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Abstract

Satellites of extrasolar planets, or exomoons, are on the frontier of detectability using current technologies and
theoretical constraints should be considered in their search. In this Letter, we apply theoretical constraints of orbital
stability and tidal migration to the six candidate Kepler Object of Interest (KOI) systems proposed by Fox &
Wiegert to identify whether these systems can potentially host exomoons. The host planets orbit close to their
respective stars and the orbital stability extent of exomoons is limited to only ∼40% of the host planetʼs Hill radius
(∼20 Rp). Using plausible tidal parameters from the solar system, we find that four out of six systems would either
tidally disrupt their exomoons or lose them to outward migration within the system lifetimes. The remaining two
systems (KOI 268.01 and KOI 1888.01) could host exomoons that are within 25 Rp and less than ∼3% of the host
planetʼs mass. However, a recent independent transit timing analysis by Kipping found that these systems fail
rigorous statistical tests to validate them as candidates. Overall, we find the presence of exomoons in these systems
that are large enough for transit timing variation signatures to be unlikely given the combined constraints of
observational modeling, tidal migration, and orbital stability. Software to reproduce our results is available in the
GitHub repository: Multiversario/satcand.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet tides (497); Natural satellites
(Extrasolar) (483); Exoplanet systems (484)

1. Introduction

The Kepler data has discovered myriad exoplanets; however,
a substantial number of viable planet–satellite (exomoon)
candidates have not been uncovered. The best exomoon
candidate (Kepler 1625b-I; Teachey & Kipping 2018) is hosted
by a Jupiter-sized exoplanet on a fairly wide orbit (∼287 days).
Fox & Wiegert (2020) recently identified six Kepler Objects of
Interest (KOIs) that exhibit transit timing variations (TTVs;
Kipping 2009a, 2009b), which could possibly be explained by
the reflex motion of an exomoon. If validated, such a discovery
would represent a giant leap forward in the detection of
exomoons (Kipping et al. 2012, 2013a, 2013b, 2014, 2015;
Teachey et al. 2018). A major difference between these KOIs
and Kepler 1625b is the proximity to their host star, where
gravitational tides and/or general relativity effects can be
important. We provide an analysis focusing on the orbital
stability limits for exomoons (Rosario-Franco et al. 2020) and
the possible outcomes of tidal migration considering planet–star
and planet–satellite tidal influences (Sasaki et al. 2012).

The search for exomoons using photometric data (Sartoretti &
Schneider 1999; Cabrera & Schneider 2007) now has a long
history due to the Kepler mission, where either additional
constraints beyond TTVs (e.g., transit duration variations (TDVs);
Kipping 2009a) or techniques that make use of sampling effects
(Heller 2014; Hippke 2015; Heller et al. 2016) are usually
required. Kipping (2020) performed an independent analysis of
the KOIs proposed by Fox & Wiegert (2020) and found no
compelling for evidence among the six candidates using rigorous
statistical hypothesis testing. Kepler 1625b passes two out of three
such tests and remains the best exomoon candidate despite its own
history (Heller 2018; Heller et al. 2019; Kreidberg et al. 2019).
Kipping & Teachey (2020) have introduced constraints from tidal

interactions (Barnes & O’Brien 2002) that place limits on
allowable ranges from TTVs or TDVs; however, tidal interactions
that change the planetary rotation also need to be included because
of the non-negligible effect on the moon lifetimes (Sasaki et al.
2012, see their Figure13).
Gravitational tidal models depend on parameters (e.g., tidal

