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Abstract

This paper uses the dynamic programming to detect the dptiatstical arbitrage opportunities in|a
market including a bond and a stock. First, it is assumedhbagrowth rates of stock are independent
random variables and Bellman equation is derived for probabiligain of a portfolio containing a long
position in stock and short position in bond. The Befireguation is derived and its approximations jare
studied. Then, using the simulation, the performancenethod in correlated growth rates cases is
proposed. Conclusions are also given.

Keywords: Bellman equation; bond; dynamic programming; probgkili statistical arbitrage; stock.
1 Introduction

This paper deals with construction of statistical arbitragategyy to obtain possible profit with a high
probability in future with zero investment at the currentetirfl] investigated the relationship of market
efficiency and statistical arbitrage. A comprehengieiew in statistical arbitrage may be found in [2].
Authors [3] applied the statistical arbitrage detectiochiéques in U.S. equities markets. In foreign
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exchange markets, there are many basic shortesalgaitithms to detect statistical arbitrage, see [4kré

are many basic strategies to this end, like market Hestiteiegies, pairs trading, high frequency trading, co-
integration trading and mean revert trading, see [5] amdeaeées therein. The dynamic programming is a
method for optimal control like (i) maximum principle a@ij calculus of variation which may be used to
exploit the statistical arbitrages, see [6,7].

Here, it is assumed th&t is a bond with riskless ratg growth, that isB, = B, (1 + ;) andS, is a stock
with growth rater;, t > 1, i.e.,

¢
St =SO| | 1 +mn).
i=1

In this paper, is it assumed thgs are independent random variables and for eaell, E(r,) > ;. The
value of a portfolio with long position in one unit of stock andinit of bond in short position is, = S, —

a;B;. Suppose that, = 0, thena, = —;". Fort > 1, lety, =In (—zt) andp, be the gain probability that is
0 0
p: = P(m; > 0). Then,

S
pt=P(5t—atBt>0)=P<B—t>at)=
t

P (Z [In(1 + 1) —In(1+7)] > yt) ~ P (Z(n 1) > yt>.

The last approximation is true becalis€1 + x) ~ x for smallx. Let F, be the distribution function of
Y i(ri—1¢). Thenp, = 1 — F,(y,). Notice thatp, = p,_; — F;(v:) + Fi—1(¥;—1)- One can see that

F(x) = E{Ft_l(x +1r— rt)}.
Assuming,F;_; (v¢) — Fr-1(y¢-1) = 0, then,

Pe =De-1 + E{Fe_1(yy) + Ft—l(Vt +1F — rt)}'

Therefore, to maximize the gain probability with resgiegt,, it is enough to solve the following equation

Pt = max,,, P11 + E{Fe_1(ye) + Ft—1()’t + 17— Tt)})-

The last equation defines a dynamic programming frameviark,. As soon ay, is determined, then

a; = age’t is derived. The rest of paper is organized as folldwsection 2, assuming normal distribution
for ;'s thep,, y; anda, are derived. The exact and approximated solutions aiedeSection 3 examines
the correlated;'s. A real data set is analyzed.

2 Normal r;'s

In this section, first, the exact dynamic programming isseméed. Then, the approximated solution is
proposed. To this end, suppose that have normal distribution with meapand variances?.
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2.1 Exact solution

TheF, is distribution function of normal distribution with megf., (u; — ) and varianc&}_, o7. For two
independent normally distributed random variabfeendY, it is true thaE(FX(Y)) = P(X <Y), thus,

E{Ft—l(Vt +1F — rt)} = F(ye),
then,
Py = mMax,,, D1 + Foa(ve) + Fe(v)).

Example 1.Letr, = 0.05 andy; = ay;_, for |a| < 1 ands? = 0.16. Notice thatp, = 0. Leta, = 1. The
following Table gives the values pf, v, anda; for a = 0.2.

Table 1. The values op,, y; and a,

t 1 2 3 4 5 6 7 8 9 10
p(0) 0172 02z 023/ 023¢ 0.35] 0.3€ 0.367 0.37¢ 0.37¢ 0.38
a(t) 0.27 048 0.144 8891  0.105 0.079 0089 0.081 0.074 10.08
v(t) 1.305 073 194 2185 226 254 2425 2515 261 25

2.2 Approximations

The following three propositions considers differentragpnations. To study the approximated solution,
notice that

Pt = Pe-1 = Froa(ve—1) — Fe(ve)-
Proposition 1. For special case for, = —bt, for someb > 0.
(@ The optimund is

_ tF41(0) = (¢ = D)F(0)
T t2F",_1(0) + (t — 1)2F",(0)

(b) For fixedt, the optimumb is given by Newton-Raphson recursive formulae given by

T ICh
k+1 k gr(bk);

whereg(x) = tF .(—tx) — (t — 1)F _,(—(t — Dx).
Proof. Notice that
, b%t2F",_,(0)
P — Pe—1 = maxy, {F;_1(0) = btF 1 (0) + —————
b*(t — 1)*F".(0)

F.(0) + b(t — 1F.(0) + 5

3.

This completes the proof of pam)( For part ), notice that the optimur, is obtained by letting the
derivative ofF,_, (y;—1) — F:(y;) with respect td equal to zero.
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Proposition 2.1f y, — y;—1 = hd,, then

22
t

2

h
Pt — Pee1 = Foq(ve) — Fe(ye) — hdF'eq () + F'e_1(ve).

Proof. Use the straightforward application of Taylor series ceitagl the proof. The following proposition
studies the Monte Carlo approximation.

Proposition 3. The Monte Carlo approximation fpf — p,_; is given by

1% l.
MZ(Ft—l(Vt) - Ft—l(yt t1r -1 ),
i=1

wherer{,i = 1,2,...,M is a Monte Carlo sample fror.
3 Correlated r,'s

In financial applications, usually, it is not true to assuimar,'s are independent. In this section, it is
assumed that they follow a first order autoregressive psorits GARCH(1,1) errors, a rich practical model
which works for many types of financial data setat th

n—1rr=a+ ,B(rt_l - rf) + 0,7,

wherez,'s are iid standard normal random variables @nebnstitutes a GARCH(1,1) series. In the rest of
this section, the existence the statistical arbitragstdéck of Intel corporation, a multinational technology
company, is surveyed. The daily stock price are calteédr period of study 20 Feb 2015 to 18 Feb 2016,
including 250 log-returns. They are taken from Google-fieanebsité Time series plot of return series is

given by Fig. 1. The x-axis is time and y-axis is the fitgenic return.

Time series plot of log-return
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Fig. 1. Time series plot of log-returns

L http://www.google.com/finance?cid=284784
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According to the Proposition 1 pa#)( for y, = —bt, the optimunb is

b= tF'_1(0) — (t = DF ' (0)
- 2F" 4 (0) + (£ — D2F(0)

The quantities of',_;(0), F'.(0), F",_,(0) andF".(0) are derived using the Monte Carlo approximation
and numerical differentiating. The plotmfis given as follows in Fig. 2. The x-axis is time andxys is the
probability of statistical arbitrage.

The probability of statistical arbitrage
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Fig. 2. The probability of statistical arbitrage over time

4 Conclusions

The application of Bellman equation is studied to fine the mami probability of achieving the statistical
arbitrage opportunities. Two cases of independent andla@uereturns are studied and in both cases high
probability of statistical arbitrage is derived.
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