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Abstract

In this paper, we introduce some fixed point theorems in Presic type mappings on Gp-metric
spaces. The present results generalizes various known results in the related literature.
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1 Introduction and Preliminaries

In 1922, Banach [1] established famous fundamental fixed point theorem, also known as Banach
contraction principle. The Banach contraction principle is the simplest and one of the most versatile
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elementary results in fixed point theory. Over the years, various extensions and generalizations of
this principle have appeared in the literature. Matthews [2], introduced the partial metric spaces
and proved a fixed point theorem on this space. After that several fixed point results have been
proved in this space, for more details see [3] [4] [5] [6] [7]. In 2006, Mustafa and Sims [8] introduced
a new structure called G-metric space as a generalization of the usual metric spaces. Afterwards
based on the notion of a G-metric space, many fixed point results for different contractive conditions
have been presented, for more details see [9] [10] [11] [12] [13]. Recently, based on the two above
metric spaces, Zand and Nezhad [14] introduced a new generalized metric spaces Gp as a both
generalization of the partial metric space and G-metric spaces. Some of these works may be noted
in [15] [16] [17].

Now, we mention briefly some fundamental definitions.

Definition 1.1. [14] Let X be a nonempty set and let Gp : X × X × X → R+ be a function
satisfying the following properties:

(GP1) 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z), all x, y, z ∈ X;

(GP2) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) . . ., (symmetry in all three variables);

(GP3) Gp(x, y, z) ≤ G(x, a, a)+Gp(a, y, z)−Gp(a, a, a), for any a, x, y, z ∈ X, (rectangle inequality);

(GP4) x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z);

Then the pair (X,Gp) is called a Gp-metric space.

Proposition 1.1. [14] Let (X,Gp) be a Gp-metric space. Then for any x, y, z and a ∈ X the
following relations are true.

(i) Gp(x, y, z) ≤ Gp(x, x, y) +Gp(x, x, z)−Gp(x, x, x);

(ii) Gp(x, y, y) ≤ 2Gp(x, x, y)−Gp(x, x, x);

(iii) Gp(x, y, z) ≤ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a)− 2Gp(a, a, a);

(iv) Gp(x, y, z) ≤ Gp(x, a, z) +Gp(a, y, z)−Gp(a, a, a).

Definition 1.2. [14] Let (X,Gp) be a Gp-metric space and a sequence {xn} is called a Gp
convergent to x ∈ X if

lim
n,m→∞

Gp(x, xn, xm) = Gp(x, x, x).

A point x ∈ X is said to be limit point of the sequence {xn} and written xn → x.

Thus if xn → x in a Gp metric space (X,Gp), then for any ε > 0, there exists ` ∈ N such that
|Gp(x, xn, xm)−Gp(x, x, x)| < ε, for all n,m > `.

Proposition 1.2. [14] Let (X,Gp) be a Gp-metric space, then for any sequence {xn} in X, the
following are equivalent that

(i) {xn} is Gp convergent to x;

(ii) Gp(xn, xn, x)→ Gp(x, x, x) as n→∞;

(iii) Gp(xn, x, x)→ Gp(x, x, x) as n→∞.

Definition 1.3. [18]

(1) The sequence {xn}n∈N in a Gp-metric space (X,Gp) is said to be a Gp Cauchy sequence if
there exists r ∈ R such that limn,m→∞Gp(xn, xm, xm) = r.
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(2) (X,Gp) is said to be Gp-complete if for every Gp Cauchy sequence {xn}n∈N there exists
x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = lim
n,m→∞

Gp(xn, xm, x) = Gp(x, x, x).

Lemma 1.1. [15] Let (X,Gp) be a Gp-metric space. Then

(i) If Gp(x, y, z) = 0 then x = y = z,

(ii) If x 6= y then Gp(x, y, y) > 0.

Proposition 1.3. [14] Every Gp-metric space (X,Gp) defines a metric space (X, dGp) as follows:
dGp(x,y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y), for all x, y ∈ X.

