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Abstract

The predictive estimator of the gradient in simple regression is assumed to be the product
of the gradient given by least-squares fitting and a constant (ρ). The results of numerical
simulations show that when generalized cross-validation is used to obtain the optimal ρ, the
resultant predictive estimator is not of great use. However, when the parametric bootstrap
method is applied for this purpose, the resulting predictive estimator is often superior to the
maximum likelihood estimator in terms of prediction accuracy. Therefore, statistics reflecting
the characteristics of data should be used to determine which estimator should be adopted.
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1 Introduction

The maximum likelihood estimator does not always lead to the best results in terms of prediction
accuracy. This is because the estimates that gave the best fit to the data in the past may not fit
well with data in the future. Therefore, while the estimator that gives the best fit to past data is
called the maximum likelihood estimator, the estimator which yields the best predictions is called
the “predictive estimator”. For example, the “third variance” ((n− 1) (n is the number of data) in
unbiased variance is replaced with (n− 4) for reducing predictive error.) [1, 2], which refers to the
variance for the purpose of prediction, has been derived; a method based on series expansion gives
an estimator which is asymptotically identical to the third variance [3], and predictive estimators
have been constructed [4] using the bootstrap method (section 6.7 of [5]).

In simple regression, when the absolute value of the gradient is adjusted to be slightly less than
the value obtained by the least-squares method, the estimates tend to fit well with future data
[4]. Hence, specific procedures for obtaining predictive estimators for simple regression when data
are available are presented with the help of numerical simulations. The second section presents an
outline of the predictive estimator for simple regression. The third section introduces a method
of deriving the predictive estimator using Generalized Cross-Validation (GCV ) ([6]; Section 4.3 of
[7]; [8]), and the characteristics of this estimator are investigated. The fourth section derives a
method of producing the predictive estimator based on the parametric bootstrap method, and its
features are examined using numerical simulations. The fifth section provides a technique for using
the predictive estimator and maximum likelihood estimator differently.

2 Predictive Estimator for Simple Regression

The variates x and y are described as follows:

y = α+ βx+ ϵ,

where x is a predictive variable and y is an objective variable. ϵ is a random error obeying N(0, σ2)
(normal distribution with mean 0 and variance σ2). α and β are constants called the intercept
and the gradient, respectively. It is assumed that n sets of data (x1, y1), (x2, y2), . . . , (xn, yn) are
available, and these data are given by the regression equation above. We may assume

∑n
i=1 xi = 0

without loss of generality. Hence, we use this assumption hereafter.

Now, the following equation holds for the available data:

yi = α+ βxi + ϵi, i = 1, 2, . . . , n, (2.1)

where ϵi is a realization of ϵ. Eliminating errors from {yi} yields {ỹi}, which are the true values
corresponding to {yi}. Then, we have

ỹi = α+ βxi, i = 1, 2, . . . , n.

Using the n sets of data (x1, y1), (x2, y2), . . . , (xn, yn), the estimates of α and β given by the least-
squares method are denoted by α̂ and β̂. The least-squares estimates (ŷ) are written as

ŷ = α̂+ β̂x.

The relationship
∑n

i=1 xi = 0 leads to the following equation (e.g. page 13 in [9]):

α̂ =

∑n
i=1 yi

n
, β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

. (2.2)
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The estimate corresponding to each {yi} is

ŷi = α̂+ β̂xi.

Hence, the third variance gives the estimate of σ2 (i.e. σ̂2):

σ̂2 =

∑n
i=1(yi − ŷi)

n− γ
, (2.3)

where γ is defined as

γ = n

(
1− n− q − 3

n+ q + 1

)
,

for q = 1 (because simple regression is considered here). Derivation of γ above is described in
[1, 2].The hat matrix for Eq. (2.2) is (e.g. page 134 in [9]):

H = X(XtX)−1Xt.

X and y are written as

X =


1 x1

1 x2

...
...

1 xn

 ,

y = (y1, y2, . . . , yn)
t.

