter is set
to hg38, and the “met.platform” parameter is set to 450 K. The determined distal probes
were given as the “filter.probe” parameter of the “createMAE” function. After this step,
differentially methylated CpGs were identified using the “get.diff.meth” function, which
performed a one-way t-test. The “sig.dif” parameter of this function, which indicates the
smallest DNA methylation difference, is a cutoff value for selecting significant hypo-/hyper-
methylated probes and it was set to 0.3. Since the group structure (tumor vs. normal)
in the analysis was known in advance, the “mode” parameter was chosen as supervised.
Raw p-values were adjusted by using the Benjamini–Hochberg method [28], and probes
with adjusted p-value < 0.01 were selected. The next step of the analysis is to identify
probe–gene pairs. Using the “get.pair”function, selected distal probes with significant
methylation changes were linked to the closest 10 upstream and 10 downstream target
genes with significant expression changes. Silva et al. [29] aimed to avoid systematic false
positives for probes in gene-rich regions by choosing a fixed number of genes to be tested
for each probe. In this function, the “filter.percentage” and “filter.portion” parameters are
set to 0.05 and 0.3, respectively. This setup guarantees that at least 5% of beta values are
less than 0.3 and 5% of beta values are greater than 0.3.

2.2. Construction Gene Co-Expression & Co-Methylation Networks

Using the probe–gene pairs determined in the previous step, the average methylation
value of the probes was assigned to each gene. The Ensemble gene identifiers were
converted to the Entrez gene identifiers by using the “org.Hs.eg.db” package [30]. Then,
common differentially expressed-hypomethylated genes (DEMG_Hypo), and differentially
expressed-hypermethylated genes (DEMG_Hyper) were identified.

While constructing a co-expression and co-methylation network, we used these com-
mon genes specific to each cancer type. A correlation value between two genes is computed
by the normalized absolute Pearson correlation with the same method as given in a pre-
vious study [31]. First, the expression and methylation correlation coefficients between
two genes were computed using Pearson correlation. The Fisher transform was applied
to make comparable correlation estimates between datasets. We standardized values as
z-scores in each dataset. Then, the standardized correlations were obtained by inverting the
z-score. The absolute value of correlations is used as the edge weight of both co-expression
and co-methylation networks. The algorithm is summarized in the ‘Algorithm 1’ section
below. This method was applied to all types of cancers (i.e., BRCA, COAD, KIRC, LUSC).

Algorithm 1: Procedure for determining pairwise gene correlations.

Input: expression and methylation profiles of n genes.
Output: pairwise gene correlations r

′
ij for any pair of genes i and j.

Compute correlation rij of each pair of genes i and j, using Pearson correlation.
Normalize rij for any 1 ≤ i, j ≤ n with the following steps:

1. Apply Fisher’s z transformation to rij, i.e., = 0.5ln
(

1+rij
1−rij

)
zij

2. Standardize zij, i.e., z
′
ij=

zij−µ
σ , where µ and σ are the mean and standard deviation of zij for all

1 ≤ i, j ≤ n.

3. Apply Fisher’s inverse transformation to z
′
ij, i.e., r

′
ij=

exp(2z′ ij)−1
exp(2z′ ij)+1

Return r
′
ij for any i, j.

2.3. Network-Based Data Integration

Co-expression and co-methylation networks individually created for each cancer type
were used as the input of an integrative method called Similarity Network Fusion (SNF) to
construct a weighted and undirected similarity network [17].
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SNF is based on a certain number of similarity matrices corresponding to different
layers referring to the same set of nodes. The similarity matrices are then converted into a
unique similarity matrix. During this transformation, SNF has the purpose of strengthening
the weaker links common to all layers as well as the very strong links found in one layer.
The nodes of the obtained network are the common ones in each layer, and the edges are
calculated according to the new similarity values. There are three parameters in SNF: K
is the number of neighbors, α is a hyper-parameter, and t is the number of iterations. We
ran the SNF algorithm with the K value as 5, 9, 21, and 30 and the t value as 5, 10, and 20.
However, we obtainedmore stable results by setting K = 9 and t = 20. This setup was used
for all cancer types.

After the t steps of iteration, co-expression and co-methylation networks converge to
integrated gene similarity networks. We used a min-max normalization for these networks
to obtain more stable results. The adjacency matrix obtained as a result of SNF was
converted into a graph using the “igraph” package [32].

2.4. Network-Based Clustering

Fast Greedy [33], Infomap [34] and Louvain [35] clustering algorithms run on inte-
grated gene similarity networks specific to each cancer type. Fast Greedy tries to find
communities in graphs by optimizing the modularity score, which is based on the idea
of having dense connections between nodes within modules but having sparse connec-
tions between nodes of different modules [33]. Infomap finds a community structure that
minimizes the expected description length of a random walker trajectory [34]. Louvain
implements the multi-level modularity optimization algorithm for finding a community
structure. It is based on the modularity measure and a hierarchical approach [35]. Each
clustering algorithm runs using the corresponding functions of the igraph library with its
default parameters [32].

BHI and Bioscore metrics were used for the evaluation of the clustering results. The
BHI measures how biologically homogeneous the clusters are [36]. The measure checks
whether genes found in the same cluster also belong to the same biological function classes.
The BHI is in the range of [0,1]; larger values correspond to more biologically homogeneous
clusters. The “BHI” function in the “clValid” library was used to calculate the BHI score.

