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ABSTRACT 
 
Mangrove forests form one of the primary coastal ecosystems in the tropical and subtropical 
regions of the world with a high biodiversity value. Mangrove species are uniquely adapted to the 
Nigerian coasts, providing numerous biodiversity and ecosystem services and supporting coastal 
livelihoods within the Niger Delta. The gradual decline in the size of the Mangrove ecosystem, due 
to Nipa fruticans infestation, has spanned a period of over 40 years. So far, no quantitative estimate 
of loss of these Mangrove habitats has been carried out. This is as a result of the closeness in 
spectral characteristics between Nipa and different species of Mangrove and the difficulty of 
differentiating Nipa using earlier remote sensing products such as Landsat, JERS, Radarsat, SPOT 
and ERS. To address this gap, new satellite imagery was used to extract both textural and spectral 
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information. This imagery, Pleiades and GeoEye-2, contained 16 high-resolution spectral bands 
that capture information in the visible and near-infrared (VNIR)for the first time. The study was 
validated with groundtruth surveys leading to the differentiation of Mangrove and Nipa in an area of 
interest measuring 162 sq. km along the Andoni River Estuary. From the results, major threats of 
Nipa to Biodiversity of the Mangrove were compiled. A ratio of 1:24 of Mangrove to Nipa within an 
area of over 16,200 hectares is indicative of a very high threat that can lead to extinction of 
Mangrove species. This TEXVEG tool’s capacity to determine loss of Mangrove species from Nipa 
infestation across the Niger Delta landscape will help environmental decision makers provide 
guidance for biodiversity conservation of Mangrove species. This technique has great potential for 
mitigating economic and environmental consequences for coastal communities, especially in areas 
with low Mangrove diversity and high Mangrove area and species loss. 
 

 
Keywords: High resolution satellite imagery; mangrove; Nipa; differentiation; TEXVEG; classification;  

texture; NDVI; Nigeria; estuary. 

 
1. INTRODUCTION 
 
The Biodiversity potential and ecosystem 
services that Mangroves offer are well 
documented in literature. Mangroves are 
considered to behave like a natural barrier 
against ocean dynamics along the shoreline. 
Their ability to protect shoreline and inland areas 
from natural hazards (hurricanes, cyclones, 
tsunamis) was recently discussed [1,2,3,5,6]. 
They can break the force of waves and help to 
prevent coastal-erosion processes [7,8,9,10].  
Mangrove ecosystems support aquatic food 
chains and form habitats for marine fauna, such 
as juvenile crabs, prawns, offshore fish, reef fish, 
and larvae [11,12,13,14]. Terrestrial fauna, such 
as birds, insects, mammals, and reptiles, and 
associated flora, such as fungi, algae, and sea 
grass, build rich communities with Mangroves 
[15,16]. Mangroves maintain water quality by 
acting as biological filters, separating sediments 
from nutrients in polluted coastal areas 
[17,18,19]. Globally Mangrove loss is affected by 
the conversion of Mangrove areas into shrimp 
farms [20,21,22,23]. This portion accounts for a 
global Mangrove loss of more than 50% [19,24]. 
Other globally known factors include industrial 
lumber and wood chip operations. Increasing 
human populations, industrialization, and 
agriculture have caused dramatic forest loss as 
well natural forces, such as tsunamis, cyclones. 
These reductions in Mangrove-related services 
and product delivery impose serious limitations 
on the residents.  
 
In the Niger Delta, the leading cause of 
Mangrove loss is from Nipa palm which had 
become a major invasive species for over 35 
years, overtaking the Mangrove at Imo River, 
parts of Bonny River, Opobo and Qua Iboe River 
and their tributaries [25,26,27,28]. A basic 