Now, let us assume that {ϵ∗i } (1 ≤ i ≤ n) are errors which are independent of {ϵi} and obey
N(0, σ2). Then, {ỹi + ϵ∗i } (1 ≤ i ≤ n) are treated as future data. The estimate (y+) which fits this
future data well is represented as

y+ = α̂+ ρβ̂x. (2.4)

Although, ρ is ofted used as a correlation coefficient, this ρ is not related to the correlation coefficient.
As the estimates {α̂ + β̂x} fit the available data well, we assume that slightly different estimates
could fit the future data well. In [10], it is assumed that the following gives a good fit to the true
value:

y+ = ρα̂+ ρβ̂x. (2.5)

That is, the constant term is multiplied by ρ. Furthermore, [11] discusses the use of cross-validation
for this sort of estimation in simple regression and multiple regression, although the value of the
constant term is adjusted somewhat differently than in Eq. (2.5). However, Eq. (2.4) is adopted
here to ensure addition invariance for the value of the objective variable and consistency with [4].

Then, ρ̂ is obtained to minimize the following value by adjusting ρ:

erρ =

n∑
i=1

(ỹi + ϵ∗i − α̂− ρβ̂xi)
2, (2.6)

where {ỹi + ϵ∗i } are future data. The expectation of Eq. (2.6) with respect to {ϵ∗i } gives

E∗[erρ] = E∗
[ n∑
i=1

(ỹi + ϵ∗i − α̂− ρβ̂xi)
2

]

= σ2 +

n∑
i=1

(ỹi − α̂− ρβ̂xi)
2. (2.7)
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The value of ρ which minimizes the above equation also minimizes the expectation of the sum of
squares between the estimates given by the regression equation and the future data. The resultant
ρ gives the predictive estimator.

The minimization of E∗[erρ] defined by Eq. (2.7) is equivalent to that of E∗[erρ]−σ2 defined below:

E∗[erρ]− σ2 = E∗
[ n∑
i=1

(ỹi + ϵ∗i − α̂− ρ̂β̂xi)
2

]
− σ2

=

n∑
i=1

(ỹi − α̂− ρ̂β̂xi)
2.

The estimates which minimize the above value also minimize the Mean Squared Error (MSE):
the expectation of the sum of squares of the difference between estimates given by the regression
equation and the true values. Hence, in this problem, the predictive estimator is identical to the
estimator that minimizes MSE. The James–Stein estimator ([12, 13]) is a well-known example
that minimizes MSE, although there are no reports of the James–Stein estimator being applied to
simple regression.

3 Predictive Estimator Given by GCV

To minimize E∗[erρ] (Eq.(2.7)), the minimization of the following GCV is a possible strategy:

GCV =

∑n
i=1(yi − y+

i )2

n ·
(
1−

∑n
i=1[H

∗]ii

n

)2 , (3.1)

where H∗ is written as

H∗ = DH, (3.2)

and D is a diagonal matrix in which the diagonal elements are
{ α̂+ ρβ̂xi

ŷi

}
(1 ≤ i ≤ n); this setting

leads to Eq. (2.4).

In optimizing ρ so as to minimize GCV defined in Eq. (3.1), the resultant simple regression equation
is considered to be optimal in terms of prediction accuracy. The value of ρ given by this method is
denoted as ρ̂gcv.

β

F
re

qu
en

cy

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
10

20
30

40
50

Fig. 1. Histogram of β̂ obtained using 500 simulation data
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To examine how this method performs, the following numerical simulation was conducted. Firstly,
the number of data (n) in Eq. (2.1) was set to 21, and the following values were assigned: {xi} =
{−10,−9,−8, . . . , 10}. Furthermore, α = 0 and β = 0.2 were set, and {ϵi} were assumed to be
realizations of N(0.0, 52) (normal distribution with mean 0.0 and variance 52). A total of 500 sets of
data were generated by altering the initial pseudo-random values. For each dataset, β̂ was estimated
using Eq. (2.2). A histogram of the distribution of the resulting β̂ is shown in Fig. 1.
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Fig. 2. Histogram of the distribution of {ρ̂gcv} (left). Histogram of the

distribution of {ρ̂gcvβ̂} (right)