Love number k2, tidal time lag Δt, moment of inertia α, or tidal
quality factor Q) that are unconstrained for most (if not all)
exoplanets and even not well constrained for planets in our own
solar system (Goldreich & Soter 1966; Lainey 2016). Models
based upon equilibrium tides with a constant time lag (Hut 1981;
Eggleton et al. 1998; Fabrycky & Tremaine 2007) or with a
constant Q (Goldreich & Soter 1966; Ward & Reid 1973) are
qualitatively similar in their predictions of moon lifetimes
(Tokadjian & Piro 2020), where discrepancies may arise long
after the main sequence lifetime of the host stars. Although these
parameters are not well known for exoplanets, the tidal migration
largely depends on the ratio k2/(αQ) and reasonable extremes
can be estimated from the solar system planets.
In this Letter, we determine the plausibility of exomoons

orbiting the six candidates from Fox & Wiegert (2020)
using orbital stability (Rosario-Franco et al. 2020), a constant
Q tide model (Sasaki et al. 2012), and results from a recent
TTV analysis (Kipping 2009b). In Section 2, we demonstrate
how orbital stability limits can be used to place upper limits
on physical parameters of exomoons. We evaluate a constant
Q tide model and estimate the lifetime of exomoons in
Section 3. We combine our analysis of exomoon orbital
stability and tidal migrations with the upper limits from
Kipping (2020) in Section 4. Our results are summarized in
Section 5, where we also identify how Kepler 1625b-I fits
within our analysis.
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2. Orbital Stability

An exomoon gravitationally interacts with both its host planet
and the planet’s host star, where the combination of these forces
limits the orbital separation between the exomoon and its host
planet. The limiting planet–satellite separation, or stability limit,
is a fraction fcrit of the the Hill radius RH (=ap[(Mp+Msat)/
(3Må)]

1/3), which depends on the planetary semimajor axis ap,
planetary mass Mp, satellite mass Msat, and the stellar mass Må.
Our recent work (Rosario-Franco et al. 2020) identified
fcrit≈0.4061 through a large number of N-body simulations
that varied the initial planet–satellite separation asat, planet
eccentricity ep, and satellite mean anomaly MAsat. We define the
stability limit as acrit=fcritRH(1− 1.1257ep) in terms of the Hill
radius, where the additional factor is necessary to account for
changes in the Hill radius for eccentric orbits of the planet.

Although the planetary semimajor axis is well determined,
there is a significant uncertainty in the stellar mass for the six
exomoon candidate systems proposed by Fox & Wiegert (2020).
Moreover, the planetary mass is undetermined and we must rely
on probabilistic determinations (Chen & Kipping 2017) based
upon statistical relationships uncovered from the confirmed
Kepler planets with radial velocity mass measurements. We
summarize the current values and uncertainties obtained from
the Kepler Exoplanet Archive (DR25) for the stellar mass Må,
planetary radius Rp, planetary semimajor axis ap, and system age
τ in Table 1. Updated values are used based upon studies that
implement asteroseismology (Silva Aguirre et al. 2015) or better
isochrone fitting (Morton et al. 2016) for the stellar age. Berger
et al. (2018) identified better constraints on the planet radius Rp
due to precise astrometric measurements from Gaia, where we
update appropriately. The planetary mass is estimated using
Forecaster from Chen & Kipping (2017) based upon our
best knowledge of the planet radius and the satellite mass is
small compared to the planetary mass.

Using our formalism for the stability limit and the best-known
system parameters (Table 1), we identify the location of acrit in
units of the planetary radius Rp and as a function of the planetary
eccentricity in Figure 1. The red curve marks the determination
of the stability limit using the mean system values, and the gray
curves illustrate the variance in the stability limit due to the
uncertainties in the system values. The black region denotes the
combinations of satellite semimajor axis asat and planet
eccentricity ep that permit long-term stability. We use a lower

boundary on asat=2 Rp, but the lower boundary should be
defined by the Roche limit. The Roche limit depends on
unknown properties (mass or density) of the exomoon
candidates and their host planets. Using the mean values of
the probabilistic planetary masses, we can estimate some
sensible values for the Roche limit. The Roche limit for KOI
1925.01 is ∼2.75 Rp, while the Roche limit for all the other
KOIs is less than 2 Rp. Despite the unknowns, we can estimate
the stability limit acrit within a factor of ∼2. Kipping (2020)
identified a large eccentricity (ep∼ 0.6) for KOI 1925.01 through
his photodynamical fits, which substantially truncates the
stability limit for exomoons in the system so that the largest
planet–satellite separation is asat  8–12 Rp.

