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Abstract

A new O(hm) super convergence method based on B-spline of degree eight has been developed for

solution of higher order boundary value problems. Our presented collocation method leads to optimal
approximation, we describe the mathematical procedure in detail also analyze the convergence of the
method. The obtained numerical results have been compared with results obtained by recent existing
methods to verify the applicability and super convergence properties of the presented method
numerically.
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1 Introduction

Higher order boundary value problems occur in the study of fluid dynamics, astrophysics, astronomy, beam
and long wave theory, quantum mechanics, induction motors, engineering and applied physics. Many
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researchers have attempt to developed numerical solution of higher order boundary value problems. Many
mathematical models arising in various applications can be written as boundary value problems, eighth and
seventh order boundary value problems arise in the mathematical modeling of the fluid dynamics and
induction motors respectively [1,2]. The solution of eighth order BVPs by differential quadrature rule is
given by Liu and Wu [3] without any convergence analysis. Adomian decomposition and homotopy
perturbation method have been given by [4,5] without any convergence analysis. Non-polynomial spline
technique proposed by Siddiqi and Akram [6], but they obtained second order convergence. Reproducing
kernel space method proposed by Akram and Rehman [7,8]. Variational iteration and differential
transformation method are given by Siddiqi et al [9,10]. Many researchers applied collocation methods for
solution of BVPs [11,12,13]. The cubic spline has been used to solve BVPs by pioneers [14,15,16,17], but

their methods have second order convergent. An 0(h4) optimal cubic spline collocation method was
developed by Danial and Swatrz in [18]. Another optimal collocation method on mid-points based on
quadratic spline to approximate the second order BVPs was proposed by Houstis et al. [19]. Irodotou-Ellina
and Houstis in [20] developed an O(h(’) optimal collocation method based on quintic spline for solving

linear fourth order two point BVPs. In [21] Rashidinia and Ghasemi developed an optimal method based on
sextic spline at the grid points for solving of nonlinear fifth order two point BVPs, after that they developed
collocation method based on B-spline at the mid-points for the numerical solution of nonlinear sixth order
BVPs [22]. The linear dependence relations for polynomial splines and error bounds for interpolating spline
have been presented in [23,24].

In the present work, we will focus on developing a collocation method based on B-spline of degree eight to
approximate the solution of the following nonlinear two point boundary value problems:

Lu =u” (x) =, u(x)u'(x)u?(x)) =0, 1<p<8a<x <h, (1.1)

with the boundary conditions,

p-1 . .
Bu= Eo(aﬁu(”(a) +Bu () =7,.,0<i <p-1, (1.2)

where a, . ﬂl./. and ; are given real constants, ¢ is a continuous function, u (x ) is a unknown function, and

L » and B p are differential operators. In this paper we will derive super convergence approximations of

order O(hlo) at mid-points and grid points of the partition A on the interval[a,b] . In section 2, we obtain

the consistency relations for spline of degree eight at mid-points and grid points of the partition A to
construct higher order approximation. Section 3, is devoted to deriving the new super convergence
collocation method based on spline of degree eight. The convergence analysis of the presented method is
given in detail, in section 4. In section 5 numerical experiments are given to demonstrate the efficiency of
the proposed method, we compared our numerical results with the results reported in [5-8,22,25-28]. The
paper ends with conclusion.

2 Spline Interpolation

In this section we define spline interpolant S (x ) of degree eight that satisfies certain end conditions and
then derive several relations that are required in the formulation of the collocation method. Now let
b-a

A={a=x,<x,<..<x, =b}be a uniform partition of the interval [a,b] with step size h =
n

Suppose that 7 is the set of mid-points of the partition A include the boundary points as follows:
X, +x, X, +x, x,  +x,
T={t,=x,,t; = I yosl, = g =X, )

2 2 2
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Consider a smooth spline of degree eight S (x) that is an element of SP,(A) ={v(x)|v(x) €[a,b]}, and

v(x) is a polynomial of degree at most 8 on the partition A . By making use of a B-spline function

k+1

NG . . _
ju—n&u—n&{g‘” AROES T NC=ED
J j==

x<j,

m4m=l§ew(

k1Jj=0

we consider a polynomial spline of degree eight S (x) of the above form that satisfies the following
interpolatory conditions:

S@,)=u,), 1<i<n, 2.1
associated with the end conditions:

4 6

2 8
h 7h 127h

Sy =u ) -—u"" )+ —u") u™ )+ ———u",
2 7

"7 154828800 2

i

967680
i=1,2,3,4n-3,n-2,n—-1,n.

In the following, for sake of convenience we will denote that, u l’ =u’ (¢;)and S,.j =5’ (), i1 =0,.,n+1,

0<j <8 wheref ") =D")f . By using [23] we have the following consistency relations for spline of
degree eight S , at the mid-points for 5<i <n —4:

Ys® :1032#(5&4 ~8S,., +28S,,, —56S,,, +70S,), (a)
Y5 =200 o ies,, F4s,,, 14S,,), (b)

Ys© = M(sii4 ~20S,,, +64S,,,-90S,), (¢)

YSi(S) :&(:40(%91&4 F18S,.5 £82S,,, ¥106S,,,), (d)
YS:‘(4) :%(Siﬂ +725ii3 _685ii2 _392Siil +774Si )’ (e)

2688
Ys® = T(WM F234S,,, F974S,,, £2654S,,,), ()

224

Ys? = ?(Siﬂ +7208,,, +91008,,, +3184S,,, —26010S,), (g)

16
Ys = ;(?Siﬂ T2178S,,, F 584785, ,, F199066S, ), ()

Yf, =f.4 +6552f 1,5 +331612f ., + 24852881 ., + 46750141, , (i) (23)



Sharifi and Rashidinia; JAMCS, 24(4): 1-24, 2017; Article no.JAMCS.35804

where the discrete operator Y is defined for any function f on the interval [a,b] . Now we will prove the
following theorem to obtain the error bounds for spline S (x ) of degree eight and its derivatives up to order

eight at the mid-points ¢,, i =1,...,n of the partition A.