Next, ρ was set to one of {−10,−9.95, 9.9, . . . , 10}(401 values), and ρ was derived using GCV
defined in Eq. (3.1). A histogram of the resulting {ρ̂gcv} is shown in Fig. 2 (left). These values are
multiplied by {β̂} to obtain {ρ̂gcvβ̂}. A histogram of {ρ̂gcvβ̂} is shown in Fig. 3(right).
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Fig. 3. Histogram of values of erlike (left). Distribution of values of ergcv (right)

The prediction error given by the regression coefficients derived using the maximum likelihood
method is defined as

erlike =
n∑

i=1

(ỹi − α̂+ β̂xi)
2. (3.3)

The distribution of the values of erlike given by 500 numerical simulations is illustrated in Fig. 3
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(left). The mean of these erlike values is 0.0998.

Moreover, the prediction error yielded by the optimal ρ in terms of GCV (i.e. ρ̂gcv) is defined as

ergcv =

n∑
i=1

(ỹi − α̂+ ρ̂gcvβ̂xi)
2.

The distribution of ergcv given by 500 numerical simulations is shown in Fig. 3(right). In Fig. 3,
six values greater than 5 have been eliminated (6.2243, 7.3938, 7.6779, 9.1003, 11.4130, 22.9210).
The mean of the ergcv values is 0.5072.

Therefore, the prediction error given by the simple regression equation derived using GCV is far
higher than that derived using the maximum likelihood method. This result seems to reflect the
fact that optimization using cross-validation gives estimates with a large variance (e.g. [14]). Thus,
even if ρ is optimized in terms of prediction accuracy, the resulting estimates are less reliable for
making predictions because of the high variance of the optimized ρ.

4 Predictive Estimator Given by Parametric Bootstrap
Method

The numerical simulation in the previous section indicates that, even if a predictive estimator is
intended to reduce the prediction error and the parameters in the estimator are optimized in terms
of prediction accuracy, the resulting estimator does not always outperform the maximum likelihood
estimator. However, GCV is not the only tool for optimizing the parameters contained in predictive
estimators, and other approaches can be used. Thus, the application of the parametric bootstrap
method is described below.

The value of ρ that minimizes Eq. (2.7) (i.e. ρ̂) is written as (page 33 in [9]):

ρ̂ =

∑n
i=1 ŷiỹi∑n
i=1 ŷ

2
i

, (4.1)

where the {ỹi} do not contain errors. That is, these are the unknown true values. Then, the {ŷi}
are used as approximations of {ỹi}. Next, {ŷi} in Eq. (4.1) are replaced with {ŷ∗

i } defined as

ŷ∗
i = H∗y∗

i ,

where H∗ is defined in Eq. (3.2). The {y∗
i } are written as

y∗
i = ŷi +

√
σ̂2ui,

where {ui} (1 ≤ i ≤ n) are the errors, which obey N(0, 1).

Using these equations, Eq. (4.1) is approximated as

ρ̂ ≈
∑n

i=1 H
∗y∗

i ŷi∑n
i=1(H

∗y∗
i )

2
.

As the {ui} are random, the value of ρ obtained by taking the expectation with respect to {ui} is
denoted as ρ̂boot:

ρ̂boot = E{ui}
[
ρ̂
]

= E{ui}

[∑n
i=1 H

∗y∗
i ŷi∑n

i=1(H
∗y∗

i )
2

]

= E{ui}

[ ∑n
i=1 H

∗(ŷi +
√
σ̂2ui)ŷi∑n

i=1

(
H∗(ŷi +

√
σ̂2ui)

)2
]
. (4.2)
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In the actual estimation, Eq. (4.2) is approximated as

ρ̂boot =
1

K

K∑
k=1

( ∑n
i=1 H

∗(ŷi +
√
σ̂2uik)ŷi∑n

i=1

(
H∗(ŷi +

√
σ̂2uik)

)2
)
, (4.3)

where {uik} (1 ≤ i ≤ n) are the errors, which obey N(0, 1). K is set so that ρ̂boot is almost
independent of the initial value of the pseudo-random numbers which generate {uik}.
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Fig. 4. Histogram of {ρ̂boot} (left). Histogram of {ρ̂bootβ̂} (right)

Fig. 5. Histogram of values of erboot

Using the results of the numerical simulation in the previous section, ρ̂boot was calculated using
Eq. (4.3) for K = 200. The distribution of the resulting ρ̂boot is shown in Fig. 4(left), and the
distribution of ρ̂bootβ̂ is shown in Fig. 4(right).