3. Tidal Migration

Tidal migration timescales and/or distances can be used to
constrain the possibility of an exoplanet to host exomoons
(Barnes & O’Brien 2002; Sucerquia et al. 2019). The migration
depends on several parameters that are unknown (tidal Love
number k2p and tidal Quality factor Qp), but we can identify
plausible parameters using values from the solar system. Using
the observed planetary radius Rp, we assign either 0.299
(Rp< 2 R⊕; Lainey 2016) or 0.12 (Rp� 2 R⊕; Gavrilov &
Zharkov 1977) for the tidal Love numbers. A lower limit for Qp

can be estimated using the system age τ and the critical mean

motion ncrit (= +G M M ap sat crit
3( ) ) determined from the

stability limit acrit. We parameterize the planet–satellite mass
ratio as fm=Msat/Mp and evaluate tidal models over a wide
range (10−3� fm� 10−1).
We implement a constant Q tidal model (Sasaki et al. 2012)

that is directly applicable to planet–satellite mass ratios
Msat/Mp<0.1, which is akin to the Pluto–Charon system
(Cheng et al. 2014). Through our tidal model, we are interested
in two regimes: (1) the satellite tidally migrates outward past
the stability limit (see Section 2) before the satellite’s mean
motion synchronizes with the planetary spin frequency
(Ωp= nsat), or (2) the satellite tidally migrates inward toward
the Roche limit following angular momentum conservation
after synchronization. Sasaki et al. (2012) provides an
analytical decision tree algorithm that is based on the following

Table 1
Parameters for the Six Exomoon Candidate KOIs

KOI Må Rp Mp
a ap τ References

(Me) (R⊕) (M⊕) (au) (Gyr)

268.01 -
+1.175 0.064

0.058
-
+3.32 0.64

0.85
-
+10.4 5.5

11.1 0.4756 -
+3.05 0.64

0.85 b,c

303.01 -
+0.871 0.142

0.142
-
+2.78 0.38

0.39
-
+8.13 3.67

6.70 0.2897 -
+6.31 3.81

3.15 b,d

1888.01 -
+1.406 0.086

0.086
-
+4.76 0.31

0.34
-
+18.6 8.4

16.4 0.5337 -
+1.26 0.18

0.33 b,c

1925.01 -
+0.890 0.011

0.009
-
+1.10 0.04

0.05
-
+1.37 0.44

0.88 0.3183 -
+6.98 0.5

0.4 b,c

2728.01 -
+1.450 0.271

0.601
-
+3.224 0.159

0.213
-
+10.4 4.71

9.00 0.2743 -
+1.700 0.392

0.530 b,c,e

3220.01 -
+1.340 0.051

0.054
-
+5.559 0.889

0.252
-
+25.2 12.6

24.2 0.4039 -
+1.700 0.459

0.556 b,c,e

Notes.
a Planet masses Mp are estimated probabilistically using the planet radius Rp (Chen & Kipping 2017).
b Kepler Exoplanet Archive DR25.
c Silva Aguirre et al. (2015).
d Morton et al. (2016).
e Berger et al. (2018).

2

The Astrophysical Journal Letters, 902:L20 (8pp), 2020 October 10 Quarles, Li, & Rosario-Franco



differential equations:

= -
+

W -n
k R

Q

M

M

n

G M M
n

9

2
sgn ,

1

p
sat

2 p
5

p

sat

p

sat
16 3

p sat
5 3 p sat[ ( )]

[ ]

( )


= -

+ + +
´ W -


n

k R

Q

n

G M M G M M M

n

9

2

sgn ,

2

p
p

2 p
5

p

p
16 3

p sat p sat
5 3

p p

( )[ ( )]
[ ]

( )



