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Abstract

Aims/ Objectives: Particle bound states exist only as microscopic systems in form of atomic and
subatomic particles. An interesting class of these objects are particles bound by magnetic forces,
which exhibit the particular property of chirality (handedness, which is not parity symmetric).
These particles are discussed in quantum field theory based on a QED like Lagrangian with
fermion and boson fields, in which about ten boundary conditions can be defined. With four
(but effectively two) adjustable parameters only, this leads to a stringent test of the special
mathematical structure of the underlying field theory.
A first kind of these particles are leptons, e, µ, τ and neutrinos. With an additional quantum
condition the radii of charged leptons can be deduced. Other systems of magnetic binding may
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be found in atoms, a first example being weakly bound H-atoms, which may be the origin of
gravitation.

Keywords: Particle bound by magnetic forces described in quantum field theory based on a QED
type Lagrangian with fermion and boson fields; Solutions for charged leptons and weakly
bound atoms, which violate parity symmetry.

2010 Mathematics Subject Classification: 81T10, 46N50, 81P10, 83C47.

1 Introduction

Bound or stationary systems belong to the most interesting and basic objects in physics, since they
are stable over long periods of time. Their average potential and kinetic energies are related by
the virial theorem, leading to a well-defined frequency or mass. A large fraction of the mass of
the universe is composed of particle bound states in the vacuum in form of atoms and subatomic
particle, like hadrons and leptons.

For these systems binding of elementary fermions is not sufficient; accompanying bosons (not only
an attractive boson-exchange interaction) are essential to equilibrate the momentum of fermions, see
ref. [1]. A special class of these particles are those bound by magnetic forces, which are schematically
shown in Fig. 1. Since magnetic forces arise from the motion of charge, two charged fermion
components are needed, which rotate with relative velocity (v/c) to each other, see the green flashes
in Fig. 1. The momentum of these fermions has to be compensated by two boson components,
indicated by yellow flashes.

Fig. 1. Schematic view of a particle bound by magnetic forces. The green flashes
show the motion of two different fermion components; the rotation of these fermions

is counterbalanced by bosons, shown by yellow flashes
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A particularity of these bound states arises from the vector-structure of magnetic forces, in which
the directions of spin, relative motion and attraction (and therefore binding) are perpendicular
to each other, see the right hand rule of the Lorentz force [2]. The axis of spin is perpendicular
to the rotation axis, so attraction exists only for one direction of rotation (the opposite rotation
would give repulsion of the fermions). Therefore, these bound states are not symmetric under
parity transformations, which is called chirality or handedness [3]. Leptons and their antiparticles
are known to have this property, for leptons only a left-handed type exists, whereas antileptons
are right-handed. But so far, leptons have been treated as point particles, a real bound state
description, in which the chiral structure is understood, has not been performed.

2 Theoretical Description

For the description of these systems a quantum field theory similar to that in ref. [1] has been used,
based on a Lagrangian similar to QED, but with fermions dressed by boson fields, which may be
written in the form

L =
1

m̃2
(Ψ̄Dν) iγ

µDµ (DνΨ) − 1

4
FµνF

µν , (2.1)

where m̃ is the mass parameter and Ψ are charged fermion fields, Ψ = Ψ+ and Ψ̄ = Ψ−. Vector
boson fields Aµ with coupling g to fermions are contained in the covariant derivatives Dµ =
∂µ − igAµ. The second term of the Lagrangian represents the Maxwell term of electromagnetism
with field strength tensors Fµν given by Fµν = ∂µAν − ∂νAµ, which gives rise to both electric and
magnetic coupling.

The three covariant derivatives Dµ in the Lagrangian (2.1) lead to a theory, which includes higher
order boson and fermion fields. However, in the past this type of Lagrangian has not been
studied in detail, because in standard (divergent) gauge theory the necessary 1/m̃2 factor gives
rise to uncontrolled divergences. Further, Lagrangians with higher order fermion fields can lead
to nonphysical solutions [4]. None of these arguments are important for the present case: the
Lagrangian (2.1) leads to a finite theory due to a constrained normalization of boson fields, therefore
a 1/m̃2 factor is acceptable. Further, it gives rise to a real bound state formalism with negative
binding energies, in which nonphysical solutions can be excluded by strict geometrical and other
basic constraints.