The prediction error given by this result is defined as

erboot =

n∑
i=1

(ỹi − α̂+ ρ̂bootβ̂xi)
2. (4.4)

The distribution of erboot is illustrated in Fig. 5. The mean of erboot is 0.0967. This is less than
that given by the maximum likelihood method (= 0.0998). Therefore, the predictive estimator
given by this method has the potential to outperform the maximum likelihood estimator in terms
of prediction accuracy.
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Fig. 6. erlike (⃝) and erboot (△) when β is set to be one of {0.05, 0.1, 0.15, . . . , 1}

However, this method does not always give better results than those of the maximum likelihood
estimator from the aspect of prediction accuracy. For example, Fig. 6 illustrates the values of
erlike and erboot when β was set to one of 20 values: {0.05, 0.1, 0.15, . . . , 1}; the other settings
were the same as in the above numerical simulations. These results indicate that when β is less
than 0.225, the prediction error provided by the predictive estimator is less than that given by
the maximum likelihood estimator. Additionally, the difference between the two prediction errors
peaks at β = 0.45 and then gradually becomes smaller, although the relationship between the two
prediction errors is not reversed (this is not fully guaranteed by the limited number of simulations
though). Hence, a threshold (such as β = 0.225 in this example) should be derived to determine
whether to use the maximum likelihood estimator or a predictive estimator.

5 Distinct Usage of Predictive Estimator and Maximum
Likelihood Estimator

Fig. 6 indicates that the predictive ability of the predictive estimator based on the parametric
bootstrap method can be inferior to that of the maximum likelihood estimator; it is data dependent.
Estimations with high predictive ability are to be expected if the data is represented using some
statistics which prefer a predictive estimator above a certain threshold; otherwise, the maximum
likelihood estimator is adopted. These statistics should choose the maximum likelihood estimator
when the value of β̂ is large and choose a predictive estimator if the value of β̂ is small. The ∆
statistic [4] has been defined for this purpose:

∆ =

√
var(β̂)

|β| , (5.1)

where var(β̂) denotes the variance of β̂, |β| denotes the absolute value of β, and var(β̂) is defined
as (e.g. page 14 in [9]):

var(β̂) =
σ2∑n

i=1(xi − x̄)2
,

where x̄ is the mean of {xi}. Although Eq. (5.1) is derived intuitively, numerical simulations prove
its validity [4]. Because σ2 is the true value (in the population) of the error variance, σ2 should
be replaced with σ̂2 (Eq. (2.3)). Then, var(β̂) should be replaced with v̂ar(β̂). When the result is
represented as ∆̂, we have

∆̂ =

√
v̂ar(β̂)

|β̂|
, (5.2)
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where v̂ar(β̂) is written as

v̂ar(β̂) =
σ̂2∑n

i=1(xi − x̄)2
.
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Fig. 7. Relationship between ∆̂ and d in the first numerical simulation (the

dashed line indicates d = 250) (left). Relationship between ∆̂ and d in the

second numerical simulation (right)
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Fig. 8. Relationship between ∆̂ and d in the third numerical simulation (the

dashed line indicates d = 250) (left). Relationship between ∆̂ and d in the

fourth numerical simulation (right)

To examine whether ∆̂ (Eq.(5.2)) works as an index for selecting when to use the maximum
likelihood estimator and a predictive estimator, four numerical simulations were conducted.

The first numerical simulation assumed that the number of data (n) was 21 and {xi} = {−10,−9,
−8, . . . , 10}. Furthermore, α = 0 and β = 0.2 were set, and {ϵi} were taken as realizations of
N(0.0, σ2) (normal distribution with mean 0.0 and variance σ2). σ2 was set to one of {5, 10, 15, . . . , 50}.
By altering the initial value of the pseudo-random numbers, 500 sets of data were generated.
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ρ̂boot was calculated using Eq. (4.3) with K = 200. Using the results of these calculations, erboot
(Eq. (4.4)) was derived. erlike (Eq. (3.3)) was calculated using the maximum likelihood method.
The results in Fig. 5(left) show the relationship between ∆̂ (Eq. (5.2)) and d. The value of d
indicates the number of simulation data satisfying erlike > erboot; the total number of simulation
data was 500. For example, d = 200 means that 200 out of 500 sets of data indicate that the
predictive estimator outperforms the maximum likelihood estimator.