Figure 1. Range in exomoon semimajor axis asat for each of the six KeplerKOIs proposed by Fox & Wiegert (2020) is constrained using our updated outer stability limit
formula (Rosario-Franco et al. 2020) as a function of the planetary radius Rp, where the black region marks the stable exomoon regime as a function of assumed planetary
eccentricity and the white region denotes parameters that are quickly lost due to gravitational perturbations. The red curve shows the outer stability limit using the mean
parameters for each system (see Table 1) and the gray curves indicate how the outer limit changes in response to observational or modeling uncertainties. The estimated
Roche limit for most of the KOI candidates is below 2 Rp, except for KOI 1925.01, where its Roche limit is marked with a horizontal dashed white line.
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which depends on the exomoon’s mass Msat, planetary mean
motion np, and the moment of inertia constant α.
Equations (1)–(3) are valid assuming that the exomoon’s orbit
is not yet synchronized with the planetary rotation (Ωp> nsat),
the exomoon spin Ωsat synchronous with its mean motion
(Ωsat= nsat), and the planetary spin is large compared to its
mean motion (Ωp> np). Moreover, these equations are
applicable for circular and coplanar orbits. Eccentric planetary
orbits are beyond our scope because only one of the candidates
has an estimate for the planetary eccentricity, but these
equations can be modified by including a polynomial function
N(e) (e.g., Cheng et al. 2014).

After synchronization between the satellite mean motion and
planetary rotation (Ωp= nsat), the planet–satellite system
evolves through angular momentum conservation. The total
angular momentum L consists of the sum of three terms: (1) the
planetary rotational angular momentum, (2) the planetary
orbital angular momentum, and (3) the satellite orbital angular
momentum, which is represented by

a
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which includes the reduced-mass μ=(Mp Msat)/(Mp+Msat).
Substituting Ωp=nsat and taking the first derivative L , we
obtain the differential equations that evolve due to angular
momentum conservation as
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the argument for the sgn function in Equation (2) is replaced
with -n nsat p[ ], and the planetary rotation follows the satellite

mean motion evolution (W = np sat
  ), which spins up the planet

as the satellite spirals inward. Equation (5) is modified from
Equation 14(b) in Sasaki et al. (2012) to include all of the
masses, including a reduced-mass factor m on the exomoon’s
orbital angular momentum (Cheng et al. 2014).

Conditions for regime (1) can be determined by first
integrating Equation (1) analytically and setting the result
equal to the critical mean motion ncrit. The tidal quality factor
Qp is proportional to the total tidal migration timescale T,
where Qp has to be sufficiently large so that the exomoon can
begin at a given asat and remain bound for at least the system
age τ. A similar approach is used by Barnes & O’Brien to
prescribe limits for the satellite mass (Barnes & O’Brien 2002,
see their Equation(8)), where we solve for Qp instead. As a

result, we obtain a lower limit for Qp as
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where a tidal quality factor below the critical value (Qp<Qcrit)
will migrate outward past the stability limit on a timescale less
than the system lifetime τ. Figure 2 shows this lower limit Qcrit

(color-coded; log scale) for each of the six exomoon candidate
systems as a function of the planet–satellite mass ratio Msat/Mp

and initial separation asat on a logarithmic scale. Tidally
unstable conditions are colored white and unrealistic conditions
Qcrit>105 are colored gray. The lower limit Qcrit is evaluated
using the mean values from Table 1, where the observational
uncertainties in the planetary radius, planetary mass, and the
system age shift these values slightly. Equation (6) shows that
uncertainties in the planetary radius drive the largest changes
and it is one of the better-constrained observational quantities.
We can also infer a plausible value for Qp from the planetary

radius as long as the host planet is not in the an ambiguous
region (Rogers 2015; Chen & Kipping 2017). KOI 1925.01 is
nearly Earth-sized, where we can estimate that its Qp200
and regions with Qcrit200 could be excluded (light blue to
red). This is justified because all of the terrestrial planets in the
solar system have Qp100 and specifically for the Earth
Qp≈12 (Lainey 2016). A similar approach can be applied to
the other KOIs using a very uncertain estimate for Neptune’s
Qp∼1000 (Lainey 2016), thereby excluding regions with
Qcrit2000 (light green to red). These conditions place
constraints on KOI 303.01, KOI 1925.01, KOI 2728.01, and
KOI 3220.01 to allow for exomoons that are less than 1% of
the planetary mass.
The initial values for the planetary spin frequency must be

much larger than the satellite’s mean motion (Ωp? nsat) for the
above conditions to hold, which is the case considering an initial
Ωp near break-up. For slower planetary rotation rates, we must
consider the planet–satellite system evolution using angular
momentum conservation (Equation (5)) and evaluate whether the
infall timescale is less than the system age τ. Figure 3 illustrates
a numerical solution of KOI 1925.01 using Equations (1)–(3)
(Ωp> nsat) or Equation (5) with a modified Equation (2)
(Ωp= nsat) using a Runge–Kutta-Fehlberg integration scheme4