Another biological metric is the Bioscore, which was adapted based on the work of
Bruno and Friori [37]. According to their work, this score assessed how many gene subsets
showed a significant p-value considering all function classes. However, there were many
functional terms that are unrelated to cancer development. Therefore, we adapted the
Bioscore metric to measure the homogeneity of clusters by scoring only the cancer-related
Gene Ontology (GO) Biological Processes (BP) and KEGG pathway terms. The cancer-
related GO BP and KEGG pathway terms are taken from the study of [38]. Fisher’sexact
test [39] was used to identify significant terms and raw p values were adjusted using
the Benjamini–Hochberg method [28] and terms with adjusted p < 0.05 were considered
significant. If a gene in a cluster is involved in a significant cancer-related GO BP or KEGG
pathway, the score of this gene increases by 1, otherwise it remains 0. After calculating a
score for each gene in a cluster, they are summed, and a min-max normalization is applied
to ensure consistency across all clusters. The Bioscore of a cluster is

Bioscore =
K

∑
i

G

∑
cat

Θi,cat (1)

where K is the number of genes in the dataset, and G is the number of cancer-related and
functional categories stored in the external file. These cancer-related terms are given in
Table S1 for GO BP and in Table S2 for the KEGG pathway. Θi,cat is defined as follows:

Θi,cat= {
1, Pi,cat < t
0, otherwise

(2)
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where Pi,cat is the p-value of the cancer-related category cat associated with gene i, and t is a
threshold (e.g., 0.05). The most biologically homogeneous modules were determined by
examining the results obtained.

2.5. Validation Analysis

The same pre-processing and analysis methods were applied to the validation samples
that are given in Table 1. Statistically significant modules were obtained by applying
clustering to the validation dataset. Common genes, which are found in the same module
for both training and validation datasets, were identified for all cancer types. Then, these
genes were selected for biomarker analysis.

2.6. Somatic Mutation Status of Biomarkers

Somatic mutation data of BRCA, LUSC, KIRC, and COAD cohorts were downloaded
from the GDC Portal. The mutation data were filtered based on biomarker genes identified
in the previous step for untreated patients in stageI and stage II. The mutation status of
each biomarker was examined and the genes with the highest number of mutations were
determined for all cancer types.

2.7. Survival Analysis

After identifying biomarker genes, the effects of these genes on the overall survival
time of patients were also investigated. For this purpose, a new scoring scheme was
created by taking a weighted summation of individual scores of DNA methylation, gene
expression and mutation data. We called this score “prognostic score”, since this score
would show both positive (e.g., high prognostic score→ good survival) and negative (e.g.,
high prognostic score→ poor survival) correlation with the survival time of a patient.

The prognostic score by considering three data types is calculated by the following equation:

Prognosticscore(gx) = Geneexpression(gx)× 0.5 + DNAmethylation(gx)× 0.3 + Mutationstatus(gx)× 0.2 (3)

where gx represents a gene. For this procedure, a log transformation followed by a min-max
normalization was applied to the raw read counts of RNA-sequencing. Mutation status was
assigned “1” if the gene has a mutation, otherwise “0”. Since the beta value varies between
0 and 1 in DNA methylation, it remains the same value. For survival analysis, continuous
values should be represented as categorical values. For this process, the differentially
expressed and hypomethylated genes (DEMG_Hypo) and differentially expressed and
hypermethylated genes (DEMG_Hyper) were compared among themselves by cancer type.
Consequently, common DEMG Hypo and common DEMG Hyper genes were identified
in both the training and validation sets for each cancer type. The numbers of these genes,
named DEMG_Common, are shown in Table 2.

The prognostic score value was calculated for all DEMG_Common given in Table 2.

HighLevel f orgx =
∑ Prognosticscore(gx)

Numbero f patientsincancertype
+ SD(Prognosticscore(gx)) (4)

LowLevel f orgx =
∑ Prognosticscore(gx)

Numbero f patientsincancertype
− SD(Prognosticscore(gx)) (5)

where gx represents a gene. High and low levels were determined by taking the mean +/−
1-standard deviation of each gene’s score for all patients (Equations (4) and (5)). After cal-
culating these values for all genes, the average high and low cutoff values were obtained by
dividing by the number of DEMG_Common in each cancer type T (Equations (6) and (7)).

Avg.o f HighLevels(T) = ∑ HighLevel f orallgx

Numbero f DEMGCommonincancerT
(6)
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Avg.o f LowLevels(T) = ∑ LowLevel f orallgx

Numbero f DEMGCommonincancerT
(7)

According to these limits, a score of a gene less than average low level was labeled as
“low”, one between average low and high level as was labeled “normal”, and one higher
than average high level as was labeled “high”. Finally, we obtained a categorical prognostic
score for each gene.

Table 2. The numbers of common DEMG in the training and validation set. DEMG_Common
indicates this number for each cancer type.

Cancer Type DEMG_Common

Brca_hypo 2428
Lusc_hypo 3235
Coad_hypo 3382
Kırc_hypo 3184

Brca_hyper 2288
Lusc_hyper 1749
Coad_hyper 1475
Kırc_hyper 1063

The Cox proportional hazard model and “survival” package were used to analyze
the risk factors [40]. To perform survival analysis, vital status, days to last follow-up and
days to death information were obtained from the clinical data files of the patients. The
time variable was taken as the days to the last follow-up if the patient was alive, and as
the days to death if the patient was dead. In addition, to understand the relationship
between categorical variables and overall survival, the Kaplan–Meier estimator [41] was
used, which is one of the most widely-used non-parametric measures in survival analysis
and in medical research.

Another point we would like to mention is that gene expression (0.5), DNA methy-
lation (0.3), and mutation (0.2) weights are not arbitrarily selected in the prognostic score
equation. We also experimentally tested the version of the weights with gene expression
(0.4), DNA methylation (0.4) and mutation (0.2). However, in the analysis carried out with
this version (0.4, 0.4, 0.2), we obtained fewer biomarkers based on significant hazard ratio
and p-values. Considering that there are no mutation data for each gene, we assigned the
smallest weight (0.2) to the mutation data in both versions. Since survival analysis studies
are mostly based on gene expression, we decided to use the weight combination to place
more emphasis on gene expression.