prerequisite for any assessment of the rate and 
magnitude of Nipa invasion is the establishment 
of an intensive field campaign. Such an intensive 
field campaign for the size of the Mangrove/Nipa 
ecosystem in the Niger Delta is hindered by the 
inaccessibility of the large area and the 
prohibitive cost associated with such an effort.  
Remotely sensed information therefore remains 
the only cost-effective method that can be used 
to obtain facts and data on the condition and 
extent of threat to the Biodiversity of Mangrove 
ecosystems by Nipa. Remote sensing has been 
widely proven to be essential in monitoring                
and mapping highly threatened Mangrove 
ecosystems [29,30,31,32,33,34,35]. Many 
research studies on this subject have been 
carried out around the globe. Tropical and 
subtropical coastal Mangroves are among the 
most threatened and vulnerable ecosystems 
worldwide [24]. The habitat area loss during the 
last two decades is estimated to be about 36% of 
the total global Mangrove area [32]. Because 
Mangrove ecosystems have an outstanding 
relevance ecologically and economically, there is 
an urgent demand for conservation and 
restoration measures.  
 
However, efforts to determine the magnitude of 
change has not been successful as Mangroves 
are difficult to differentiate from Nipa by remote-
sensing based approach. First, Nipa and 
Mangrove both grow in monotypic stands and 
more frequently, completely interspersed with 
each other. Also, multispectral response between 
the two is not so different in Visible/Near Infra-
Red (VNIR) imagery such that a distinct spectral 
signature for each could simply be derived. 
Trying to distinguish between the two species, 
based entirely on spectral characteristics, using 
0.5 to 2-meter pixels, has not been successful.  
Secondly, texture is not enough to isolate either 
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of the species from other categories because of 
several factors, such as growth form, density, 
and stand height. Remote sensing applications 
for Mangrove mapping at the fundamental level 
are already well established but, surprisingly, a 
number of advanced remote sensing applications 
have remained unexplored for the purpose of 
discrimination of Nipa and Mangrove mapping at 
a finer level. Currently, imagery texture at the 0.5 
meter has been found to be a good discriminator 
using imagery products such as Geo-eye 1 and 
Pleiades. Consequently, the aim of this paper is 
to unveil the potential of some of the unexplored 
remote-sensing techniques for discrimination of 
Nipa and Mangroves. Specifically, this paper 
focuses on improving class separability between 
Mangrove and Nipa species in order to provide 
an automatic method of evaluating the 

magnitude of Nipa invasion within the Niger Delta 
without the extremely costly and inconvenient 
method of traditional field survey.  
 

2. STUDY AREA 
 
The study area of approximately 162 sq km was 
chosen at the eastern portion of the Andoni River 
as shown in Fig. 1. The area is populated by the 
Andoni communities such as Asarama, Amanku, 
and Ama Sunday. Most of these communities are 
situated adjacent to dense Nipa areas. Many 
intersecting creeks, which drain the area into the 
Andoni River through Kelele creek, are tidally 
inundated diurnally from the Atlantic Ocean. The 
River serves as a major transportation route for 
many communities located along its bank, many 
of whom are fisher folks. 

 

 
 

Fig. 1. Study area 
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3. METHODOLOGY 
 

3.1 Remote Sensing Data 
 

Pleiades imagery which provides a spatial 
resolution of 0.5m in the Panchromatic band was 
acquired in January 2014. Imagery products 
were delivered at a certified 50-cm panchromatic 
and 2-m multispectral with wavelengths of 
Panchromatic – 470 to 830; Blue (B0) – 430 to 
550 ;  Green (B1) – 500 to 620;  Red (B2) – 590 
to 710 and NIR (B3) – 740 to 940.  
Orthorectification, using MDA Information 
Systems proprietary digital terrain model, was 
performed to control for topographic distortion, 
calibration of the pixel values against sun angle 
differences and other astronomical phenomena 
such as differences in distance between the 
Earth and Sun. The final process used the 
empirical radiometric calibration coefficients to 
transform the data into reflectance values. 
 
A set of control points was acquired as training 
sites in February 2014 for classification and 
validation to cover the study area. The imagery 
was pansharpened using the Wavelet 
Transformation algorithm at 0.5 meter resolution 
in order for the imagery to maintain as much of 
the original spectral radiometry as possible for 
algorithms to produce the most meaningful 
results. The imagery was classified in a hybrid 
object-oriented CART-based classification which 
involved combining image segmentation with the 
use of a maximum likelihood classifier at the 
pixel level with four classes recorded as shown in 
Table 1. After a filter was run to remove pixel 
speckles.  
 