(scipy; Virtanen et al. 2020) with an absolute and relative
tolerance of 10−12. The time evolution of Ωp and nsat are
evaluated assuming that the host planet is Earth-like in its tidal
Love number (k2p= 0.299), the initial rotation period is 10 hr,
the initial planet–satellite separation is 5 Rp, and we use the
mean values for the stellar mass, planetary radius, and system
age. We evaluate two values in Qp (10 and 100), as well as two
mass ratios (0.0123 and 0.3) that are color-coded in the legend.
For the Earth–Moon mass ratio (Msat/Mp= 0.0123) case, the
planetary spin (dashed) evolves following Equation (3) and the
satellite mean motion (solid) evolves following Equation (1)
until Ωp=nsat and follows Equation (5) once synchronized.
The planetary spin angular momentum is insufficient to drive
the satellite past the stability limit for a circular orbit
(horizontal dashed–dotted line), but the infall phase ultimately
destroys the satellite. The timescale for this evolution increases

4 A repository is available on GitHub (https://github.com/Multiversario/
satcand) and archived on Zenodo(doi:10.5281/zenodo.4026288) containing
python scripts that reproduce our results and figures.

4

The Astrophysical Journal Letters, 902:L20 (8pp), 2020 October 10 Quarles, Li, & Rosario-Franco

https://github.com/Multiversario/satcand
https://github.com/Multiversario/satcand
https://doi.org/10.5281/zenodo.4026288


linearly with the assumed Qp and a Qp that is much larger than
terrestrial values is necessary to prolong the satellite lifetime
enough to be observed by Kepler. Moreover, if we use the
truncated stability limit assume ep=0.6 (horizontal dotted
line), then the satellite can be stripped away within ∼105 yr.

As the planet–satellite mass ratio increases, the satellite mean
motion synchronizes with the host planet spin rapidly and nearly
all of the evolution follows angular momentum conservation
(Equation (5)). Cheng et al. (2014) showed a similar evolution
with the Pluto–Charon system, where Pluto’s tidal Love number
(k2p= 0.058) is significantly smaller than the terrestrial planets.
Using KOI 1925.01 with a larger mass ratio (Msat/Mp= 0.3),

Figure 3 shows the satellite mean motion evolution to remain
steady for the first 107 yr, but eventually enters an inspiral phase,
where a larger Qp delays the demise proportionally ( µnsat
n n nsat p

4 3
p( )  ). To prolong the satellite lifetime to equal the

system lifetime, a large dissipation factor is needed (Qp∼ 700)
and is unrealistic compared with the terrestrial planets.

4. Combining Limits from Observational Modeling, Orbital
Stability, and Tidal Migration

Analysis of the Kepler data can uncover the planetary
radius, planetary orbital period, and even estimates for the