Moreover, in order to evaluate the power of survival analysis by combining the three
data types, we also computed the prognostic score (Equation (3)) by using a single data type
(gene expression, DNA methylation, or mutation status). For this process, the same pipeline
described above was applied to each data type. For gene expression and DNA methylation,
high and low cutoff values were determined independently, and survival analysis was
carried out by labeling in accordance with these cutoffs. Since the mutation status is
represented as binary data (value of “1” indicates mutation, otherwise it becomes “0”),
survival analysis with mutation status was performed by directly using these binary values.

2.8. MOFA Analysis

We applied the Multi-Omics Factor Analysis (MOFA), which is a computational
method used to gain biological insights from multi-omics data. SNF combines multi-
omics data through network fusion, whereas MOFA applies a matrix factorization for
data integration. MOFA is an adaptation of Principal Component Analysis (PCA) for
multi-omics data. MOFA takes data matrices from each omics type as input, and then
decomposes these matrices into a factor matrix for each sample and weight matrices for
each omics data type [42].



Med. Sci. 2023, 11, 44 9 of 24

The same samples (given in Table 1) and the three omics layers of DEMG_Common
(mentioned in Table 2), gene expression, DNA methylation, and somatic mutation were
used in the MOFA implementation. In addition, information from patients’ clinical data
files was also included as metadata. For the gene expression data, a log transformation
followed by a min-max normalization was applied to the raw read counts. Mutation status
was assigned “1” if the gene has a mutation, otherwise “0”. Since the beta value ranges
between 0 and 1 in DNA methylation, it remains the same value. After data preprocessing,
we used the R package MOFA [42], an unsupervised factor analysis model to perform
multi-omics data integration. We employed default parameters for model training (number
of factors = 15, convergence mode = “slow”, maxiter = “1000”, seed = “42”).

Next, we aimed to understand the molecular etiology of the MOFA factors. We
investigated whether any of the inferred latent factors were related to prediction of patient
outcomes by using the Cox proportional hazards model. Evaluating top weights using the
loadings of each feature can provide us with insights for identifying clinical biomarkers.
Therefore, across all omics data types, we selected the top 30 genes with the highest weights
in the significant factors identified through survival analysis. In addition, for each omics
data type, we identified the 30 highest weighted genes in the first three components that
were shown to be significant as a result of the variance decomposition analysis performed
with MOFA. We examined the associations of these genes with the previously identified
potential biomarkers.

3. Results

The results of the entire analysis are summarized in this section.

3.1. Identification of Differentially Expressed Genes/Differentially Methylated Probes

Table 3 showsthe number of significant hypo-/hyper-methylated probes, the number
of 10 closest upstream and 10 downstream target genes to probes with significant methy-
lation changes, and the number of statistically significant ones among these probe-gene
pairs for the training set. The same analysis was also applied for the validation set and the
statistics are given in Table 4.

Table 3. Summary of differential methylation analysis for the training set. “Hypo-M” and “Hyper-M”
indicate hypomethylated and hypermethylated, respectively.

Cancer Type Number of Differentially Methylated Probes Number of Nearby Genes Number of Probe-Gene Pairs

Hypo-M Hyper-M Hypo-M Hyper-M Hypo-M Hyper-M

COAD 3103 2195 62,039 43,895 2561 6117

KIRC 1277 691 25,540 13,820 2388 2277

BRCA 1252 1048 25,040 20,953 2490 4606

LUSC 3415 1949 68,300 38,980 2588 3451

Table 4. Summary of differential methylation analysis for the validation set. “Hypo-M” and
“Hyper-M” indicate hypomethylated and hypermethylated, respectively.

Cancer Type Number of Differentially Methylated Probes Number of Nearby Genes Number of Probe-Gene Pairs

Hypo-M Hyper-M Hypo-M Hyper-M Hypo-M Hyper-M

COAD 3084 1729 61,666 34,580 5324 3615

KIRC 1809 780 36,180 15,600 3440 2458

BRCA 1436 1278 28,720 18,180 2925 4225

LUSC 2121 1957 42,420 39,140 1543 4737
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For the probe-gene pairs determined in the previous step, the mean methylation values
ofprobes matching a gene were assigned this gene. Table 5 summarizesthe number of differ-
entially methylated genes obtained in this way (DMG-hypo/hyper) (Figure 1a), the number
of differentially expressed genes (DEG) (Figure 1b) and the number of both differentially
expressed and differentially methylated genes (DEMG-hypo/hyper) (Figure 1c) obtained
by taking the common ones in these two groups for the training set. The same analysis was
also applied for the validation set and the same statistics are given in Table 6. The next
analysis steps were continued with the genes in the DEMG-hypo/hyper group.

Table 5. Differential analysis results for RNA sequencing and methylation data in the training set.

Cancer Type DEG DMG_Hypo DMG_Hyper DEMG_Hypo DEMG_Hyper

COAD 10,916 10,676 5012 4581 2211

KIRC 12,273 7005 2524 3556 1323

BRCA 14,294 4971 4773 2806 2812

LUSC 11,585 10,898 4666 5085 2309
DEG indicates differentially expressed gene numbers, DMG_Hypo indicates differentially hypomethylated
gene numbers, DMG_Hyper indicates differentially hypermethylated gene numbers, DEMG_Hypo indicates
differentially expressed and hypomethylated gene numbers, and DEMG_Hyper indicates differentially expressed
and hypermethylated gene numbers.

