Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems

Erlichman, Joseph S. and Leiter, James C. (2021) Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants, 10 (4). p. 547. ISSN 2076-3921

[thumbnail of antioxidants-10-00547-v3.pdf] Text
antioxidants-10-00547-v3.pdf - Published Version

Download (1MB)

Abstract

Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.

Item Type: Article
Subjects: GO for STM > Agricultural and Food Science
Depositing User: Unnamed user with email support@goforstm.com
Date Deposited: 09 Oct 2023 05:47
Last Modified: 09 Oct 2023 05:47
URI: http://archive.article4submit.com/id/eprint/1313

Actions (login required)

View Item
View Item