2 Main Results

Considering the convergence of certain sequences S. B. Presic [19] generalized Banach contraction
principle as follows:

Theorem 2.1. [19] Let (X, d) be a complete metric space, k a positive integer and T : Xk → X
a mapping satisfying the following contractive type condition

d(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1)) ≤ q1d(x1, x2) + q2d(x2, x3) + ...+ qkd(xk, xk+1) (2.1)

for every x1, x2, ..., xk+1 in X where q1, q2, ..., qk are non negative constants such that q1 + q2 + ...+
qk < 1. Then there exist a point x in X such that T (x, x, ..., x) = x. Moreover, if x1, x2, ..., xk, are
arbitrary points in X and for n ∈ N ,

xn+k = T (xn, xn+1, ..., xn+k−1) (n = 1, 2, ...)

then the sequence {xn}∞n=1 is convergent and

limxn = T (limxn, limxn, ..., limxn).

Remark that condition (2.1) in the case k = 1 reduces to the well-known Banach contraction
mapping principle. So, Theorem 2.1 is a generalization of the Banach fixed point theorem.

Ćirić and Presic [20], generalized Theorem 2.1 as follows:

Theorem 2.2. [20] Let (X, d) be a complete metric space, k a positive integer and T : Xk → X
a mapping satisfying the following contractive type condition

d(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1)) ≤ λ max
1≤i≤k

{d(xi, xi+1)} (2.2)

where λ ∈ (0, 1) is constant and x1, x2, ..., xk+1 in X. Then there exist a point x in X such that
T (x, x, ..., x) = x. Moreover, if x1, x2, ..., xk, are arbitrary points in X and for n ∈ N ,

xn+k = T (xn, xn+1, ..., xn+k−1) (n = 1, 2, ...)

then the sequence {xn}∞n=1 is convergent and

limxn = T (limxn, limxn, ..., limxn).

If in addition we suppose that on a diagonal 4 ⊂ Xk

d(T (u, u, ..., u), T (v, v, ..., v)) < d(u, v) (2.3)

holds for all u, v ∈ X, with u 6= v, then x is the unique point in X with T (x, x, ..., x) = x.
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Nazır and Abbas [21], proved common fixed point theorems of Presic type in partial metric space.
Also, Dhasmana [22] showed a unique common fixed point theorem is obtained in settings of G-
metric spaces by using the concept of Presic fixed point theorem. Further, Gairola and Dhasmana
[23] proved common fixed point theorems of Presic type in G-metric space which extends the result
of Ćirić-Presic [20], Dhasmana [22] and George-Khan [24].

We will carry this idea to Gp-metric spaces, which is a generalization of partial metric spaces.

Theorem 2.3. Let (X,Gp) be complete Gp-metric spaces, k a positive integer and T : Xk → X a
mapping satisfying the following contractive type condition

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2)) ≤ λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)} (2.4)

where λ ∈ (0, 1) is constant and x1, x2, ..., xk, are arbitrary elements in X. Then there exists a
point x in X such that T (x, x, ..., x) = x. Moreover, if x1, x2, ..., xk+2 are arbitrary points in X and
n ∈ N ,

xn+k = T (xn, xn+1, ..., xn+k−1) (n = 1, 2, ...) (2.5)

then the sequence {xn}∞n=1 is convergent and

lim
n→∞

xn = T (limxn, limxn, ..., limxn).

If in addition we suppose that

Gp(T (u, u, ..., u), T (v, v, ..., v), T (w,w, ..., w)) < Gp(u, v, w) (2.6)

holds for all u, v, w ∈ X, with u 6= v 6= w, then x is the unique point in X with T (x, x, ..., x) = x.

Proof. x1, x2, ..., xk, be k arbitrary in X. Using these points define a sequence (xn) as follows:

xn+k = T (xn, xn+1, . . . , xn+k−1), (n = 1, 2, . . . ).