Table 6. Differential analysis results for RNA sequencing and methylation data in the validation set.

Cancer Type DEG DMG_Hypo DMG_Hyper DEMG_Hypo DEMG_Hyper

COAD 11,815 10,426 4417 4886 2095

KIRC 14,087 9177 2655 5325 1578

BRCA 14,667 5510 4547 3228 2747

LUSC 12,147 8442 4733 4040 2412
DEG indicates differentially expressed gene numbers, DMG_Hypo indicates differentially hypomethylated
gene numbers, DMG_Hyper indicates differentially hypermethylated gene numbers, DEMG_Hypo indicates
differentially expressed and hypomethylated gene numbers, and DEMG_Hyper indicates differentially expressed
and hypermethylated gene numbers.

3.2. Identification of Common Genes in Different Cancer Types

Figures 2 and 3 show the distribution of the DEMG_hyper and DEMG_hypo for
training and validation data before applying SNF and clustering algorithms. As seen in
these figures, 49 DEMG-hyper and 151 DEMG_hypo genes were found for the training set,
and 53 DEMG-hyper and 227 DEMG_hypo common genes were found for the validation set.
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In addition, for the training and validation set, we compared the DEMG_hyper and
DEMG_hypo genes common to all four cancer types among themselves. The distribution
of these genes is given in Figure 4. Most of the common genes were found in both the
training and validation sets.
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3.3. Network Clustering

The biologically homogeneous modules offour cancer types were compared to reveal
potential common biomarker genes related to these cancers. For this purpose, we have
implemented Fast Greedy, Infomap and Louvain clustering algorithms to detect modules
on the DEMG-hyper and DEMG-hypo networks for both training and validation sets
(Figure 1d). The performance of each algorithm was evaluated by using both BHI and
Bioscore metrics; these results are summarized in Tables 7–10. As seen in Tables 7 and 8,
the Fast Greedy algorithm gave higher BHI and Bioscore for all DEMG-Hyper and DEMG-
Hypo data for the training set. As seen in Table 9, fast greedy algorithm for BRCA and
COAD, Louvin algorithm for LUSC and KIRC gave the best results for DEMG_Hyper data
for the validation set. As seen in Table 10, Fast Greedy algorithm for BRCA, COAD and
KIRC and Louvin algorithm for LUSC gave the best results for all DEMG_Hypo data for
the validation set.

The modules obtained by the clustering algorithm, which gave a better result for
each cancer type, were compared among themselves as the DEMG_Hyper ones and the
DEMG_Hypo ones. Then, genes that are common to all cancer types and that were included
in the same modules in the training and validation datasets were determined (Figure 1e).
These genes are listed in Table 11.
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Table 7. Performance comparison of clustering algorithms between DEMG-Hyper data for the
training set.

Average-Bioscore
(GO-BP)

Average-Bioscore
(KEGG) Average-BHI # of Cluster

BRCA_hyper
Fast Greedy 0.500 0.596 0.077 27

Infomap 0.229 0.144 0.055 257
Louvin 0.400 0.422 0.069 30

COAD_hyper
Fast Greedy 0.289 0.427 0.069 20

Infomap 0.178 0.128 0.046 227
Louvin 0.358 0.328 0.065 27

KIRC_hyper
Fast Greedy 0.449 0.126 0.067 15

Infomap 0.164 0.007 0.044 144
Louvin 0.342 0.05 0.056 20

LUSC_hyper
Fast Greedy 0.409 0.446 0.072 24

Infomap 0.135 0.032 0.049 213
Louvin 0.304 0.217 0.065 31

Table 8. Performance comparison of clustering algorithms between DEMG-Hypo data for the
training set.

Average-Bioscore
(GO-BP)

Average-Bioscore
(KEGG) Average-BHI # of Cluster

BRCA_hypo
Fast Greedy 0.427 0.539 0.081 21

Infomap 0.117 0.094 0.042 274
Louvin 0.484 0.465 0.071 30

COAD_hypo
Fast Greedy 0.516 0.453 0.082 19

Infomap 0.132 0.064 0.042 434
Louvin 0.467 0.374 0.08 35

KIRC_hypo
Fast Greedy 0.525 0.499 0.083 18

Infomap 0.176 0.112 0.04 377
Louvin 0.387 0.472 0.071 32

LUSC_hypo
Fast Greedy 0.274 0.517 0.08 25

Infomap 0.08 0.026 0.043 393
Louvin 0.525 0.351 0.074 37

3.4. Somatic Mutation Status of Biomarkers

The mutation status of each gene in Table 11 was also examined (Figure 1f). Figure 5
shows the number of patients with gene mutations for the hypomethylated group. The
color of the bubbles was used to represent the genes in the same modules, and bubble
size represents the number of patients. For this procedure, we normalized the number of
patients with mutations in that gene by the total number of patients with mutations in each
cancer type. The genes having the most mutations for the hypomethylated group were
PRKDC, EGFR, PTDSS1, ADGRD1 and LGR4, while SLC9A3 and BRIP1 were the most
mutated ones for the hypermethylated group.

Figure 6 shows the number of patients with gene mutations for the hypermethy-
lated group. It was observed that the mutations were mostly of the “missense” type for
both groups.
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3.5. Survival Analysis

Survival analysis was performed for the genes given in Table 11. The “prognostic
score” described in Section 2.7 was used for this analysis. Since this is a continuous value,
it must be converted into a categorical value for survival analysis. Therefore, high and low
limits were determined by taking the mean +/− 1-standard deviation of each gene’s score
for all patients. After calculating these averages for all genes, high- and low-level cutoffs
were determined based on the average of high- and low-level scores computed specifically
for each cancer type. These values were summarized in Table 12. According to these limits,
a score less than average low level was labeled as “low”, one between average low and
high level was labelled as “normal”, and one higher than average high level was labelled
as “high” for each cancer type.