By inserting Dµ = ∂µ− igAµ and DνD
ν = ∂ν∂

ν − ig(Aν∂
ν + ∂νA

ν)− g2AνA
ν , the first part of the

Lagrangian gives rise to a number of terms, which contain boson and fermion fields and/or their
derivatives. For stationary solutions only two terms of the Lagrangian contribute

L2g =
−ig2

m̃2
(Ψ̄Aν) γ

µ∂µ (AνΨ) (2.2)

and

L3g =
−g3

m̃2
(Ψ̄Aν) γ

µAµ (AνΨ) . (2.3)

From the Lagrangians (2.2) and (2.3) fermion-antifermion matrix elements have been derived, see
the details in ref. [1], which can be written by

M2g =
α2

m̃5
ψ̄(p′) Aν(q

′
4)A

µ(q′3) γµγ
ρ ∂Aρ(q

′
2)∂A

σ(q′1) ψ(p) (2.4)

and

M3g =
−α3

m̃5
ψ̄(p′) Aν(q

′
4)A

µ(q′3) γµγ
ρAρ(q2)A

σ(q1) Aσ(q
′
2)A

τ (q′1) ψ(p) , (2.5)

in which ψ(p) is a fermion wave function ψ(p) = 1

m̃3/2Ψ(p1)Ψ(p2). These matrix elements can be

further simplified by assuming also boson (quasi) wave functionsW ν
µ (q

′) = 1
m̃
Aµ(q

′
j)A

ν(q′i) of scalar
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(µ = ν) and vector (µ ̸= ν) structure. In a fundamental description of bound states as discussed
here, a reduction from four to three dimensions is natural due to stability of the system in time;
the three-dimensional momenta can then be Fourier transformed to r-space. By reducing the above
matrix elements to three dimensions one gets boson wave functions of scalar and vector structure
ws(q

′) and wv(q
′) and a boson-exchange interaction vv(q). This leads to fermion matrix elements

M2g =
α2

2m̃3
ψ̄(p′) ws(q

′) ∂2ws(q
′) ψ(p) (2.6)

and

M3g =
α2

m̃2
ψ̄(p′) ws,v(q

′)vv(q)ws,v(q
′) ψ(p) , (2.7)

but also to a boson matrix element

Mg =
α2

m̃2
ws,v(q

′) vv(q) ws,v(q
′) . (2.8)

By going from fermion-antifermion (q+q−) matrix elements to (q+q−)nq± structures, which can
be bound by magnetic forces, two fermion wave functions are needed, which rotate with relative
velocity (v/c). The corresponding matrix elements can be combined to simpler ones, which are of
the same forms as those above with additional (v/c) factors. Fourier transformed to r-space, this
leads to matrix elements in the form

Mf
ng(r) = ψ̄s,v(r) Vng(r) ψs,v(r) (v/c)

2 , (2.9)

with fermion wave functions ψs,v(r) of scalar and vector structure and two potentials V2g(r) and
V3g(r) of the form

V2g(r) =
α2(~c)2(2s+ 1)

8m̃

(d2ws(r)
dr2

+
2

r

dws(r)

dr

) 1

ws(r)
+ Eo (2.10)

with s=0 for scalar and s=1 for vector states, and

V3g(r) =
α3~c
m̃

∫
dr′ , ws,v(r

′) vv(r − r′) ws,v(r
′) , (2.11)

where ws,v(r) are boson (quasi) wave functions of scalar and vector structure and vv(r) ∼ −~c wv(r)
a boson-exchange interaction. ψ2

s,v(r) and w2
s,v(r) can be interpreted as densities. It should be

emphasized that in the present case of magnetic binding the interaction vv(r) is of vector structure,
which is attractive only for rotation in one particular direction, e.g. left-handed. Bound states for
which attraction is obtained for right-handed rotation are of different nature. Further, the boson
matrix element is of the form

Mg(r) =
α3~c
m̃

ws,v(r) vv(r) ws,v(r) (v/c) . (2.12)

Bound states can be generated for different angular momentum L. In the present study we consider
only L = 0, leading to bound states of scalar and vector character of the form ψs(r⃗ ) = ψs(r)Yo(θ,Φ)
and ψv(r⃗ ) = ψv(r)Y

2
1 (θ,Φ), respectively.