For simplicity set γn = Gp(xn, xn+1, xn+2). We shall prove by induction that for each n ∈ N;

γn ≤Mθn (2.7)

where θ = λ
1
k and M = max{ γ1

θ
, γ2
θ2
, ..., γk

θk
}. According to the definition of M we can writing for

n = 1, 2, ..., k

γn ≤Mθn, γn+1 ≤Mθn+1, ..., γn+k−1 ≤Mθn+k−1.

Then we have:

γn+k = Gp(xn+k, xn+k+1, xn+k+2)

= Gp(T (xn, xn+1, ..., xn+k−1), T (xn+1, xn+2, ..., xn+k), T (xn+2, xn+3, ..., xn+k+1)).

By (2.4)

γn+k = Gp(T (xn, xn+1, ..., xn+k−1), T (xn+1, xn+2, ..., xn+k), T (xn+2, xn+3, ..., xn+k+1))

≤ λmax{γn, γn+1, γn+2, ..., γn+k−1}

≤ λmax{Mθn,Mθn+1, ...,Mθn+k−1}

as θ = λ
1
k

γn+k ≤ λMθn (as 0 < θ < 1)

= Mθn+k
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and the inductive proof of (2.7) is complete. Next using (2.7) for any n,m ∈ N we have the following
argument:

Gp(xn, xm, xm) ≤Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + ...

+Gp(xm−1, xm, xm)− {Gp(xn+1, xn+1, xn+1) +Gp(xn+2, xn+2, xn+2)+

...+Gp(xm−1, xm−1, xm−1)}
≤Gp(xn, xn+1, xn+2) +Gp(xn+1, xn+2, xn+3) + ...+Gp(xm−2, xm−1, xm)

=γn + γn+1 + ...+ γm−2

≤Mθn +Mθn+1 + ...+Mθm−2

≤Mθn

1− θ

by which we conclude that (xn) is a Gp Cauchy sequence. Since (X,Gp) is complete Gp-metric
space, there exists x ∈ X such that {xn} sequence converges x ∈ X. So,

lim
n,m→∞

Gp(xn, xm, xm) = lim
n,m→∞

Gp(xn, xm, x) = Gp(x, x, x) = 0.

Then for any integer n we have

Gp(xn+k,xn+k, T (x, x, ..., x)) = Gp(T (x, x, ..., x), T (xn, xn+1, ..., xn+k−1, T (xn, xn+1, ..., xn+k−1))

≤Gp(T (x, x, ..., x), T (x, ..., x, xn), T (x, ..., x, xn))+

Gp(T (x, ..., x, xn), T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1))+

Gp(T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1, xn+2), T (x, ..., x, xn, xn+1, xn+2))

+ ...+Gp(T (x, xn, ..., xn+k−2), T (xn, xn+1, ..., xn+k−1), T (xn, xn+1, ..., xn+k−1))

− {Gp(T (x, ..., x, xn), T (x, ..., x, xn), T (x, ..., x, xn))+

Gp(T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1))+

...+Gp(T (x, xn, ..., xn+k−2), T (x, xn, ..., xn+k−2), T (x, xn, ..., xn+k−2))}
≤Gp(T (x, x, ..., x), T (x, ..., x, xn), T (x, ..., x, xn))+

Gp(T (x, ..., x, xn), T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1))+

Gp(T (x, ..., x, xn, xn+1), T (x, ..., x, xn, xn+1, xn+2), T (x, ..., x, xn, xn+1, xn+2))

+ ...+Gp(T (x, xn, ..., xn+k−2), T (xn, xn+1, ..., xn+k−1), T (xn, xn+1, ..., xn+k−1))

≤λmax{Gp(x, x, x), Gp(x, xn, xn)}+ λmax{Gp(x, x, x), Gp(x, xn, xn), Gp(xn, xn+1, xn+1)}+
+ ...+ λmax{Gp(x, x, x), Gp(x, xn, xn), Gp(xn, xn+1, xn+1), ..., Gp(xn+k−2, xn+k−1, xn+k−1)}.