Theorem 2.1: Let S (x) be the unique spline of degree eight satisfying (2.1)-(2.2) and interpolating the

functionu € Cls[a,b] , then for i =1,...,n the following relations hold:

8
g _,0 _iufg) +0(h10), (a)
i ! 154828800 !

8
s@ =u® w20 600, b
! L 22118400 ¢
6 3
31k 127h
D=y 4 ul - u.(ll) +0(h10), ()
! L 967680 ' 5529600 !

6 8
@y W oo BT w600 (ay
! L 193536 ! 4423680 !

6 3
7h? 31k 127h
) :ufs) - u%g) + ugll) - u§13)
! L5760 1 96768 ! 4423680 *

4 6 8
Sfﬁ) =M€6) + 7h u{lo) _ 31h u{lZ) + 127h u{14) +0(h10)’ (f-)
! L1920 ! 96768 * 7372800 !
2 4 6 8
SC) =u€7) +h7u€9) _ 7h u%ll) + 31h u€13) _ 127h ung) +0(h10)7 (g)
! Looog b 1920 ! 193536 * 22118400 !

6 8
h’ 75t 31h 127h
fS) :u(S) _ u(IO) + u(12) _ u(14) +

+0(h"), (e)

w0 ("), (h)

P 4T 5760 F 0 967680 ¢ 154828800 24
and further satisfying the following error bounds:
S -uw)" |=om’™"), k=07 (2.5)

The above relations are held at the mid-points of the partition A too.

Proof. We will prove the relation (2.4)h, then by using this relation we can prove the rest of relations (2.4).
Using Taylor's series expansion and taking into account that S, =u,, i =1,..,n, in the relation (2.3)a we
obtain,

163840 58496
19 4 s44768h u " + —hu™ + "R +O (h"), (2.6)

YS® =10321920u " +3440640h "u, j
3 15

Further, using Taylor's series expansion for any functionf € C 18[a,b] , we conclude that
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32349

Y, ==10321920f, +38707201°f, > +69350h*f ¥ +79136h°f ) + S +rom"), @1

h2 7ht 31h° 1274
(10) u(|2) _ u(14) 4 u(|6)

Setting f (x ) =u® -—u/ ; ; ., we can obtain,

24 5760 967680 154828800

h’ 7h* 31h° 127h*
—ul” +—u® - ul + u'") =10321920u " +
24 5760 967680 154828800 2.8)

163840 58496
S M T p Y
3 15

Yf, =Y -

34406400 °u"” + 5447680 *u "? + +O(h'"°),5<i <n-4.

By subtracting equation (2.6) from (2.8) we obtain:

h? 7h* 31h° 1274
& 00 w1, w1 2 (16

Y —ul® + ) =0(h") @9)

i i i

24 5760 967680 154828800

h2 7h* 31h°¢ 1274*
(10) u (12) i u (14) _ (16)

i

Denotingd ESi(s) —ul.(s)

u, ; ; , then by using the end

24 5760 967680 154828800
conditions (2.2) and consistency equation (2.9) we obtain,

Yd, =0(h"" |u""|),5<i<n-4, d =d

1 2

=d =0. (2.10)

Since the coefficient matrix of the above system is positive definite hence, it is nonsingular, and its inverse
has a finite norm, thus we have d, = O(h'),i =1,...,n, so the proof of relation (2.4)h is completed. To
prove relation (2.4)g we consider the following consistency relations, which can be easily obtained (but long

straightforward calculations) for any spline of degree eight at the interior mid-points #; ,

1
S =—————[n*(s¥ - 51544075 3] - 99837555 %), —
103219204

3381655 ) 65535 %) —5*) ) 7103219208,

i+6 1+7

(8) (8)
74984675,y — 28234535, -

722534408, F 2167603205

i,i+7 — 1+21+5_

36126720085, | 1<i<n-7,

i+3,i+4

1
S = [h°(S,") + 65535, +3381655,") +28234535 ", +7498467S ) +99837555 ") +
L 10321920k

103153678 ") + 51609598 ) £103219208, , , F 722534405, ,, , +2167603208, ,
3612672008, ,, ,1.8<i <n.

)

Using relation (2.4)h in the above relation and applying Taylor's series expansions of u(k for

k =0,10,12,14,16 , we can obtain,

2 6 8
' ' 24 1920

(as) 10 .
u; ; U, +0(h )1<i<n.

193536 22118400

i
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In a similar manner by using any appropriate consistency relations we can prove the other relations in this
Theorem. According to the relation (2.5), it is well known that if the spline of degree eight has been applied

for solving interpolating problems and boundary value problems of order k,k =0,...,7 has at most 0(h9)

and O (h - ) accuracy, respectively.

Theorem 2.2: Let S (x) be the unique spline of degree eight satisfying (2.1)-(2.2) and interpolating the

function u € Cls[a,b] ,then for i =1,...,n the following relations hold:

8
S(l)(x,.)zu(l)(x,.)+h—u(9)(x,.)+0(h'°),(a)
1209600

( ( h8 (
S 2) )= 2) Ny 10) . 0 hIO , b
(x)=u"(x,) p— (x,)+0("), (b)
8

(3) (3) h6 (9) h (11) 10
ST ) =u(x;)— (X)) +——u "(x;)+0(h"), (c)

30240 57600
h6 8 0
S =u(x, )+60 w0 ) - T15e0 P (x,)+om"), d)
6
S(5) . (5) + (9) (11) (13) Ohm,
(x)=u"(x,) — (x,)— (x;)+ Tasc0” (x,)+0(h"), (e)
S(G)(x):u(6)(x) h (10)( )+ 6 (12)( ) h8 (14)(x )+O(h10),(f)
' 240 30 57600
h 6 8
S(7) )= (7) ) (9) + (11) (13) (15) 19 h10
(x;)=u"(x,)— ” (x;) ™ (x)———u"7(x,)+ T2500" (x,)+0(h").(g)

(2.11)
The above relations are held at the grid points of the partition A too.
Proof. The proof is similar to the proof of theorem 2.1.