A coupling to the vacuum is made by assuming Eo = 0. This implies that the vacuum is the
lowest state with energy Evac = 0, consequently all elementary fermions (quantons) have to be
massless. The potential V2g(r) is important for a dynamical stabilization of the system: created
fermion-antifermion pairs are locked during overlapping boson fields and form a stable system,
which cannot decay. As shown below, V2g(r) shows a quite linear rise towards larger radii, very

with dimension 1/fm.
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similar to the empirical ”confinement” potential required in hadron potential models [5].

For a bound state of fermions and bosons the radial form of the fermion and boson wave functions
should be similar

ψs,v(r) ∼ ws,v(r) . (2.13)

Fermion vector states have normally angular distributions of dipole form P 2
1 (cosθ), but for a free

particle different orientations in space cancel out. However, due to rotation of the system the
direction of momentum is fixed, leading to a wave function in q-space of dipole character ψv(q) =
4π

∫
r2dr j 2

1

(qr)ψv(r).

Orthogonality of the fermion wave functions leads to∫
r2dr ψs(r)ψv(r) =

∫
r2dr ws(r)wv(r) =< rws,wv >= 0 . (2.14)

This condition requires that the wave functions are finite (with finite radial moments). Condition (2.14)
is satisfied for

wv(r) = wvo [ws(r) + βR
dws(r)

dr
] , (2.15)

where wvo is obtained from the normalization of the density w2
v(r) with 2π

∫
rdr w2

v(r) = 1 and
βR = −

∫
r2dr ws(r)/

∫
r2dr [dws(r)/dr]. Because of the derivative structure, wv(r) has a smaller

root mean square radius than ws(r). A natural condition requires therefore that the interaction
for this state takes place inside the volume of the scalar state, leading to the geometrical boundary
condition

|V v3g(r)| ≃ c w2
s(r) . (2.16)

The conditions (2.14) and (2.16) are satisfied by assuming the radial part of ws(r) by

ws(r) ≃ wso exp{−(r/b)κ} , (2.17)

where wso is fixed by the density normalization 2π
∫
rdr w2

s(r) = 1.

The binding energies are given by Engf = 4π[
∫
r2dr ψ2(r)Vng(r) − 1

2

∫
r3dr ψ2(r) d

dr
Vng(r)] and

Eg = 2π[
∫
rdr w2(r)vv(r) − 1

2

∫
r2dr w2(r) d

dr
vv(r)]. The masses (due to binding) are defined by

the sum of absolute binding energies Ms,v = |Es,v2g | + |Es,v3g |, and the total mass of the system is
given by Mtot = Ms,v +m1 +m2, where m1 and m2 are the participating fermion masses. As in
ref. [1] for all calculations natural units are used.

There are boundary conditions, which allow to determine all four parameters of the model. The
first one is momentum conservation, which implies that the average recoil momenta for bosons
< q2g >

1/2
rec and fermions < q2f >

1/2
rec cancel each other

< q2g >
1/2
rec + < q2f >

1/2
rec= 0 . (2.18)

With normalization < q0g >=
∫
qdq V3g(q) and < q0f >=

∫
q2dq ψ(q)V3g(q), this yields < q2g >rec=∫

q3dq V3g(q)/ < q0g > and < q2f >rec=
∫
q4dq ψ(q)V3g(q)/ < q0f >, where the Fourier transformed

quantities are given by (ψ, V3g)(q) = 4π
∫
r2dr jo(qr)(ψ, V3g)(r).