Table 9. Performance comparison of clustering algorithms between DEMG-Hyper data for the
validation set.

Average-Bioscore
(GO-BP)

Average-Bioscore
(KEGG)

Average-
BHI # of Cluster

BRCA_hyper
Fast Greedy 0.515 0.371 0.074 25

Infomap 0.187 0.096 0.066 246
Louvin 0.253 0.476 0.044 32

COAD_hyper
Fast Greedy 0.512 0.105 0.062 17

Infomap 0.246 0.011 0.064 194
Louvin 0.359 0.057 0.050 27

KIRC_hyper
Fast Greedy 0.346 0.186 0.077 14

Infomap 0.191 0.106 0.071 173
Louvin 0.361 0.383 0.048 22

LUSC_hyper
Fast Greedy 0.460 0.349 0.074 23

Infomap 0.147 0.081 0.075 220
Louvin 0.543 0.379 0.050 30

Table 10. Performance comparison of clustering algorithms between DEMG-Hypo data for the
validation set.

Average-Bioscore
(GO-BP)

Average-Bioscore
(KEGG) Average-BHI # of Cluster

BRCA_hypo
Fast Greedy 0.526 0.294 0.076 23

Infomap 0.045 0.025 0.051 295
Louvin 0.299 0.243 0.077 31

COAD_hypo
Fast Greedy 0.305 0.567 0.089 20

Infomap 0.193 0.134 0.083 424
Louvin 0.487 0.545 0.056 29

KIRC_hypo
Fast Greedy 0.459 0.454 0.080 21

Infomap 0.170 0.056 0.039 525
Louvin 0.415 0.199 0.074 32

LUSC_hypo
Fast Greedy 0.322 0.229 0.076 25

Infomap 0.087 0.036 0.070 336
Louvin 0.415 0.287 0.055 33
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Table 11. Common genes in the same module for both training and validation sets.

Genes Name Methylation Group

PRKDC, MCM4, UBE2V2 Hypo-methylated
LPCAT1, mrpl36 Hypo-methylated
CDKN3, CGRRF1 Hypo-methylated
GNG11, GNGT1 Hypo-methylated

ACTR3B, IMMP2L Hypo-methylated
SEC61G, EGFR Hypo-methylated
PTDSS1, CPQ Hypo-methylated

ARHGEF10, CLN8 Hypo-methylated
CBX8, CBX2 Hypo-methylated

RAN, ADGRD1 Hypo-methylated
TPRG1L, PRDM16-DT Hypo-methylated

LGR4, BDNF-AS Hypo-methylated
SLC9A3, PP7080 Hyper-methylated

ENPP5, CYP39A1 Hyper-methylated
RAD54L, EFCAB14 Hyper-methylated
BRIP1, TBX2-AS1 Hyper-methylated
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Table 12. Average cutoff values for the high and low levels.

Cancer Type Average of Low-Level Scores Average of High-Level Scores

Brca_hypo 0.277 0.419
Lusc_hypo 0.282 0.41
Coad_hypo 0.279 0.437
Kırc_hypo 0.276 0.381

Brca_hyper 0.314 0.457
Lusc_hyper 0.285 0.434
Coad_hyper 0.324 0.49
Kırc_hyper 0.364 0.489

The results of the survival analysis with hazard ratio > 1.0 and p-value < 0.05 are
presented in Table 13. Among the significant results are potential biomarker genes that
were determined by considering the number of patients at that level and the number of
deaths according to the prognostic score (Figure 1g). In addition, Kaplan–Meier plots of
these genes are presented in File S2.

Table 13. Survival analysis Cox PH model results.

Cancer Type Gene Name Prognostic Score Level Hazard Rate p-Value Number of Patients at
Score Level

Number of
Deaths

Brca_hypo GNG11 Low 7.7055 0.000189 11 4
CBX2 High 2.0370 0.0138 188 27

Coad_hypo

CDKN3 High 2.577 0.0262 64 15
ARHGEF10 High 2.855 0.0128 56 14

GNG11 High 2.2279 0.0563 45 12
CLN8 High 3.037 0.00823 53 14

Kırc_hypo CBX2 High 2.8296 0.02 19 7

Lusc_hypo SEC61G High 1.6608 0.0541 239 99
PTDSS1 High 2.6287 0.0217 273 111

We additionally tested the weights with gene expression (0.4), DNA methylation (0.4),
and mutation (0.2). Based on a significant hazard ratio and p-values, we found fewer
biomarkers in the analysis carried out with this version (0.4, 0.4, 0.2). We present the proof
of this analysis result in File S3.

3.6. Usage of Individual Data Types for Survival Analysis

Another survival analysis was performed by using gene expression, DNA methylation
and mutation data individually to compare them with the proposed multi-omics prognostic
score. The survival analysis based on individual data types presented fewer significant
results when the hazard ratio and p-values were considered. The File S4 summarizes the
results of survival analysis with individual data types. We claim that the new prognostic
scoring by integrating multi-omics data would empower common biomarker identification
across tumor types.