Table 1. Land cover classification scheme 
 

 
 

Training points were selected and used to 
identify land cover classes including Urban, 
Herbaceous, Trees, Shrubs, and Grass. These 
additional categories were identified to help 
isolate the Nipa and Mangrove features. 

A texture and vegetation algorithm TEXVEG 
layer which is pixel-based was created and 
applied to the pansharpened imagery. This 
allowed the imagery to be reordered so that both 
chlorophyll and texture factors contribute to a 
layer which was threshold processed to 
distinguish the target features from themselves 
as well as other non-target features. TEXVEG is 
an algorithm which uses both texture and 
chlorophyll production variables to distinguish the 
two species and was run on pan-merged hi-res 
(~0.5m) data.  
 

TEXVEG is represented as: 
 

(T * V) / i                                                     (1) 
 

(Tsd *NDVI)/C                                              (2) 
 
Where: 
 

T is a texture transformed image using 
standard deviation filter 
V is a vegetative health transformed image 
i is a coefficient 
NDVI is a vegetative health transformed 
image (Normalised Difference Vegetation 
Index) 
C is a coefficient used to scale the output. 

 
The classified imagery was taken to the field 
from 21st -23rd September 2015 and 
groundtruthed to capture coordinates of areas 
classified as Mangrove and Nipa. Geotagged 
photos were taken at each location. The GPS 
coordinates and the photographs were used in 
an expert classification to validate image content 
interpretation according to the landcover types 
identified from training points during image 
processing.  Kappa Coefficients were calculated 
to measure consistency on each of the land 
cover results between the raw and final 
classifications.  
 

4. RESULTS  
 
Tables 2 to 2.2 show the overall accuracy and 
consistency measure of the landcover type 
separation between Mangrove and Nipa. Table 2 
shows an overall accuracy of 93% for the seven 
classes of landcover and Table 2.1 shows an 
overall accuracy of 95% for the edited classes of 
Mangrove and Nipa. A summary of the overall 
accuracy in Table 2.2 shows an overall accuracy 
of 90%-93% and a Kappa Statistic of 87%-91%. 
This indicates a good agreement between 
thematic maps generated from image and 
reference data. 
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Table 2. Classification accuracy assessment for seven classes (7) of land cover 
 

 
 

Table 2.1. Classification accuracy assessment for Nipa and mangrove land cover 
 
Classification/Validation Nipa Mangrove Water Other Totals Users 

accuracy 

Nipa 144 3 0 4 151 0.953642 

Mangrove 4 3 0 0 7 0.428571 

Water 1 0 212 13 226 0.938053 

Other 7 4 1 277 289 0.958478 

Total 156 10 213 294 636 correct 

Producer's accuracy 0.923077 0.3 0.995305 0.942177  673 (total) 

  Overall accuracy = 0.9450222288  
  Kappa Coeff= 91.6%  

 
Table 2.2. Summary of the land cover classification accuracy assessment 

 
Classification version Overall accuracy Kappa Nipa Mangrove 
Asarama, 7 classes, edited  0.931649331  0.909298  0.953333  0.5  
Asarama, 7 classes, raw  0.907875186  0.877593  0.860606  0.583333333  
Asarama, 4 classes, edited  0.945022288  0.915932  0.953642  0.428571429  
Asarama, 4 classes, raw  0.922734027  0.883109  0.860606  0.583333333  

 
Fig. 2 shows the TEXVEG results of Mangrove 
and Nipa within the training sites of the study 
area.  The multicolor and gray scale images 
show selected zones of analysis. The highest 
values (green pixels) are the Nipa and the 
Mangrove. Both the Nipa and Mangrove features 
are growing interspersed. Nevertheless, it is 
evident in the mid-gray pixels speckled with 
slightly lighter gray pixels. The darker mid-gray 
pixels are Nipa trees and the lighter speckle 
represent Mangrove trees. Mangrove is more 
textured while Nipa is smoother. Also, Mangrove 
appears to have higher chlorophyll content                  
per pixel. As a result, Nipa is light-gray                        
and Mangrove is mid-gray in the TEXVEG,         
Nipa. 