Further, the coupling to the vacuum leads to energy-momentum conservation, which requires that
the average momenta of the bound state are compensated by their binding energies

[< q2g >
1/2 + < q2f >

1/2] (v/c) + Eg − x Mf = 0 , (2.19)

where x =
√

2m̃/Mf and (v/c) taken as positive. For basic systems energy-momentum conservation
can be valid separately for bosons and fermions, this gives rise to four different constraints. For

5
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bosons this yields
< q2g >

1/2 (v/c) + Eg = 0 (2.20)

and for fermions
< q2f >

1/2 (v/c)− x Mf = 0 . (2.21)

The momenta < q2g >=< q2g >rec and < q2fs >=< q2fs >rec , but for vector particles < q2fv >=∫
q4dq ψv(q)V

v
3g(q)/ < q0fv >, where the Fourier transformed quantities are given by (ψv, V

v
3g)(q) =

4π
∫
r2dr j 2

1 (qr)(ψv, V
v
3g)(r).

A mass-radius condition derived from the structure of the potential V2g(r) reads

Rat2g =
(~c)2 (v/c)2

m̃(Ms/2) < r2ws
>

= 1 . (2.22)

Finally it is important to note that for magnetic binding the vector state with radial node is not
stable. Nevertheless, energy-momentum conservation should be fulfilled also, because this state is
part of the system.

3 Bound States of Elementary Fermions (Leptons)

In this case one can require further that the mass parameter m̃ is half of the generated bound state
mass

m̃ =
1

2
Ms =

1

2
(|Es2g|+ |Es3g|) . (3.1)

By the different boundary conditions (2.13), (2.16) and (2.18) - (3.1) the parameters of the model,
κ, b, α and (v/c) are highly overconstrained. Even more, a value of κ = 1.35 ± 0.2 is needed
to get V2g(r) correct and α = 2.14 is required to satisfy energy-momentum conservation. This
leaves only two parameters, b and (v/c), by which all 10 boundary conditions have to be satisfied.
As already stressed in ref. [1] the fulfillment of these conditions is far from trivial: the average
momenta are related to the geometry only, whereas Eg and Mf are given by the eigenvalues in the
boson and fermion potentials, which are of quite different structure. Nevertheless, for a reasonable
determination of the parameters one further condition is needed, a quantum condition on the average
radius.

Solutions are discussed for charged leptons, electron, muon and tau-lepton. For the electron a radius
smaller than 10−9 fm is estimated [6]. The extremely small size explains that the electron could be
assumed as point particle in weak interaction theory.

Resulting densities and potentials for a magnetically bound system with a boson root mean square
(rms) radius of 2 10−10 fm is shown in Fig. 2. In the upper part the potential V2g(r) is shown,
which has the typical characteristics of a confinement potential, established empirically in bound
state calculations of hadrons [5]. This special potential form represents an inherent property of all
bound states of relativistic particles, see refs. [1, 7]. In the second part of the figure the potentials
V s,v3g (r) are given together with the boson density w2

s(r). This shows that the geometrical boundary

condition (2.16) between the density w2
s(r) and the potential V v3g(r) is fulfilled. Finally, the Fourier

transformed boson density and potentials are shown in the lower part, indicating very similar
features of the system in r- and q-space. The resulting parameters, masses and radii are given in
the upper part of table 1; further, average momenta and binding energies are given in the lower
part, which indicate that momentum matching and energy-momentum conservation is fulfilled, even
for the vector state, which is not stable. The given errors arise mainly from the spacing and cut-off
in radius and momentum. These have been simply estimated by changing the momentum cut-off
by ±10 % at a value of about 7 times < q2g >

1/2
s .
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Fig. 2. Radial dependence of a system bound magnetically with a root mean square
radius < r2ws

>1/2 = 1.9 10−10 fm (electron).Upper part: Confinement potential V2g(r).

Middle part: Boson density w2
s(r) (dot-dashed line) and boson-exchange potentials

|V s,v3g (r)| given by dashed and solid lines, respectively. Lower part: Fourier
transformed density (dot-dashed line) and potentials (dashed and solid lines).

For other systems, µ and τ , quite similar features of the densities and potentials are expected,
which are just scaled by a different radius. However, for a reasonable estimate of their properties a
quantum condition on the radius of these systems is needed.