3.7. MOFA Analysis

MOFA was applied to gene expression, DNA methylation and somatic mutation data of four
cancer types (BRCA, COAD, KIRC, and LUSC). Significant factors in the trained models were
used in the survival analysis. From the identified 15 MOFA factors, Factor 7 (p-value = 0.0001),
and Factor 15 (p-value = 0.0198) for BRCA_hypo, Factor 7 (p-value = 0.0201) for COAD_hypo,
Factor 8 (p-value = 0.0005) for KIRC_hypo, Factor 12 (p-value = 0.016) for LUSC_hypo, and Fac-
tor 4 (p-value = 0.04) and Factor 8 (p-value = 0.015) for BRCA_hyper were statistically signif-
icantly associated with overall survival. We identified the top 30 genes with the highest
weight in these factors and the first three factors determined by variance decomposition
analysis. We observed some similarities between these genes and the results provided in
Tables 11 and 13. For example, the survival analysis of two methods identified CBX2 and
GNG11 genes in BRCA_hypo phenotype. Further results are presented in File S5.
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4. Discussion

In the first stage of the study, we performed a network-based integrative analysis with
the SNF method using DNA methylation and gene expression data of BRCA, COAD, KIRC
and LUSC. Community detection methods were applied to the integrated network and the
results were evaluated using cancer-related biological metrics. The same procedure was
implemented on both training and validation datasets for all cancer types. As a result of
this procedure, there is a concordance between the genes identified in the same module for
both training and validation data sets (Table 11). Some of these genes were also mentioned
in previous studies in the literature. These studies integrated various omics profiles
(e.g., gene expression, DNA methylation, somatic mutation, copy number) and applied
one or more computational approaches such as a deep neural network, co-expression
network, feature selection, differential expression or methylation gene analysis, or protein–
protein interaction analysis on different cancer types. For instance, Fan et al. [43] identified
triple-evidence genes representing differentially methylated, differentially expressed, and
somatic mutation-associated genes in each of the 13 TCGA cancers. Among the triple-
evidence genes they determined, the genes that were also common to all four cancer types
in our study are as follows: CBX2, CBX8 genes for BRCA, LUSC and COAD; MCM4,
GNG11 genes for LUAD; LGR4 gene for COAD, KIRC, LUSC; LPCAT1 gene for LUSC;
EGFR gene for KIRC and ARHGEF10 gene for BRCA. In another study, Mo et al. [44]
performed a statistical integrative clustering analysis (iCluster+) using exome sequence,
DNA copy number, promoter methylation, and mRNA expression data of TCGA colorectal
carcinoma. In this analysis to discover cancer subgroups, PTDSS1, MCM4 and PRKDC
genes were identified as molecular drivers belonging to the same subgroup. Qi et al. [45]
constructed a PPI network with differentially expressed and aberrantly methylated genes
for breast cancer and identified MCM4, CDKN3 and EGFR as hub genes. In another
breast cancer study using gene expression and copy-number alterations data in a neural
network-based approach, the CDKN3 was one of the subtype-specific genes identified
belonging to the LumA subtype [46]. Fiorentino et al. [47] developed a methodology
that fuses omics-specific similarity networks in a single network and verified the SEC61G
gene as a prognostic biomarker using gene expression, methylation, and miRNA data
of GBM. Dimitrakopoulos et al. [16] identified the known EGFR gene for lung cancer by
their proposed network-based integration method using somatic mutations, copy number
variations, methylation, mRNA and miRNA expression data. Sheng et al. [48] identified
differentially expressed mRNAs, miRNAs, and circRNAs for breast cancer and constructed
a regulatory network. Then, to explore the key genes involved in the regulatory network,
they established a PPI network and applied the MCODE algorithm; as a result of this
analysis, LPCAT1, CBX2 and EGFR were identified as potential hub genes. Shi et al. [49]
proposed an approach to identify driver genes by integrating mutation data, expression
data, and gene networks and reported EGFR and PRKDC as potential driver genes for GBM.

In the next stage of our study, the somatic mutation status of selected genes for
biomarker analysis was determined. In addition, a new prognostic scoring method has been
developed that uses mRNA expression, methylation and mutation states of biomarkers
simultaneously. Finally, we obtained statistically significant results for GNG11, CBX2,
CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes in the survival analysis. Previous
studies found in the literature about these genes are summarized below.

G protein subunit gamma 11 (GNG11), a constituent of G-proteins, plays a vital role in
the transmembrane signaling system. It has been described as a hub gene or a candidate
biomarker in different cancer types. Hua et al. [50] reported in their study that GNG11 acts
as a hub gene in lung adenocarcinoma. Moreover, Shi et al. [51] observed that GNG11 was
downregulated in lung cancer, and low expression of GNG11 was associated with worse OS
for female lung cancer patients who never smoked. Buttarelli et al. [52] generated a ten-gene
signature, including the downregulated GNG11 gene, that predicts response to first-line
chemotherapy in high-grade serous ovarian cancer patients. Furthermore, Jiang et al. [53]
identified that high expression of GNG11 is related toa poor prognosis in ovarian cancer
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patients. According to Zhang et al. [54], GNG11 is downregulated in tumor tissue, and
is the core gene in protein–protein interaction network analysis for triple-negative breast
cancer. In addition, Xing et al. [55] stated that GNG11 is one of the eighteen key genes
identified for the treatment of colorectal cancer. In line with other studies, according to
our study, the GNG11 gene was downregulated and highly methylated in both breast and
colon tumor tissues compared to normal tissues. Moreover, according to the prognostic
scoring method we developed, GNG11 was associated with poor survival by presenting
low scores in breast cancer and high scores in colorectal cancer.