Taking the limit when n tends to infinity we obtain

Gp(x, x, T (x, x, ..., x)) ≤ λGp(x, x, x)

that is,

Gp(x, x, T (x, x, ..., x)) ≤ 0

which implies

T (x, x, ..., x) = x.

Thus we proved that;

limxn = T (limxn, limxn, ..., limxn).
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Now suppose that (2.6) holds. To prove the uniqueness of the fixed point, let us assume that for
some y, z ∈ X, x 6= y 6= z we have

T (y, y, ..., y) = y, T (z, z, ..., z) = z

Then by (2.6),

Gp(x, y, z) = Gp(T (x, x, ..., x), T (y, y, ..., y), T (z, z, ..., z)) < Gp(x, y, z), (2.8)

which is a contraction. So, x is the unique point in X such that T (x, x, ..., x) = x.

Example 2.4. Let X = [0, 2] and Gp : X ×X ×X → R+ defined by

Gp(x, y, z) =

{
|x− y|+ |y − z|+ |x− z|, if x, y, z ∈ [0, 1)
max{x, y, z}, otherwise

(X,Gp) is a complete Gp metric space. Let k ∈ Z+ and T : Xk → X be the mapping defined by

T (x1, x2, ..., xk) =

{
x1+xk

4k
, if x1, x2, ..., xk ∈ [0, 1)

0, otherwise

Now x1, x2, ..., xk, xk+1, xk+2 ∈ [0, 1) and λ = 1
2
. Thus, we obtain

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))

=
∣∣∣x1 + xk

4k
− x2 + xk+1

4k

∣∣∣+
∣∣∣x2 + xk+1

4k
− x3 + xk+2

4k

∣∣∣+
∣∣∣x1 + xk

4k
− x3 + xk+2

4k

∣∣∣
≤ 1

4k
[|x1 − x2|+ |x2 − x3|+ |x1 − x3|+ |xk − xk+1|+ |xk+1 − xk+2|+ |xk − xk+2|]

=
1

4k
|Gp(x1, x2, x3) +Gp(xk, xk+1, xk+2)|

≤ 1

2k
max{Gp(x1, x2, x3), Gp(xk, xk+1, xk+2)}

≤ 1

2k
max
1≤i≤k

{Gp(xi, xi+1, xi+2)}

≤1

2
max
1≤i≤k

{Gp(xi, xi+1, xi+2)}

=λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)}.

If x1, x2, ..., xk ∈ [0, 1) and xk+1, xk+2 ∈ [1, 2] then

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))) =
x1 + xk

4k

≤ 1

2k
xk

≤ 1

2
max
1≤i≤k

{Gp(xi, xi+1, xi+2)}

= λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)}.

If x1, x2, ..., xk, xk+1 ∈ [0, 1) and xk+2 ∈ [1, 2] then

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))) = |x1 + xk
4k

− x2 + xk+1

4k
|

≤ 1

2k
max{xk, xk+1}

≤ 1

2
max
1≤i≤k

{Gp(xi, xi+1, xi+2)}

= λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)}.
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Similarly, if x1, x2, ..., xk, xk+2 ∈ [0, 1) and xk+1 ∈ [1, 2] then

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))) = |x1 + xk
4k

− x3 + xk+2

4k
|

≤ 1

2k
max{xk, xk+2}

≤ 1

2
max
1≤i≤k

{Gp(xi, xi+1, xi+2)}

= λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)}.

When some xj ∈ [1, 2] and x1, x2, ..., xj−1, xj+1, ..., xk, xk+1, xk+2 ∈ [0, 1) or x1, x2, ..., xk, xk+1, xk+2 ∈
[1, 2] then we obtain

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))) = 0

≤ λ max
1≤i≤k

{Gp(xi, xi+1, xi+2)}.

