Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies

Marshall, John M. and Raban, Robyn R. and Kandul, Nikolay P. and Edula, Jyotheeswara R. and León, Tomás M. and Akbari, Omar S. (2019) Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Frontiers in Genetics, 10. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/1/package-entries/fgene-10-01072.pdf] Text
pubmed-zip/versions/1/package-entries/fgene-10-01072.pdf - Published Version

Download (2MB)

Abstract

While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based strategies to control these diseases. In one such strategy, called “population replacement”, mosquitoes, and other disease vectors are engineered with effector genes that render them unable to transmit pathogens. These effector genes can be linked to “gene drive” systems that can bias inheritance in their favor, providing novel opportunities to replace disease-susceptible vector populations with disease-refractory ones over the course of several generations. While promising for the control of vector-borne diseases on a wide scale, this sets up an evolutionary tug-of-war between the introduced effector genes and the pathogen. Here, we review the disease-refractory genes designed to date to target Plasmodium falciparum malaria transmitted by Anopheles gambiae, and arboviruses transmitted by Aedes aegypti, including dengue serotypes 2 and 3, chikungunya, and Zika viruses. We discuss resistance concerns for these effector genes, and genetic approaches to prevent parasite and viral escape variants. One general approach is to increase the evolutionary hurdle required for the pathogen to evolve resistance by attacking it at multiple sites in its genome and/or multiple stages of development. Another is to reduce the size of the pathogen population by other means, such as with vector control and antimalarial drugs. We discuss lessons learned from the evolution of resistance to antimalarial and antiviral drugs and implications for the management of resistance after its emergence. Finally, we discuss the target product profile for population replacement strategies for vector-borne disease control. This differs between early phase field trials and wide-scale disease control. In the latter case, the demands on effector gene efficacy are great; however, with new possibilities ushered in by CRISPR-based gene editing, and when combined with surveillance, monitoring, and rapid management of pathogen resistance, the odds are increasingly favoring effector genes in the upcoming evolutionary tug-of-war.

Item Type: Article
Subjects: GO for STM > Medical Science
Depositing User: Unnamed user with email support@goforstm.com
Date Deposited: 07 Feb 2023 10:45
Last Modified: 01 Dec 2023 12:27
URI: http://archive.article4submit.com/id/eprint/208

Actions (login required)

View Item
View Item