For light atoms such a condition has been established [8] by assuming that the different states are
higher harmonics of the strongest bound state. Similarly, the different leptons may be assumed as
higher members of a fundamental state (with the same spin and charge Jch = 1/2±), which is in
this case of the magnetic component [9] of the proton or antiproton p±M (giving rise to the magnetic
form factor). Characterizing p±M by quantum number n = 1 and the different leptons by n > 1,
their rms-radii should follow the radial form of the density w2

s(r) or the potential V s3g(r).

Using this picture the results are shown in Fig. 3. By adjusting the radial fall-off of w2
s(r) and

V s3g(r) between the rms-radius of pM and the assumed electron radius of 2 10−10 fm, the dashed
and solid lines are obtained, from which an estimate of the rms-radii of τ and µ is obtained, as
given in Table 1. In the lower part resulting values of < q2g,f >1/2 (v/c) are compared to Eg
and Mf , which shows that in all cases (also for the nonstable vector states) momentum matching
and energy-momentum conservation is fulfilled. It should be noted that the electron radius [6] is
quite uncertain; from the estimates in Fig. 3 the radii of the other leptons have the same relative
uncertainties.

7
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Tablr 1. Solutions for different systems n with κ = 1.35 and α = 2.14. All dimensional
quantities in GeV or fm. Upper limit on the electron radius Relec taken from ref. [6]

and rms-radius of pM from ref. [9].

syst. n b (v/c) < q2gs >
1/2 < r2gs >

1/2 Rexp Ms Mexp

e 4 2.1 10−10 2.45 10−13 2.11 109 1.9 10−10 < 10−9 0.51 10−3 0.51 10−3

µ 3 3.9 10−6 9.22 10−7 1.14 105 3.5 10−6 – 0.105 0.105
τ 2 9.6 10−3 4.1 10−2 4.68 101 8.5 10−3 – 1.97 1.97
pM 1 0.44 0.29 0.93 0.56 ∼0.74 0.94 0.94

system s < q2g >
1/2 (v/c) Eg < q2f >

1/2 (v/c) Mf

e 0 0.51± 0.03 10−3 -0.52 10−3 0.50± 0.05 10−3 0.51 10−3

(e 1) 0.76± 0.1 10−3 -0.84 10−3 2.8± 0.3 10−3 2.5 10−3

µ 0 0.105± 0.01 -0.107 0.10± 0.02 0.105
(µ 1) 0.155± 0.02 -0.17 0.42± 0.1 0.505

τ 0 1.98± 0.2 -1.96 1.98± 0.5 1.97
(τ 1) 3.06± 0.3 -3.12 8.5± 2.5 9.10

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

1 2 3 4

Fig. 3. Estimates of fermion root mean square radii of µ and τ leptons, given by solid
squares, from a quantum condition demanding that the radii of the different leptons
follow the radial density w2

s(r) (dashed line) or potential |V s3g(r)| (solid line) of the
basic proton (antiproton) system. The rms-radius of the magnetic part of the proton
binding potential is given by solid point, the lines are adjusted to give an electron

rms-radius of 2 10−10 fm (solid square).
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The chiral structure is manifested in the handedness of these bound states. For leptons of (q+q−)nq−

structure (q± are charged massless quantons) the motion is dominated by negative charge, leading
to left-handedness; for (q+q−)nq+ antileptons the motion is dominated by positive charge, giving
rise to right-handedness.

A similar description should be possible for neutral leptons (neutrinos). But different from charged
leptons, only the elementary fermion spins (different for the neutral quantons qo and q̄o) can give
rise to a tiny binding energy.

4 Bound States of Atoms (H-H)

Another type of magnetic bound state may exist in form of weakly bound atoms. Since in this case
the mass parameter is given by the reduced mass m̃ = m1 m2/(m1 +m2) and not by the generated
mass (as for binding of elementary fermions), there are no ambiguities in the extraction of b. One
solution has been found with a mass parameter m̃ = 0.469 GeV (which corresponds to a system of
two hydrogen atoms), slope parameter b = 2 106 fm and (v/c)2 = 8.9 10−31, leading to an extremely
small binding energy of about 5 10−36 eV. The small binding indicates that this type of binding
can play a role only in large macroscopic systems of more than 1040 H-atoms.