To derive a super convergence method for the solution of equations (1.1) and (1.2) using Theorems 2.1 and

© ) (16)

2.2, we need to define some appropriate relations to connect u with spline S(x) and its first

eighth derivatives S ',...,S © at the mid-points as well as at grid points of the partition A . For sake of
convenience, we define the following discrete operators for 5<i <n —4:

M8 =8i:4 88,43 +288,,,-568,,+708,,

1

g, = Z(_giizl +12g8,,,-52g,,, +116g,,, -150g,),
1

HE; :Z(_7gii4+80gii3_340gii2 +7528,,,-970g;),
1

HE; = 7(_5gii4 +64gii3 _284gii2 +640gii1 _830gi ),

Mg = —(Z»Zgl+4 472g,,,+328g, ,—9448g. , +13202g,),
1152 N N -
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M & = E(@g’M 712g, ., +5212g,,, -15224g,  +21350g,),

18, = %(259&+4 3272g,,, +20212g,,, —55544g,,, +76690g ),

Mg = @(37&+4 536g,,, +4396g,,, —13352g, ., +18910g ), (2.12)
Mg, = @( 58,4 +64g,,,—412g, , +2176g,,, —3646g ),

o8, = (=758, ., +1104g, . —9604g, ,, +137200g,,, —257250g,),

107520

Lemma 2.1: If u eClx[a,b] and 5<i <n—4,then using the above operators we have

S(r 8) S -8)

u” =2 Lom?),9<r<16,u"” Lm(h“),%rsu,
s s

l/l{B) lu} i +0(/’l ) (14) /u4 i O(h ) (9) ’US i O(h )

! h° h
S 57 s

ui(lo) ﬂéhl +O(h ) (11) 'Ll7hl +O(h ) (12) 'LIS i +0(h )
s S Y

ul(9) #9 i +0(l’l ) (10) lLllO i +O(h )
h’

Proof. Using relation (2.12) and the results of Theorem 2.1, these relations can be proved easily.

Corollary 2.1: If S(x) be the unique spline of degree eight interpolating u €C 18[a,b] , then for
5<i <n -4 the following relations hold:

1 7 31 127
,'(8) = Si(X) +71u10Si(8) - :uxSf(S) + /14Si(8) - IUISi(x) +0(h10)>
24 5760 967680 154828800
1 7 31 127
u? =87 - — 4SS - ST+ us7 0",
24 1920 193536 22118400
7 31 127
u® =8 uS S - s +o "),
1920 96768 7372800
u® =859+ 7 SO - L §@ 17 uSS +o '),
5760 96768 4423680
u =5+ A w,S Y~ 7 S +0(h'"),
193536 4423680

=5 gw, 1T

s s o™,
967680 5529600
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uf)sz)—A—Ez—fyﬁf)+O(ﬁ%,
22118400

ul =s" +4444£%zggf/45}” +0(h").
154828800

Remark: The Corollary 2.1 gives the approximation for u(p),l < p <8 at the interior mid-points of the

partition A which is the conclusion of Lemma 2.1 and Theorem 2.1. Now we need to obtain some similar
relations at the boundaries and its neighboring points. In order to obtain approximations for derivatives at the

boundaries and its neighboring points {xo, Ll tyy by By by s By 0y By iy £y xn} we should use

Taylor's series expansions.

Lemma 2.2: If u eClg[a,b] and o, =i,i =0,1,2,3,4 denoting the grid points, near the left end point X ;
and o, =n—i,i =n-3,n—-2,n—1,n,n+1 denoting the grid points, near the right end pointXx , , that o, is

the index of 7 , then the following O(hz) approximations to the higher order derivatives of # hold at the
boundaries and its neighboring points,

o

1 1
) _ (r-8) _1o9¢(r8) 20 () r-8) 4 (r=8) 2
u_’ = _2h8 ,ul(23SU5 19S(76 )+O(h ),ugI —hg n (SSG5 4506 )+O(h"),

r 1 r-8 r—8 r 1 r—8 r-8
ug, =58 =38 RO = (5 =25 0,

=F)

r 1 r—8 r—8
u<>:Z§ﬂﬁmﬁs>—S; N+omh*),9<r<1e.

Oy

Proof. To prove Lemma 2.2, we consider the following relations, which can be easily obtained by finite
difference,

1
ug>zi(zmgj—lgéy)+cuﬁzxug)=5ug)—4ug)+0(h6,

(r) (r) (r) 2y (1) (r) (r) 2
ug =4y =3uy O )u, =3u,’ —2u,’ +O(h°),

ug) =2uf) —u) +O(h*), 9<r <16,

T4
By using the results of Lemma 2.1 and above relations, the proof is completed.

Lemma 2.3: Under the assumptions of Lemma 2.2, we have the following 0(h4) approximations to the
higher order derivatives ofu hold at the boundaries and its neighboring points,

- 1 = r— r— r—
u;3:=1623/5(7155g;6)—1755S;66)+14SSS;76)—429S% N+omh,

1 — r— r— r=
NG :Azgﬁb(3igg 0 -845 77" £705 7~ 208 Iy +0 (h*),

1
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1

(r-6) (r-6) (r-6) (r=6) 4
uo‘z ﬁﬂz (20S0'5 _45S% +36S07 _IOSUS )+O(h ),

o3

1
(r) — (r=6) (r=6) (r=6) (r=6) 4
U =73 1, (1087 =208 77 4158 17 —as ) v 0 (0,

5 1 , ,
(r) _ (r=6) (r=6) (r=6) (r=6) 4
Uo, =75 Ho (4S5 =68 +4S T =8 )+ O (h7), 9<r <12,

9

1
ul = (7158 ~17558 7 + 148557 — 4295 )+ 0 (h*),
16h 5 6 7 8

o

1
13 _ 7 7N (7 7 4
g = G (355, =848 £ 7057 208, 0) O ("),

1
ul? = 208 ~ 45517 43657 ~105 ) 0 (1Y),
h 5 6 7 8

p)

3

1
uy? = —u;(108 .7 =205 7 4155 — 45 ) +0 (0,
Ty

1
(13) _ (7 (7 (7 (7 4
g, =G ma(4Sy) =68 +45.) =S +0 U™,

W10 = L
0 16h

(7158 17558 1 14855 ) 4295 )+ 0 ("),

o

1
14) _ ® ® ® ® 4
g =G MBSy —84S5) 7051 -205.) +O (")

1
ul? = 1,205 — 458 + 365 —105 Py +0(h*),
2 h 5 6 7 8

1
ul® = 4,108 205 4158 —as Py ro ",
h ’ ’ ’ '

3

1
(14) _ (®) (®) (®) ®) 4
Ug, —h—ﬁ u4(4S0,5 _6Sa(, +4S0,7 —SO,8 N+O (™).
Proof. The proof is similar to the proof of Lemma 2.2.