Chromobox 2 (CBX2) is a polycomb repressor complex subunit, and some studies
classified it as an oncogene. Clermont et al. [56] reported CBX2 as a potential drug target
in their study and associated CBX2 expression with poor clinical outcomes in prostate
cancer. Previous studies have shown that high expression of CBX2 is associated with
worse survival in hepatocellular carcinoma, high-grade serous ovarian cancer, and lung
adenocarcinoma [57–59]. Conversely, Ma et al. [60] identified that CBX2 mRNA and
protein levels were significantly increased in gastric cancer tissues, but these levels were
not significantly associated with the overall survival of patients. Furthermore, studies on
colorectal cancer (CRC) showed that the CBX2 gene was significantly upregulated in CRC
tissues compared to normal tissues, and this may be associated with poor prognosis [61,62].
There are various studies about the function of CBX2 in breast cancer. Bilton et al. [63]
identified novel mechanisms by which CBX2 promotes breast cancer growth, and inhibition
of CBX2 could be a novel therapeutic strategy. Zheng et al. [64] stated that there was
a positive correlation between high CBX2 expression and activation of the PI3K/AKT
pathway, and that CBX2 could be a potential prognostic biomarker. Li et al. [65] showed
that the expression of CBX2 was strongly associated with tumor stage, and there was
higher CBX2 expression in stage IV patients compared to others. Moreover, Piqué et al. [66]
found that CBX2 promotes cell proliferation in breast cancer, its overexpression causes
upregulation of genes involved in cell cycle progression, and CBX2 overexpression is
associated with poor 5-year survival. Our results are consistent with previous studies; we
found that CBX2 is upregulated in breast and clear-cell renal cell carcinoma and patients
with poor survival showed higher prognostic scores in both cancer types.

Cyclin-dependent kinase 3 (CDKN3) is a member of the protein phosphatase inhibitors
family and involved in regulation of the cell cycle [67,68]. Abnormal expression of CDKN3
is seen in many types of cancer. Abdel-Tawab et al. [69] suggested that CDKN3 expression
could be used as a diagnostic and predictive biomarker of gastric cancer. Li et al. [70]
found that CDKN3 was overexpressed in human gastric cancer tissues and associated
with poor patient survival. Similarly, there are other studies associating CDKN3 overex-
pression with poor survival in nasopharyngeal carcinoma, lung adenocarcinoma, breast,
bladder, and cervical cancer [71–75]. An immunohistochemical study for ESCC identified
abnormal CDKN3 protein expression in esophageal squamous-cell cancer (ESCC) patients
and confirmed its association with ESCC progression [76]. Yang and Sun [77] showed
the role of CDKN3 in cellular proliferation of colorectal cancer by examining the effects
of CDKN3 siRNA on the SW480 cell line; it is associated with cell cycle progression and
apoptosis. Moreover, Li et al. [78] stated that CDKN3 is highly expressed in colorectal
cancer, and this may be closely related to the poor prognosis of the patients. In our study
using a different dataset, we found that the CDKN3 gene was highly expressed and less
methylated in colorectal cancer patients compared to normal samples. In parallel with
literature studies, we identified that colorectal cancer patients with poor survival showed a
high prognostic score.

ARHGEF10 encodes the Rho guanine nucleotide exchange factor, and its role in cancer
has not yet been clarified. However, there are studies presenting it as a candidate tumor
suppressor gene for pancreatic ductal adenocarcinoma [79], hepatocellular carcinoma [80],
breast [81] and urothelial carcinoma [82]. In addition, while decreased ARHGEF10 expres-
sion was observed in tumor cells in these studies, increased ARHGEF10 expression was
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found in colorectal cancer in our study. In addition, according to the prognostic scoring
method we developed, high scores in colorectal cancer were associated with poor survival.

CLN8 encodes a transmembrane protein, and mutations in this gene are linked to
progressive epilepsy with cognitive disabilities (EPMR), a subtype of neuronal ceroidlipo-
fuscinoses (NCL) [83]. In order to reveal the role of NCL genes in cancer-related processes,
Yap et al. [84] stated that the CLN8 gene showed low expression in brain cancer cells and
had a tumor suppressor effect on patient survival. However, more research is needed in
the future to explore the importance of CLN8 in cancers. In our study, low expression
was observed in colorectal cancer tissue, and patients with high score values showed poor
survival, according to the developed prognostic scoring method.

The subunit of the SEC61 translocon complex (SEC61G) participates in protein folding,
post-translational modification and translocation, and plays critical roles in several cancer
types [85]. Zhang et al. [86] used the expression levels of five genes to develop a prognostic
model for colorectal cancer; one of these genes was SEC61G. In studies conducted for breast
cancer, it has been stated that the SEC61G gene can be used as a diagnostic biomarker and
therapeutic target, since high expression of SEC61G is associated with the expression of
the proliferation marker Ki-67 and glycolysis. It was stated that SEC61G expression was
higher and methylation level was lower in tumors compared to normal tissues, and this
was associated with poor survival [87,88]. Zhang et al. [89] similarly found that SEC61G
showed hypomethylation and high expression in bladder cancer cells. Meng et al. [90]
stated that SEC61G is up-regulated in human kidney tumors and is associated with poor
prognosis, compared with the control group. SEC61G knockdown significantly inhibits
cell proliferation, migration and invasion; therefore it may serve as a biomarker for kidney
cancer. In addition, some studies associated SEC61G overexpression with worse survival in
hepatocellular carcinoma, head and neck squamous carcinoma, glioblastoma and lung ade-
nocarcinoma [91–94]. In our study, we found that the SEC61G gene was highly expressed
and hypo-methylated in lung cancer patients compared to normal samples. Furthermore,
we identified that lung cancer patients with poor survival had high prognostic scores.
Therefore, our analysis is supported by various literature studies.