The second numerical simulation used n = 41 and {xi} = {−20,−19,−18, . . . , 20}. Again, α = 0
and β = 0.2 were set, and {ϵi} were taken as realizations of N(0.0, σ2). σ2 was set to one of
{40, 80, 120, . . . , 400}. By altering the initial value of the pseudo-random numbers, 500 sets of data
were generated. ρ̂boot was calculated with K = 200. Using these results, erboot (Eq. (4.4)) was
calculated. erlike (Eq. (3.3)) was derived using the maximum likelihood method. The results in
Fig. 5(right) show the relationship between ∆̂ (Eq. (5.2)) and d.

The third numerical simulation used n = 31 and {xi} = {12 − ξ̄, 22 − ξ̄, 32 − ξ̄, . . . , 312 − ξ̄};
ξ̄ =

1

31

∑31
i=1 i

2). We again set α = 0 and β = 0.2 and took {ϵi} as realizations of N(0.0, σ2). σ2

was set to one of {20, 000, 40, 000, 60, 000, . . . , 200, 000}. By altering the initial value of the pseudo-
random numbers, 500 sets of data were generated. ρ̂boot was calculated with K = 200. Using
these results, erboot (Eq. (4.4)) was calculated. erlike (Eq. (3.3)) was derived using the maximum
likelihood method. The results in Fig. 5(left) show the relationship between ∆̂ (Eq. (5.2)) and d.

The fourth numerical simulation used n = 31 and {xi} = {
√
1 − ξ̄,

√
2 − ξ̄,

√
3 − ξ̄, . . . ,

√
31 − ξ̄};

ξ̄ =
1

31

∑31
i=1

√
i. Once again, α = 0 and β = 0.2 were set, and {ϵi} were taken as realizations of

N(0.0, σ2). σ2 was set to one of {0.3, 0.6, 0.9, . . . , 3}. By altering the initial value of the pseudo-
random numbers, 500 sets of data were generated. ρ̂boot was calculated with K = 200. Using
these results, erboot (Eq. (4.4)) was calculated. erlike (Eq. (3.3)) was derived using the maximum
likelihood method. The results in Fig. 5(right) show the relationship between ∆̂ (Eq. (5.2)) and d.

Figs. 7 (left)(right) and 8(left)(right) show that ∆̂ = 1.05 can be used as a rough threshold to
determine the relative merit of the predictive estimator and the maximum likelihood estimator.
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Fig. 9. Left: Number of simulation data satisfying ∆̂ > 1.05 from 10, 000 sets of

simulation data generated using the same conditions as Fig. 5(left). Right:

Number of simulation data satisfying ∆̂ > 1.05 from 10, 000 sets of simulation

data generated using the same conditions as Fig. 5(right)
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Fig. 10. Left: Number of simulation data satisfying ∆̂ > 1.05 from 10, 000 sets of

simulation data generated using the same conditions as Fig. 5(left). Right:

Number of simulation data satisfying ∆̂ > 1.05 from 10, 000 sets of simulation

data generated using the same conditions as Fig. 5(right)

We then generated 10, 000 sets of simulation data under the same conditions as in the first numerical
simulation. ∆̂ (Eq. (5.2)) was calculated for each dataset, and the number of datasets for which
∆̂ > 1.05 was counted. The relationship between these counts and ∆̂ is shown in Fig. 9(left). When
the simulation data have a population parameter satisfying ∆̂ < 1.05, ∆̂ > 1.05 holds in less than
half of the datasets. Moreover, when the simulation data have a population parameter satisfying
∆̂ > 1.05, ∆̂ > 1.05 holds in more than half of the datasets.

Thus, when we use the predictive estimator and the maximum likelihood estimator on the basis of
the magnitude relationship between ∆̂ and 1.05, appropriate use of the estimator is realized with a
probability of greater than 0.5.