Thus T satisfies (2.4) with λ = 1
2

and we have T (x, x, ..., x) = x. Moreover for all x, y, z ∈ X with
x 6= y 6= z

Gp(T (x, x, ..., x), T (y, y, ..., y), T (z, z, ..., z)) < Gp(x, y, z).

Thus all required hypotheses of Theorem (2.3) are satisfied. Furthermore, for any arbitrary points
x1, x2, ..., xk ∈ X, the sequence (xn) defined by (2.5) converges to x = 0, the unique fixed point of
T .

Corollary 2.5. Let (X,Gp) be complete Gp-metric spaces, k ∈ Z+ and T : Xk → X a mapping
satisfying the following contractive type condition

Gp(T (x1, x2, ..., xk), T (x2, x3, ..., xk+1), T (x3, x4, ..., xk+2))) ≤
k∑
i=1

λiGp(xi, xi+1, xi+2) (2.9)

where λ1, λ2, . . . , λk are non-negative constants,
∑k
i=1 λi ∈ (0, 1) and x1, x2, ..., xk, are arbitrary

elements in X. Then there exists a point x in X such that T (x, x, ..., x) = x. Moreover, if
x1, x2, ..., xk+2 are arbitrary points in X and n ∈ N ,

xn+k = T (xn, xn+1, ..., xn+k−1) (n = 1, 2, ...) (2.10)

then the sequence {xn}∞n=1 is convergent and

lim
n→∞

xn = T (limxn, limxn, ..., limxn).

If in addition we suppose that

Gp(T (u, u, ..., u), T (v, v, ..., v), T (w,w, ..., w)) < Gp(u, v, w) (2.11)

holds for all u, v, w ∈ X, with u 6= v 6= w, then x is the unique point in X with T (x, x, ..., x) = x.

Remark 2.1. Theorem 2.3 is generalization of corollary 2.5, as the condition (2.9) implies the
conditions (2.4) and (2.6). Actually,

λ1Gp(x1, x2, x3) + λ2Gp(x2, x3, x4)+ · · ·+ λkGp(xi, xi+1, xi+2)

≤ (λ1 + λ2 + · · ·+ λk) max
1≤i≤k

{Gp(xi, xi+1, xi+2)} (2.12)

7
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and λ1 + λ2 + · · ·+ λk < 1. Beside, for any u, v, w ∈ X, with u 6= v 6= w, from (2.9) we have

Gp(T (u, u, ..., u),T (v, v, ..., v), T (w,w, ..., w)) ≤ Gp(T (u, u, ..., u), T (u, u, ..., u, v), T (u, u, ..., u, v))+

Gp(T (u, u, ..., u, v), T (u, u, ..., u, v, v), T (u, u, ..., u, v, v)) + ...+

Gp(T (v, w, ..., w), T (w,w, ..., w), T (w,w, ..., w))−
{Gp(T (u, u, ..., u, v), T (u, u, ..., u, v), T (u, u, ..., u, v))+

Gp(T (u, u, ..., u, v, v), T (u, u, ..., u, v, v), T (u, u, ..., u, v, v)) + ...+

Gp(T (u,w, ..., w), T (u,w, ..., w), T (u,w, ..., w))}
≤Gp(T (u, u, ..., u), T (u, u, ..., u, v), T (u, u, ..., u, v))+

Gp(T (u, u, ..., u, v), T (u, u, ..., u, v, v), T (u, u, ..., u, v, v)) + ...+

Gp(T (v, w, ..., w), T (w,w, ..., w), T (w,w, ..., w))

≤λ1Gp(u, v, w) + λ2Gp(u, v, w) + · · ·+ λkGp(u, v, w)

=(λ1 + λ2 + · · ·+ λk)Gp(u, v, w) < Gp(u, v, w)

and, as a result, (2.9) implies (2.6).

3 Conclusion

Nazır and Abbas [21], proved common fixed point theorems of Presic type in partial metric space.
Further Dhasmana [22], showed fixed point theorem by using Presic type mapping in G-metric
spaces. Our works generalizes several similar results in the literature.
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