There have been some cancer-related reports addressing phosphatidylserine synthase
1 (PTDSS1). Cheng et al. [95] stated that the PTDSS1 could be one of the anti-cancer
targets for the treatment of colorectal cancer. Sekar et al. [96] showed that inhibiting
the production of ether-phosphatidylserine by targeting PTDSS1 limits tumor-associated
macrophage expansion and breast tumor growth. In a study on ESCC, it was stated that
mRNA expression has a differential significance between ESCC and normal controls [97].
N’Guessan et al. [98] measured the expression of PTDSS1 at each stage of the cell cycle
and found that PTDSS1 gene expression increased in the G2/M phase compared to the G1
phase in pancreatic cancer cells. They also noted that PTDSS1 gene expression was higher
in pancreatic cancer patients compared to healthy tissues, and this was associated with
a lower probability of survival in pancreatic cancer patients. In another research study,
Li et al. [99] identified that high expression of PTDSS1 is significantly associated with a
lower probability of survival in urothelial bladder carcinoma (BLCA), concluding that
PTDSS1-mediated phosphatidylserine signaling is involved in the pathogenesis of BLCA.
Furthermore, Wang et al. [100] concluded in their study that PTDSS1 is an oncogene in lung
adenocarcinoma and its overexpression may reduce the likelihood of survival. In our study,
we found that the PTDSS1 gene was upregulated and hypomethylated in LUSC compared
to normal tissues. Moreover, according to the prognostic scoring method we developed,
low scores in PTDSS1 were associated with poor survival.

In addition to carcinoma, potential biomarker genes in Table 13 have been associated
with a wide range of other diseases, and they seem to be activated or inhibited in various
biological processes. Cheng et al. [101] suggested that GNG11 could be used as a biomarker
for differentiate ulcerative colitis and Crohn’s disease. Moradi et al. [102] proposed that
GNG11 could be a diagnostic biomarker for Parkinson’s disease. GNG11 plays a key role
in heart rhythm regulation and is associated with cardiac disease risk [103]. The CDKN3
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gene could be used as a potential marker to identify severe COVID-19 patients [104].
Yue et al. [105] identified 10 central genes, including CDKN3, and stated that these genes
may serve as new target markers for early diagnosis, prognosis and therapy in psoriasis.
Yao et al. [106] constructed an index using seven genes, including CDKN3, which are asso-
ciated with hypoxia, a prominent factor in the diagnosis and treatment of osteoarthritis.
The ARHGEF10 mutation was associated with slowed nerve conduction velocity [107].
The ARHGEF10 gene might be associated with the pathogenesis of Behcet’s disease [108].
Zhang et al. [109] revealed the candidacy of the CLN8 gene as a genetic modifier contribut-
ing to extreme phenotypic variation in Gaucher disease. A novel mutation in CLN8 may
cause Northern Epilepsy cases in Turkey [110]. CBX2 gene plays a role in the human sex
development process and its disorders [111]. SEC61G is among the nine circadian-related
genes identified related to circadian rhythm disruption, which is critical in the pathogenesis
of Alzheimer’s disease [112]. The SEC61G gene was differently methylated in patients
with Balkan endemic nephropathy [113]. The SEC61G gene is differentially expressed and
methylated in fetal alcohol spectrum disorder patients [114]. There are many studies about
relationship between the mutation in the PTDSS1 gene and Lenz-Majewski syndrome [115].
Soueid et al. [116] proposed that PTDSS1 is among the potential autism susceptibility genes
in their study.

Besides the SNF method, MOFA has also been applied for the integration of gene
expression, DNA methylation and mutation data. There are differences in the application
of the two methods and the interpretation of the obtained results. The SNF method initially
constructs a distinct similarity network for each omics, then integrates the networks using
an iterative procedure. However, MOFA utilizes a matrix factorization technique. Although
matrix factorization techniques are frequently employed for dimensionality reduction, they
might ignore biological correlations between the features. Furthermore, because of its
linearity, the MOFA model may miss non-linear correlations between features. Another
challenging process was the biological interpretation of the inferred latent factors. Each
feature in MOFA has a ‘weight’ that represents its relative relevance to the factor. We
utilized these weights to assess the most informative biomarkers. The most difficult aspect
of implementing the SNF method was integrating clinical data and was not included in this
method. On the other hand, this capability is available in MOFA. Consequently, the two
methodologies cannot be directly comparable in terms of their results due to their different
computational methods. Despite all the differences of the two methods, they report similar
gene outputs for some cancer phenotypes.

This study provides new insights into potential prognostic biomarkers for many tumor
types; however, it has some limitations. First, gene expression, DNA methylation and
mutation data of the same patient are required to calculate the proposed prognostic score.
Nevertheless, in some cases, all three data types may not be available for the same patient.
Second, all omics data come from the TCGA database; when other public repositories are
checked, it is common to find gene expression data for specific drug treatments on cancer
cell lines or gene knockout studies. In contrast, the samples in our study were selected
from patients who did not receive any treatment. Furthermore, due to focusing on patients
at cancer stage 1 and 2, there were relatively few samples remaining in the study. If a larger
sample size is used, the predictive power of the algorithm can be more effectively verified.
Although verification of the proposed biomarkers on a new patient cohort could not be
currently applied, we aim to investigate the biological validity of some of these biomarkers
in new patient cohorts as a future study.

5. Conclusions

We implemented an integrative network analysis approach that explores common
biomarkers for lung, breast, colorectal and kidney cancers by integrating RNA-sequencing
and DNA methylation data. Several network clustering algorithms were used on the
integrated network data. Cancer-specific evaluation metrics were applied to evaluate
clustering results, and finally, common modules were reported across four cancers. The
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same analysis pipeline was applied to the validation set and final prospective biomarkers
were identified. Survival analysis for biomarkers was conducted with a new prognostic
scoring method that integrates mRNA expression, methylation and mutation status of
genes. A literature survey about significant biomarkers highlighted in survival analysis
revealed that GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes
present similar survival and prognostic behaviors in the specified cancers. In summary,
multi-omics and network-based analysis can help to discover new targets across cancers
and to reduce treatment costs.
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Bioscore for KEGG pathway.
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