Lemma 2.4: Under the assumptions of Lemma 2.2, we have the following O(h(’) approximations hold at
the boundaries and its neighboring points,

N
’ 256h

1, (461895 ) 1889555 ") 41598855 ) —1385675 ) +1222655 ) — 218795 ") +
1 os <3 o, g oy o
Oh®),r=9,10,1=5,6

51
ul” = i (1265 — 50451 +8408 ) = 7208 +3155 ) — 565 )+ O (h®),r =9.10,1 =5,6

1

51
ug) =— (568 ) ~2108) +3365 )~ 2808 +1208 ) =218 1) +0 (), r =9,10,1 =5,6

o, _h4
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o2

1
" _ 0 0 0 0 0 0 6\ . — _
g, =5 # (568 ~21055) +3365,) ~2805,) +1208,) ~2155 ) +O(h')r =9.10,1 = 5.6

1
(r) _ () () ) ) ) () 6 _ _
ug = (2185 =708 11055~ 84504358 ) ~6S [ N+ O ()1 =9.10.1 =5.6

3

oo 1
ul” = (6S5) —1555"+208 ) ~158 ") + 655~ 1)) +0(h*).r =9,10, 1 = 5,6

4

, 1
ul) = e (461898 1) —1889555 ) + 1598855 ) — 1385675 +122265 )

218798 {))+0(h*),r =11,12,1 =7.8,

1
(r) ) ) () ) () ) 6
g =5 (1268, —S04S ;) +8405 ) ~7205 ;) +1222658 ) ~218798 )+ O(h).r =1L12,1 = 7.8,

1

S

1
" _ 0 o) o) 0 0 0 6y _
g =5 (12685) —S04S;) + 8405, ~ 7205, ) +315S,) =565 ) +O (). =1L12.1 =78,

1
(r) _ ) () ) ) ) ) 6 _ _
g, =7 My (5685, ~2105,] +3365,) ~2805,) +1208,) <215, )+ O ). r <1112, 1 = 7.8,

o2

1
(r) () () ) ) ) () 6
ug = (2185 =708, +1055 7~ 84514355~ O () r = 1L12.1 = 7.8,

3

o1
uy) = (685 =158 ) +208 1) —158 1) 4650 =T +0(h°),r =11,12,1 =7,8.

o4 0
Proof. The proof is similar to the proof of Lemma 2.2.

Lemma 2.5: Under the assumptions of Lemma 2.2, we have the followingO(hS) approximations to the
higher order derivatives of u# hold at the boundaries and its neighboring points,

ul) = —Hr (10623475 D ~ 60843515 ) + 154448915 ) — 223092875 ) + 19846655
0 2048h 5 6 7 8 9

105675578 ) +3187041S ) — 4157015 ) + O (h*),r = 9,10, 1 =7.8.

ul = 2‘7 (3305 —18485 ) + 46208 ) — 66008 +57755 | ~30808 ) + 9245 ) ~1208 )

53]
+O(h*),r =9,10,1 =7,8.

ul) = %(uosfjj ~6308, +15128 1 ~21008  +18005;" ~ 9455 | +2805 ) 365 ))

+O(h*),r =9,10,1 =7,8.

(’")_lur

0'3_h2

() () () () ) () () )
(365 ) ~1685 ) +3785 ) — 5045 + 4208\ — 2165 + 63451 ~85 1))

+O(h*),r =9,10,1 =7.8.

10
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r _H () () ) () ) (1) ()
ul! =285t 285 + 565~ 705 +565 ) ~ 285 +851) —5

)
&= )

012

+0(h*),r =9,10,1 =7.8.
Proof. The proof is similar to the proof of Lemma 2.2.

3 Super Convergence Spline Collocation
3.1 Formulation of the method

Suppose that u ec'™ [a,b], 1< p <8 be the exact solution of the given BVP (1.1) and (1.2) and

S (x) € Spy(A)be the spline to approximate the solution of BVP. By discretization the BVP (1.1) and (1.2)
at the points of 7 we have:

L, = ()= gCeu@)u'(e),u”(x)), . 1<i <n,

bl ) . (3.1
Bu, =X (eu’ (@)+pu""(b)=y, 0<i <p-1,
=0

Replacing u by S and using relations in the Lemmas 2.2-2.5, we can obtain a system of n + 8 nonlinear
equations for each 1< p <8. For example, hence we consider this system for the case of p = 8and the other
cases are similar,

s 8 8 8 8 8 1 2
Ly oS =S5+ o™ — gy ™ + w7 - - g, .5, .S, +n",S] -1,
SO =y +2870 S 450, Y =350 S O ugy ™ — 10, 7 4357, (3.2)
6 6 6 6) «(7 7 7 7 7 .
S =3y + 10,7 =217 8 = oV 4 30,0 =577+ Y40 ()i =1,
In the above system, just replacing &,w, ¥ and 5 by &,%,7 and 77 we can obtain L‘;’GZS fori =2,n -1

and by E,l;,}? and 77 we can obtain L;J}S fori =3,n-2. By E, W, ¥ and 7; we can obtain LémS for

i =4,n -3 . By using relations of Corollary 2.1, we can obtain L;iS for 5<i <n-4:

I s_s® +iﬂ g® _ ®, 3 ® 127 g®
8,i —Mi 10~

i — i T i Hp —
24 5760 " 967680 ' 154828800 '
127 127 31 127
¢(Zi’Si’Si'+7lulSi"Si”_7 I i”aSiG)_7#2&(3)""7/”1*9;3)’
154828800 22118400 967680 5520600
31 127 31 127
s@ 4 S D 5O 4 SO SY 4 4
193536 4423680 5760 96768 4423680
7 31 127 1 7
(6) (6) (6) (6) 7 7 7
Si T HgS S o S, S S A S
1920 96768 7372800 24 1920 (33)
31 127
wS v us+om"),  s5<i<n-4,
193536 22118400

11
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where

1
*k) _ k) (k) ) (k) k) ) k) N
g1 = (3305 —18485, )+ 46208 ) ~6600S ) + 57755, ~30808 1) +9245 1! 1208 1))k = 7.8,
_ 1
g% = — 208" —6305%") 115125 %) 21008 ) + 18005 ") — 9455 %) 12805 ) —365 )k = 7,8,
24 5 6 7 8 9 10 11 12
= 1
N = — (365 16851 +3785 ) — 5048 () + 4208 1) ~ 2168 1) + 635 —85 ).k = 7.8,
24 ’ !
i 1
M) = — (859 —285 ") 1565 %) —705 ") 5650 —285 ") 485 ) gy k= 7.8,
24 5 6 7 8 9 10 11 12
7
p" = —— 1265 —5045 %) +8405 ) ~7208 ) 13155 %) — 565 %)) Kk =5,...8,
5760 5 6 7 8 9 10

7
gt = o (565 %) ~2105 ) +3365 ") - 2805 ) +1205 &) ~ 215 )k = 7.3,

127 127
7% = /‘1(53:(;/:) _4Sf(flg))’ﬁ(k) - 154828800#11(4‘?[(75) _3S‘(’f))’k =1...,8,
154828800
_ 127 127
" = 38Y s I = T 288 -8k =1,.8,
154828800 : ‘ 154828800 s
_ 7
g =15 —70s %) 410551 —845 ) 1355 %) _6s )k = 5,8,
5760 5 6 7 8 9 10
7
7 = (65 —155 %) 1205 ") —158 ) 165 ) sy k=58,
5760 5 6 7 8 9 10
31
W = 3551 845 1705 %) —205 )k =3,..,8,
967680 ‘ i '

31
7% =———— (208" —455%) 1365 —108 9 )k =3,....8,
967680 ‘ i :

_ 31
7% =——qaos® —208") 41589 —45 "k =3,..8,
967680 ‘ ' '

31
7B =7 a5 —65((,’6" +4Sf,’7" —S;:)),k =3,..8,

(o

967680 :
(3.4
and the boundary formulas,
7 7 —
BiS =a, Sy + S, +Xa 0, +Xp,0 =y +0(h"),  0<i<T, (3.5)
’ ’ i0 io T

With

12
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— * * —IU * /,I
0, =6, =85 + 1, (235 198Nk =1,2, 4 = ——, puy = —-
koo T DR e % b 2419200777 345600°

6, =0, =50+ (1155 %) —17555 1) 414855 1) — 4295 ) + p" (235 1) — 195 1,

,U2 sk _,Ul % _,Uz s ,Ul
sHy = s Hy = sHy = P
483840 115200 96768 69120
6, =0, =S+, (461895 ) ~1889555 ©) + 1508855 ) 1385675 ) +1222655 &) - 218795 1))

k=34, =

+i(7158 ) —17555 %) +14858 () - 4298 1)) + 1, (235 ~198 ).k =56,

% _/u5 * ,[,[6

Hy = —H = Hy
= S M, =
#s 184320 °° 61440

’/15 = ’/16 = b
48384 69120 115200

2 ﬁ =

0,=0,=57+ " (106234757 — 60843515 ) + 154448915 " — 223092875
24576 : ‘ ' :

o
119846655 7 105675575 7 + 31870415 — 4157015 V)~ 5 (461895 ")
9 10 11 12 61440 5

~1889555." +1598855 ) ~ 1385675\ +1222655 . - 218795 (7))

(71587 17555 D 1148557~ 4205 7)) - (2350 105 7).

96768 345600

In relation (3.5), we have o, =i for a; ;s and o, =n+1-i for LR
3.2 Extra boundary formulas

The space Spy(A) has n +8 dimensions, but the collocation equation (3.1) gives n+p,1<p <8,
nonlinear equations, thus we need 8 — p extra equations to determine spline S (x ) uniquely. To obtain these
extra boundary conditions we use the collocation equation at the boundary or its neighbor grid points. Let
E =1{Xy,X,X,,X3,X, 3,X, ,,X, ,X, }, then we have the following system of » +8 equations for
1<p<8.

(Lpu:u(p)—¢)tv, 1<i <n,
(Lu=u?=9), , x,eEy, (3.2.1)

(B,,“:V,-)xo,x 5 0<i<p-1.
3.3 Error estimation

Let L‘;,i and B ; be the perturbations of the operators L » and B po respectively. In the case of p = 8,L‘;)i

and B are those given above in equations (3.2)-(3.5). If S(x) is the unique spline of degree eight to
approximate the solution of problem (1.1)-(1.2) and satisfying (2.1)-(2.2), then the following relations hold:

13
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L,.S=0(h"), 1<i<n,
L' S=00h"), (3.3.1)

p.r

BS=0(h").

4 Convergence Analysis
The proof of convergence analysis of the method is based on Green's function approach. The exact and
spline solutions of the problem (1.1) which satisfy the boundary conditions B u =y are defined by

u? = ¥, and §® = v, respectively. Suppose that the boundary value problem u” =0,p =1(1)8

subjected to boundary conditions B u =0 has the unique solution. This means that there is a Green's

function G, (x,¢) for which u(x) and S (x) can be obtained in the following forms:

o b 0'G,(x,1) 6 b 0'G,(x,1) _
" (x):j —v, 0, S (x):j LT, di = 0p .
a X a X

We need to introduce the following operators:

A, :C[a,b]—)R",Ang :[g(ll),...,g(tn)]T,Mn :R" > Cla,bl, 7
k, :Cla.b]—>Cla.blk,g = ¢(x.G, (x).G, ,(1)...G, (). j=p-L,

_ 5 0'G (x,t)
where g € Cla,b]andG , ; (x) :I —L— o(t)dt,0<i < p—1. Also we define an operator R, with

a X
respect to the spline solution of the problem in the following form:

1

R, :Cla,b]>Cla,b], R, g = $(x,0A,G, ((X),...0,A,G, (x), j=p-],

whereg €C[a,b],0,=1,,, and 0,1<p<8,are the coefficients matrices of Sl.(p) in equation (3.3.1).

nxn

Lemma 4.1: If p = {p, } be an m xm matrix and p, >3"

ing |pij |40, for 1<i <m , for0>0, then

we havell p || <o
Proof. See Lucas [24], Lemma 4 .