Figure 2. Minimum planetary tidal quality factor Qcrit (color-coded) that allows for an exomoon to survive beyond the current system lifetime τ for each of the six
candidate KOIs. The mean values are used for the stellar mass, planetary radius, and planetary mass from Table 1, where k2p=0.299 for Earth-like planets
(Lainey 2016) for KOI 1925.01 and k2p=0.12 (Gavrilov & Zharkov 1977) for all the other Neptune-like candidates. The white region denotes that the exomoon
separation has exceeds the outer stability limit within the system lifetime and the gray region marks when Qcrit>105, which is unrealistic given our knowledge of the
solar system giant planets.
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stellar mass and age using asteroseismology (Silva Aguirre
et al. 2015). Fox & Wiegert (2020) used TTVs to suggest
an unseen perturber within six KOI systems, which could
be caused by gravitational interactions with an exomoon.
Additionally, Fox & Wiegert (2020) prescribed a 1 R⊕ transit
depth threshold for the proposed satellite because it otherwise
would have been detected in the Kepler data. This puts an
upper limit on the mass ratio to ∼0.1–0.3 for five of six KOI
candidates, where KOI 1925.01 could be significantly higher
(Msat/Mp0.8). However, high-mass-ratio planets would
produce identifiable distortions (blended or w-shaped transits;
Lewis et al. 2015) to the light curve. We adjust this threshold
lower to 0.5 R⊕ because such distortions are not apparent in the
light curves presented in Kipping (2020) and assume a Mars-
like density to derive the respective satellite mass. Additionally,
there is a threshold set by the TTV amplitude and we adopt the
3σ constraints shown in Kipping (2020). From Section 2, we
apply an orbital stability constraint (Rosario-Franco et al. 2020)
assuming a circular planetary orbit. In Section 3, we introduce
constraints based upon tidal migration (Sasaki et al. 2012;
Cheng et al. 2014), where bound exomoons are possible for
Qcrit2000 (Neptune-like) or Qcrit200 (Earth-like) host
planets.

Figure 4 shows the combination of constraints as a function of
the planet–satellite mass ratio Msat/Mp and separation asat on a
logarithmic scale. The black regions indicate parameters that
allow for possibly extant satellites, which remain below the
stability limit for at least the system lifetime. The red and blue
regions are excluded based upon orbital stability and tidal
migration constraints, respectively. The tidal migration con-
straints apply our constraint that Qcrit<200 for KOI 1925.01
and Qcrit<2000 for the other KOIs (Figure 2). The black curve

marks the 3σ boundary in TTVs (Kipping 2020) and parameters
above the curve (white region) are excluded because the TTV
amplitude would be too large. The gray region represents where
the satellite tides could be significant as to prolong the lifetime of
the satellite, but in most cases those regions can be excluded
because the satellite could produce detectable transits or
distortions (hatched white region). KOI 1925.01 is an exception,
but we show in Figure 3 (cyan and magenta curves) that the
combination of stellar tides with the planetary tides causes the
satellite to spiral inwards onto its host planet on a timescale less
than the system age. Exomoons in KOI 1925.01 are completely
excluded within our parameter space, especially if the planet
does indeed have a high eccentricity (Figure 3). The other KOIs
are significantly constrained to less than half of the uncon-
strained area alone (i.e., below the black curves).
We use the current mean values from the respective

parameters in Table 1, where the planetary mass and system
age are the most uncertain. The system age affects our
calculation of Qcrit (Equation (6)) linearly and thus the height
of the black region in Figure 4 could change by a factor of ∼2 if
the systems are actually half as old. Uncertainties in the
planetary mass alter the area of the possible moons by a factor of
∼4 because of competing dependencies between acrit for orbital
stability and Qcrit for tidal migration. Doubling the planetary
mass in each case increases the viability of exomoons, our
assumptions on other planetary properties, such as the tidal Love
number, should also be updated due to the increased planetary
density. Our results represent a snapshot of the current
knowledge without precise planetary masses or eccentricities,
where additional observations are needed to produce more
accurate results.

Figure 3. Evolution using the mean parameters from KOI 1925.01 for a putative satellite’s mean motion nm (solid) and the planet’s spin frequency Ωp (dashed) using a
constant Q tidal model (Sasaki et al. 2012), where the initial satellite separation is 5 Rp and the planetary rotation period begins at 10 hr. The mean values are used for
the stellar mass, planetary radius, and planetary mass from Table 1, where a vertical solid (black) line marks the mean system lifetime τ and a horizontal (dashed–
dotted) line denotes the critical mean motion ncrit corresponding to the outer stability limit (Rosario-Franco et al. 2020). The satellite’s mean motion and planetary
rotation synchronize (Ωp=nm) causing the solid and dashed curves to overlap (solid with white dots). For the high-mass ratio case (Msat/Mp=0.3), the
synchronization occurs rapidly. During inward migration, the slope of the satellite’s mean motion rapidly increases and marks the impending collision with the planet.
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5. Conclusions