With 10, 000 sets of simulation data generated under the same conditions as in the second numerical
simulation, we obtain Fig. 9(right).

Generating 10, 000 sets of simulation data under the same conditions as in the third and fourth
numerical simulations gives Fig. 10 (left), (right), respectively.

These simulations show that we can use a predictive estimator or the maximum likelihood estimator
according to the magnitude relationship between ∆̂ and 1.05.

6 Conclusions

To construct a predictive estimator, the parameter values of a function with data as its arguments
are optimized in terms of prediction accuracy. This function may be, for example, the product of
a constant and the maximum likelihood estimator. However, the resultant estimator is not always
suitable for practical use because, if the parameters in the predictive estimator depend on the data,
a large variance of the parameters would augment the variance of the predictive estimator. In the
example used in this paper, ρ is the only parameter in the predictive estimator and the variance
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of ρ is not 0 because it depends on the data. Hence, the prediction error given by the predictive
estimator could surpass that of the maximum likelihood estimator.

Note that parameter estimation of the exponential distribution is a particular case, and should not
be generalized. That is, a possible predictive estimator for this setting is obtained by multiplying(
1− 1

n

)
(n is the number of data) by the maximum likelihood estimator [15]. The variance of this

predictive estimator is obviously less than that of the maximum likelihood estimator. Therefore,
this predictive estimator is superior to the maximum likelihood estimator in terms of prediction
accuracy.

The example of the simple regression using GCV in section 3 shows that the variance given by the
GCV -based method is large. Hence, in most cases, the prediction error produced by the predictive
estimator with the resulting ρ is inferior to that given by the maximum likelihood estimator.
This indicates that the specification of the form of a predictive estimator and the optimization
of parameters in the estimator are not good enough for our purpose. Therefore, the prediction error
of each estimator should be quantified by taking account of the variance of the resulting parameters.
In light of this consideration, we should choose the best predictive estimator. Furthermore, if the
predictive ability of the selected predictive estimator outperforms that of the maximum likelihood
estimator, the use of the predictive estimator should be recommended.

Note that the relative merits of a predictive estimator and the maximum likelihood can depend
upon the appearance of the data. Therefore, statistics such as ∆̂ (Eq.(5.2)) are needed to quantify
the appearance of the data in order to choose between the predictive estimator and the maximum
likelihood estimator. If we have more than one predictive estimator in mind, such statistics can be
used to choose among these predictive estimators on the basis of the appearances of the data.

Moreover, we still do not have a theorem that gives the lower bound of variance for predictive
estimators and the James–Stein estimator, whereas we have the Cramér–Rao inequality for unbiased
estimators (e.g. page 181 in [16]). Hence, we cannot conclude that a specific predictive estimator
is the best in terms of the variance or prediction error for the given data.

Therefore, even if a good predictive estimator for some specific data is known, we cannot deny
the possibility that another predictive estimator would give superior predictions. Hence, a new
predictive estimator could be better than the predictive estimators obtained so far in terms of
prediction accuracy.

The numerical simulations reported in this paper show how this methodology works in simple
regression. We have shown that, although the use of GCV is typical for simple regression from
the perspective of prediction, this method does not always give a practical predictive estimator.
Moreover, it has also been revealed that when the parametric bootstrap method is used, the
relative merits of the maximum likelihood estimator and the predictive estimator depend upon
the characteristics of the data. To determine when to use the maximum likelihood estimator or
the predictive estimator, ∆̂ (Eq.(5.2)) is a promising tool. Better statistics, however, could lead
to more appropriate use of the two estimators. Thus, we conclude that estimations which take
account of predictive estimators will differ appreciably from the conventional estimations given by
the maximum likelihood estimator and unbiased estimators.

Predictive estimators will be built for various statistical estimation scenarios. For this purpose, the
characteristics of predictive estimators that reflect the features of the data should be investigated
from all perspectives. This would allow practical predictive estimators to be selected and compared
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with the maximum likelihood estimator in terms of prediction accuracy. Estimations based on this
strategy would clarify the overall quality of the available data, which traditional methods have not
been able to do.
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