Lemma 4.2: If coefficient matrix of .S l.(p ) in the system of equations (3.3.1) is denoted by 0,1<p=<8 is

nonsingular and || 0 ; ! ”w is bounded.

Proof. For p =1,2,3, matrixQ » is strictly diagonally dominant and thus invertible. For p =4,5,6,7,8 we

can use elementary row operations, then Q, can be converted to strictly diagonally dominant matrix, thus it

is nonsingular, finally using Lemma 4.1 we can conclude that” (0] ; ! Hw , 1 < p <8is finite.

14



Sharifi and Rashidinia; JAMCS, 24(4): 1-24, 2017; Article no.JAMCS.35804

By using the above notations in equations (1.1) and (3.3.1) we have:

v,-ky, =U-k,y, =0, (4.1
and

QPAnS(p) —AanVp =0, (4.2)
According to Lemma 4.2, o, is nonsingular, therefore we have

MAS?” -MO'AR Vv =0.
n’"n n<p n""p p

Since §(p)(x) is a polynomial of order8—p , M”A”.f(p)(x) =S5 (x) we have

SY-MO'AR Y, =(I-MO'AR )V, =(I-pR )V =0, 3)

-1 . : : . . .
where p, =M, QO » A, is an operator from C[a,b] into the continuous piecewise functions of order 8 — p

with break points?; .

Lemma 4.3: Let {A} be a sequence of partitions of the interval [a,h] with step size s . If 1 — 0 as n

increases then p, = MnQ ; lAn converges to the identity operator uniformly.
Proof. Letf €Cl[a,b], we need to show that| p f —f |- 0. We have
Ipf —f MO A f -M A fI+IMAf—f 1.

Since the second term is of order O(h'"),1<p<8 thus [M A f —f >0, so we have
Ipf —f im0 A f =M A g I, 10 A, -0, A, f I<C A -0, f |,

where C*isaﬁnite constant thus we have Hpnf -f HSC* I Af —QpAnf HSC**a)(f,Bh),

Where o(f,0) =sup{|f (x +0)—f (x)|:x,x +0 €[a,b],] 0 |<0}is the modulus of continuity of /' (x) .
Since f (x) is continuous function and # — 0 we have @(f ,134) — 0. So this completes the proof.

Lemma 4.4: Under the hypotheses of Lemma 4.3, the operator sequence p, R, converges to k, uniformly.
Proof. Let f € C[a,b] thus we have
-1
Ip, RS =k fI=IMO AR -kl
-1
MO AR =M A K fII+IMA K-k f (4.4)

-1 _,
Mmoo AR f-0,A K[ +0R"™),

15
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Since || M, [land || Q;l || are bounded thus for some finite constant C~ we have

l(p,R, =k,)f [<C AR f -0 A K fI<C o ,0),
Where

5 =max {13h,0G , ,(x),211), (G, (x),21h),... (G, ,_(x),21h)}. 4.5)

Since G, (x),0<i < p —1lare continuous, &(G, ; (x),21h) > 0,0<i < p —lash —>0. Now from (4.5)

8 — 0. Finally since f is a continuous function and & — 0 thus we have @(f',5) — 0. To guarantee the

uniqueness of the solution of (1.1)-(1.2) at least in a small neighborhood of an isolated solution, we need to
state the following Theorem that is treated in [13].

Theorem 4.1: Suppose that u(x) is a solution BVPs (1.1)-(1.2) and the continuous functions
$(x,20,2 552, ) and —¢(x,zo,zl,...,zp_1), (0<i <p-1), are defined and continuous in the
Oz .

following region: a<x <bh,|z, —uP(x)|<S, (0<i<p-1,86 >0). also suppose that the
homogeneous equation u'”’ =0 , subjected to boundary conditions (1.2) has only the trivial solution.
Consider a sequence of partition {A} of [a,h] such that s — 0. If the linear homogenous equation,

i

p-1
0 ;
U (@)= Y P2z ez, () =0,

i=0 aZ,'

subjected to the boundary conditions (1.2) has only a trivial solution, then there exists ac > 0, such that

u (x) is the unique solution of (1.1)-(1.2) in the sphere [lw e < o, further for sufficiently large n there

exists a unique spline N € Sp,(A) satisfying (1.1)-(1.2) such that Hb:(p) —u"” <o, and §(x) and its

derivatives through p —1, converges to u (x ) and its derivatives of corresponding orders.

Proof. The proof is similar to that in Russell and Shampine, ([13], Theorem 5).

Now we want to verify and prove the main convergence theorem which gives the error bounds and the
orders of convergence of the purposed method theoretically.

Theorem 4.2: Consider a sequence of partition {A} of interval [a,b] such that the step size # — 0. Suppose

that S (x)1is a spline of degree eight approximation to problems (1.1)-(1.2) then under the assumptions of
Theorem 4.1, the following error bounds hold for the presented method,

[ - 04" ),j =0,..,7, |- |=0*"),j =0,
=) =0(h"),j =12, |@-5)" |=0(h°),j =3,4,
=) =0h*),j =56, | —S) |=0(h*),j =1.