Kipping (2020) performed an independent analysis of the
TTVs for the six KOI candidates that Fox & Wiegert (2020)
proposed that such TTVs could result from unseen exomoons.
Our study complements the work by Kipping & Teachey
(2020) by exploring the theoretical constraints for exomoons in
these systems based on our previous study for the orbital
stability of exomoons (Rosario-Franco et al. 2020) and other

works that evaluate tidal migration scenarios (Sasaki et al.
2012; Chen & Kipping 2017). We find that ∼50% of the
parameter space can be excluded due to instabilities that occur
from orbital stability constraints (asat20 Rp). Interior to the
stability limit, exomoons face additional hurdles due to the tidal
migration within the system lifetime. Four of the KOI candidate
systems (KOI 303.01, 1925.01, 2728.01, and 3220.01) are
significantly constrained due to tidal migration timescales,

Figure 4. Limits on the planet–satellite mass ratio Msat/Mp and satellite separation asat, where regions of parameter space can be excluded based upon orbital stability
(red), tidal migration (blue and gray), and observational modeling (white). The black curve marks the 3σ upper limits adapted from Kipping (2020). The cyan dashed
line delineates the orbital stability boundary. The hatched (white) regions mark regions that we exclude because the satellite radius Rm is large enough to produce a
detectable transit within the Kepler data (Rm0.5R⊕) assuming a Mars-like satellite bulk density (ρsat=3.93 g cm−3). The gray regions mark conditions where the
satellite mass becomes significant for the tidal evolution and we evaluate conditions for KOI 1925.01 using our modifications to Sasaki et al. (2012) that allow for
larger mass ratios, where this region overlaps with the hatched area for the other KOIs. The remaining black regions indicate plausible mass ratios and separations for
stable exomoons in these systems.
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where the remaining two systems (KOI 268.01 and 1888.01)
could allow for low-mass (Msat/Mp0.03), close-in exo-
moons (asat20 Rp) exomoons within the current estimates of
the system ages. Observational uncertainty can affect our
estimates, where the biggest differences arise through our
estimate of the planetary mass Mp using a probabilistic
framework with Forecaster (Chen & Kipping 2017).
However, observational constraints due to the TTV amplitude
and non-detection of exomoon transits limit the increases to the
tidally allowed region due to this uncertainty such that our
results remain accurate within a factor of a few. Our models
assume a circular planetary orbit, where relaxing this condition
typically halves the extent of exomoon separations due to a
much smaller Hill radius at planetary periastron. Overall, it
appears unlikely that the six KOI systems proposed by Fox &
Wiegert (2020) can host large enough exomoons to explain the
observed TTVs due to a tidal migration constraint on the
planet–satellite mass ratio.

Although these six KOIs may not host exomoons, Kepler
1625b-I (Teachey et al. 2018) remains the best exomoon
candidate system. Rosario-Franco et al. (2020) highlighted this
assessment in that the host planet orbits much farther from its
host star, which diminishes the influence of stellar tides and
significantly increases the Hill radius. Using Equation (6), we
find the lower limit for tidal dissipation Qcrit�2000 for 10 Gyr
to be more than sufficient to allow for such a large exomoon.
Kepler 1625b-I is controversial because the data analysis has
been contested, suggesting that it is an artifact of the data
(Kreidberg et al. 2019) or due to a blended observation of a
planet that is closer to the host star (Heller et al. 2019), but
Teachey et al. (2020) showed that the exomoon hypothesis is
more probable than the other scenarios proposed. Exomoons, in
general, are an evolving prospect where significant care needs
to be used while they remain on the bleeding edge of our
detection capabilities.

M.R.F. acknowledges support from the NRAO Gröte Reber
Fellowship and the Louis Stokes Alliance for Minority
Participation Bridge Program at the University of Texas at
Arlington. This research has made use of the NASA Exoplanet
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Technology, under contract with the National Aeronautics and
Space Administration under the Exoplanet Exploration
Program.
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