The detailed features of density and potentials are very similar to those of the electron in Fig. 2
by changing the radial scale by about 16 orders of magnitude. Resulting parameters and extracted
radii, momenta and energies are given in Table 2. For the scalar state the average momenta of bosons
and fermions are 0.22 10−6 GeV, indicating that momentum matching is obtained. Multiplied with
(v/c) this yields about 6.7 10−23 GeV for bosons and fermions, in agreement with the boson and
fermion energies, as shown in the lower part of Table 2. However, for the unstable vector state
energy-momentum conservation is not fulfilled for bosons and fermions separately, but still for the
sum of boson and fermion contributions, respecting total energy-momentum conservation (2.19).

The obtained binding of H-atoms may be related to gravitation, since large amounts of hydrogen
atoms exist in the universe. To inspect this possibility, an equivalent first order coupling constant
may be defined by relating the radial integral of the potential V s3g(r) to that of a gravitational
potential Vgr(r) = αgr

~c
r
. This yields

αgr =

∫
V s3g(r) dr∫ ~c

r
dr

. (4.1)

The deduced coupling constant αgr = 5.9 10−39 may be compared to Newton’s gravitational
constant GN = 6.707 10−39(~c)GeV −2, obtained from a gravitation potential of the form Vgrav(r) =
GN (m1m2)/r. Using mi=0.94 GeV this yields GN/(m1m2) = 5.91 10−39, which is in quantitative
agreement with the deduced value of αgr. Therefore, gravitation is likely to be understood as
magnetic binding of atoms.

Following this conjecture, magnetic binding of > 1070 (hydrogen) atoms leads to large (gravitation-
al) systems with masses and rotation profiles compatible to those observed for galaxies. Other
characteristics of gravitation can be understood also, as the deflection of light by solar or galactic
systems (gravitational lensing), which is explained by optical deflection on electromagnetic potentials,
similar to the scattering of photons from electrons (Compton scattering). As a final point of interest,
the present formalism gives rise to a natural solution of Bentley’s paradox [10], since the interactions
in the present approach (shown e.g. in Fig. 2) fall off much faster with distance than Newton’s 1/r
gravitational potential.

9
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Tablr 2. Solution of an atomic systems bound magnetically, using κ = 1.35 and
α = 2.14. All dimensional quantities in GeV or fm.

system m̃ b (v/c) < q2ws
>1/2 < r2ψs

>1/2 Ms

H −H 0.469 2 106 3.0 10−16 0.22± 0.01 10−6 1.8 106 4.7 10−45

s < q2g >
1/2 (v/c) < q2f >

1/2 (v/c)
∑

< q2g,f >
1/2 (v/c) Eg xMf xMf − Eg

0 6.7±0.1 10−23 6.6±0.2 10−23 13.5±0.2 10−23 -6.8 10−23 6.7 10−23 13.5 10−23

1 6.7±0.2 10−23 8.9±0.5 10−23 15.6±0.2 10−23 -11.0 10−23 4.3 10−23 15.3 10−23

5 Summary

Starting from quantum field theory a solution of particles has been constructed, which are bound
by magnetic forces. The structure of this theory is similar to that for hadrons and atoms, but
parity symmetry is broken due to the vector structure of magnetic forces. For elementary fermions
this gives rise to bound states, which are of chiral structure, left-handed leptons e, µ and τ and
right-handed antileptons ē, µ̄ and τ̄ . A similar description may be possible for neutrinos, but for
these objects only a tiny binding is possible arising entirely from the elementary fermion spins.

In addition, a magnetically bound system of hydrogen atoms has been found, which shows an
equivalent first order coupling constant in agreement with Newton’s gravitational constant GN .
This type of bound state may be the origin of gravitation.

The present bound state formalism has the most simple symmetry structure possible, based on
massless elementary bosons and fermions only and requires no external parameters. Further, about
10 boundary conditions could be satisfied by one or two adjustable parameters. This may be taken
as strong indication of a really fundamental theory, in which all free particles of nature in the
hadronic, leptonic, atomic (and probably gravitational) sector can be understood.
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