16
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Proof. We assume that S(x) € Sp,(A), be the unique spline interpolant of u# as in Theorem 2.1 and i/ »

and v , are the exact and spline solutions of the problem respectively. We consider the following problem

s? = Z B;S :O(hlo). According to the hypotheses there is a unique solution to the problem

u? = 0,B,u =0 thus there exists a polynomial £(x) of order p —1 such that

B E=B)S =0(h'"), &M 0", k =0,...p-1. (4.6)
From solvability of (S — &) = 2B, (S —&) =0 we have

(I -MQO,'A RS -&7)=M0,'©Q,A, -AR,)S -,
then using (3.3.1) and the boundness of || M, | and H Q: || we get

(I -M,0,'A R ST -£7)=M,0 "O*")=0(*"). (4.7)

Subtracting equations (4.3) and (4.7) we have

(I -M,0,'AR S £ -5 =0"),
and equivalently

(§P g _§»)y =p,R, (P g _§Py—om"). (4.8)

It is known that the operator R » is continuously differentiable in an area about u (see [13]) thus we can

write (4.8) in the following integral equation form

(S(P) _g(P) _§(P)) —

D, (J‘Ol (R'[7 [S*\(P) +1(S (») _ég(p) —§(p))]dt)(S(p) _Sg(p) _§(p)) =0(h10), (4.9)

1 ' A A
where {3, } =p, (jo (R,[S W) s — P —§P)]dt) is a sequence of linear operators converging to

Rlp (u > )).Thus we have
(S(p) _§(p) _S"(p)) — 19” (S(p) _§(p) —5:(!]))-#0(/110).

Finally since (I —3,)”" exists and its norm is uniformly bounded we have

17
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1S -£-H" 1, =00"). (4.10)

Now according to the hypotheses the problem (S —¢& -S )(p ) = r,B; S -¢ - ) =01is uniquely solvable

thus we have via Green's function notation

. 0'G (x,1) .
(s -¢&-5H" =IP—(,~(S(”) —EP SN, i =0,..,p -1, 4.11)
X
which implies
I -&-$) N, =0("), i =0,...p-1. (4.12)

Now using the triangular inequality we have
@ -1l @-H+1s -HN+1EV N, i =0,..p -1,
then using equations (3.3.1) and (4.6) and Theorem 2.1, and the proof is completed. ]

5 Illustrative Examples

In this section we consider five boundary value problems of various orders with appropriate boundary
conditions, to demonstrate the efficiency and applicability of the presented method. We compared our
numerical results with the results in [5-8, 22, 25-28] and the results are tabulated in Tables 1-7. The
computational costs are tabulated. All programs run in software mathematica 10. The initial guess that we
use for solving the arising algebraic systems is zero.

Example 1. Consider the following linear eighth order boundary value problem

u®(x)=—xu(x)—e* (48+15x +2x°), 0<x <1

u(0) =u(1) = 0,u"(0) = Lu'(l) = —e,u"(0) = 0,u"(1) = —de,u® (0) = -3.u" (1) = —9e.

The exact solution for this problem is u(x)=x(1—-x)e" . First we solve this problem with step size

1
h = 5 and compared the errors in those given points in [5-7,25]. These results are tabulated in Table 1 and

Fig. 1, which show that the maximum absolute errors in the solutions of our method are considerable less
1 1 1 1
than those methods in [5-7,25]. Moreover we solve this problem for various values of h = —,—,—,——
18 36 72 144
and the maximum absolute errors in the solutions. CPU times are listed in Table 2. In this table £, means,
E, u® -5 HOO, 1<i <7 ,and O; means the order of convergence of ith derivatives of # . This table

also verified the accuracy nature of our method.

18
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1
Table 1. Numerical results for example 1 with 7 = —

30
X Convergence Method in Method in [7] Method in [6] Method in [5]
method [25]
0.1 4.16(-16) 3.89(-15) 1.63(-10) 5.62(-10) 3.73(-9)
0.2 2.81(-14) 1.45(-14) 1.63(-9) 4.88(-9) 6.61(-9)
0.3 1.92(-14) 1.04(-14) 4.90(-9) 1.37(-8) 2.33(-8)
0.4 3.31(-13) 4.37(-13) 8.46(-9) 2.29(-8) 5.17(-8)
0.5 8.84(-13) 6.20(-13) 1.01(-8) 2.71(-8) 9.76(-8)
0.6 3.63(-13) 4.02(-13) 8.68(-9) 2.38(-8) 1.78(-6)
0.7 1.47(-14) 2.07(-12) 5.15(-9) 1.49(-8) 4.12(-6)
0.8 2.43(-14) 2.66(-12) 1.76(-9) 5.54(-9) 1.83(-4)

Table 2. Numerical results for example 1 with various values of /1

h 118 1/36 172 1/144
E 0 2.2(-16).- 1.9(-19),10.2 1.8(-22),10.1 1.7(-25),10.1
EO,O 0 8.7(-16),- 8.5(-19),9.9 8.4(-22),9.9 8.3(-25),9.9
El ’01 6.7(-15),- 4(-17),6.7 6.2(-19),6.6 6.0(-21),6.6
Ez,oz 7.8(-12),- 7.5(-14),6.7 7.3(-16),6.6 7.1(-21),6.6
3 703 43(-11).- 4.1(-13),6.7 3.9(-15).6.7 3.7(-17),6.7

E4’0 4 1.3(-7),- 1.1(-9),6.8 1.0(-11),6.7 1.1(-13),6.5
E5 ’05 43(-7).- 4.1(-:9),6.7 3.8(-11).6.7 3.6(-13),6.7
E6 ,06 3.1(-7).- 3.0(-8),3.4 2.8(-9),3.4 3.1(-10),3.2
CPU times 0.157 0.221 0314 0.561

g.107" f"‘x\

/
g-107 / \

Fig. 1. Absolute error between exact and approximate solution (n = 30)

Example 2. Consider the following nonlinear eighth order boundary value problem
u®y=u(x)e ™, 0<x <1

along with the boundary conditions,
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u(0)=u'(0)=u"0)=u0)=uY0)=1, u()=u'(l)=u"(l) =e.

1
With the exact solution u(x) =e" . We solve this problem with step size & = 5 . The results are compared

with those mentioned in [5,26]. The maximum absolute errors in the solutions are tabulated in Table 3. Our
results are compared with the results obtained by Adomian decomposition method and Variational iteration
decomposition method, which show the applicability of our method computationally.

Table 3. Numerical results for example 2 with 7 = —

X Convergence method Method in [5] Method in [26]
0.1 5.21(-13) 2.34(-4) 1.27(-5)
0.2 2.62(-14) 2.54(-5) 2.43(-5)
0.3 7.04(-14) 3.02(-5) 3.35(-5)
0.4 1.87(-11) 5.26(-5) 3.94(-5)
0.5 3.54(-11) 8.39(-5) 4.16(-5)

Example 3. Consider the following nonlinear eighth order boundary value problem

u® ) +3u” +u ) +u (e —du" o () +u" (x e =—36e "

u(0)=Lu()=e*u'(0)=2u'(l)=-2¢",

,0<x <1
u"(0)=4u"(1)=4e > u™(0)=-8,u"” (1) =8 .

The exact solution of this problem is u (X ) =e ™. We solve this problem with step size & =— for
30

various of points and compared the errors in those special points given in [28]. Results are tabulated in Table
4. Our results are compared with the results obtained by Galerkin method. The data in table verified that our

1 1 1 1
method is more accurate. Finally we solve this problem with # = —,—,—,——, the maximum absolute

18736 72 144"
errors in the solutions and CPU times are tabulated in Table 5. This table shows that the orders of
convergence in applications agree with those we obtained theoretically.

1
Table 4. Numerical results for example 3 with 7 = —
30

X Convergence method Method in [28]
0.1 4.32(-14) 7.98(-6)
0.2 7.83(-12) 2.18(-5)
0.3 4.22(-11) 2.09(-5)
0.4 6.64(-9) 2.87(-5)
0.5 5.42(-9) 2.68(-5)
0.6 9.27(-8) 1.69(-5)
0.7 6.53(-8) 1.15(-5)
0.8 4.37(-7) 4.79(-6)
0.9 5.23(-6) 1.82(-6)
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Table 5. Numerical results for example 3 with various values of /

h 118 1/36 1/72 1/144
E,o 5.1(-16),- 4.9(-19),10 4.8(-22),9.9 4.7(-25),9.9
Eo0, 6.9(-15),- 6.7(-18),10 6.5(-21),10 6.3(-24),10
E o, 2.4(-14),- 2.3(-17),10 2.4(-20),9.9 2.7(-23).9.7
E.0, 7.6(-13),- 7.3(-15),6.7 7.1(-17),6.6 6.9(-19),6.6
E,0, 3.2(-11), 3.1(-13),6.6 2.8(-15),6.7 2.7(-17),6.7
E.0, 9.7(-9).- 8.8(-11),6.8 8.6(-13),6.7 8.1(-15),6.7
E.o, 3.2(-9),- 3.4(-10),3.2 3.0(-11),3.5 2.6(-12),3.5
E..o,. 1.7(-8),- 1.6(-9),3.4 1.5(-10),3.4 1.1(-11),3.4
CPU times 0.266 0.325 0.500 0.926

Example 4. Consider the following nonlinear seventh order boundary value problem

u @) +u P () —u @)™ = et (~4(=3+x)+e " TV (¢ _1))cosx —8(5+x)sinx),0<x <1

subject to the boundary conditions,

u(0)=Lu'(0)=u)=0,u'(l) =—ecosl,u"(0)=u 3) (0)=-2,u"(1) =—2e cos1+2esinl.

1
With the exact solution u(x)=e" (1-x)cosx. We solve this problem with step size A =5 and

compared the errors in those special points given [8]. The maximum absolute errors in the solutions are
tabulated in Table 6 and Fig. 2. Our results are compared with the results obtained Reproducing kernel
method. The results in this table show the applicability of our method computationally.

Ea e

-11
410

TNE

AT gl

7 Sk

n.i - 0.k 0. 1

Fig. 2. Absolute error between exact and approximate solution (n = 30)
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Table 6. Numerical results for example 4 with 7 = —

30

X Convergence method Method in [8]
0.125 3.51(-14) 4.74(-10)
0.250 2.09(-12) 5.20(-9)
0.375 4.29(-12) 1.53(-8)
0.500 5.01(-12) 2.45(-8)
0.625 4.04(-12) 2.53(-8)
0.750 2.12(-12) 1.56(-8)

Example 5. Consider the following nonlinear sixth order boundary value problem

u(é)(x):uz(x)eﬁ, 0<x <1

u(©) =u"0)=u0) =1, u()=u"W)=u"0)=u? 1) =ec.

1
With the exact solution #(x ) =e". We solve this problem with step size & =5 . The results are

compared with those mentioned in [22, 27]. The maximum absolute errors in the solutions are tabulated in
Table 7. Our results are compared with the results obtained by sextic spline collocation method and
Variational iteration method. The results in this table verified that our method is more accurate.

Table 7. Numerical results for Example 5 with 7 = —

30
X Convergence method Method in [22] Method in [27]
0.1 2.07(-17) 2.08(-15) 1.23(-4)
0.2 8.33(-16) 8.39(-15) 2.35(-4)
0.3 6.03(-16) 5.94(-15) 3.25(-4)
0.4 5.28(-16) 1.56(-14) 3.85(-4)
0.5 4.06(-16) 2.53(-14) 4.08(-4)
0.6 3.14(-16) 3.18(-14) 3.91(-4)
0.7 2.24(-16) 3.24(-14) 3.36(-4)
0.8 1.35(-16) 2.60(-14) 2.45(-4)
0.9 1.07(-16) 1.38(-14) 1.29(-4)

6 Conclusion

In this paper, a new tenth order super convergence method based on eight degree B-spline has been
developed for solution of higher order boundary value problems. The results shown that the accuracy of the
computed solutions are in good agreement with the analytical solutions. The method is easy to apply, and
can be applied to similar problems that arise in engineering and sciences, easily. The good accuracy of the
proposed method has been tested and shown on some linear and nonlinear problems. Computed solutions are
compared with references [5-8,22,25-28]. It is observed that the absolute error is the solution are
considerable accurate. Mathematica software is used for all computational work.
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