5. DISCUSSION 
 

The resulting maps show the TEXVEG 
classification used in this study accurately 
assigned pixels to the Mangrove and Nipa 
classes. This result demonstrates that the 
discrimination mapping approach of spectral and 
textural techniques using Pleiades, for Mangrove 
and Nipa, has promising results. It validates the 
importance of high resolution images which 
contribute higher spatial resolution to 
classification accuracy. Overall, the dataset and 
algorithms and field validation mapped the target 
classes with high accuracy. The study has 
therefore shown that the combination of the 
texture and vegetation indices (TEXVEG) 
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Nipa 143 3 0 0 0 4 0 150 0.95333 

Mangrove 4 4 0 0 0 0 0 8 0.5 

Water 1 0 212 6 0 5 0 224 0.94643 

Urban 0 0 0 38 1 0 0 39 0.97436 

Forest 1 3 0 0 52 0 0 56 0.93857 

Wetland 7 0 1 1 1 176 4 190 0.92632 

Grass 0 0 0 2 0 2 2 6 0.33333 

Total 156 10 213 47 54 187 6 627 correct 

Producer's Accuracy 0.91667 0.4 0.99530516 0.80851064 0.96296296 0.94118 0.33333 673 (total) 

Overall Accuracy = 0.931649331 
 Kappa Coeff = 90.9% 
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algorithm has the capacity to leverage 
chlorophyll differences in the plants in 
combination with texture to distinguish between 
Nipa and Mangrove using high resolution 
imagery. 
 
The use of spectral information and Normalized 
Difference Vegetation Index (NDVI) has been 
valuable in many studies in the discrimination of 
Mangrove and other vegetation species 
[36,37,38,39,40,41,42,43]. 
 
In order to improve the use of spectral 
information for better performance of vegetation 

classification, contextual techniques beyond per- 
pixel spectral information have led to many other 
vegetation classification methods [44,45,46]. 
However, due to the unique spectral signature 
conferred on each vegetation by its chemistry, 
structure and moisture content, discrimination of 
species has continued to seek for improved 
methods. Some early and recent studies have 
started focusing on texture in addition to spectral 
indices and reflectance characteristics 
[47,48,49,50]. Many of these have shown 
promise in increasing the classification accuracy 
for both vegetation heights and tree species. In 
an early study by Bunting, et al. [51] classification 

  

 
 

Fig. 2. TEXVEG image interpretation of Mangrove and Nipa 
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Fig. 3. Mangrove distribution within the study area 
 

 
 

Fig. 4. Nipa distribution within the study area 
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accuracies of tree species in forest vegetation 
were improved between 5-17% when textural 
information was combined with spectral 
information. The application of the principle of 
integrating textural information into the mapping 
process is opening new paths for extracting 
higher accuracies as in the present study 
between Mangrove and Nipa where the 
vegetation types have similar spectral responses. 
In the study, the kappa coefficient of 0.50 based 
on tonal averages was improved to 0.90 with the 
inclusion of the texture measure. This 
discrimination of Nipa from Mangrove is a 
significant study objective as it translates the 
findings into a Biodiversity conservation 
assessment tool. Thus, Nipa which is fast 
displacing mangroves [25,26,27,28], can be 
effectively monitored over large areas  in the 
three river systems of Imo River, Qua Iboe River 
and Cross River systems. In these wetland 
ecosystems, the valuation of ecosystems 
services with The Economics of Ecosystem             
and Biodiversity (TEEB) tool underscored                 
Nipa as low in value compared to the productive 
services conferred by the wetlands and tidal 
mudflats from mangroves being displaced. Nipa 
is deemed a “nuisance” species in the Niger 
Delta [52] because of the low range of social        
and economic values to the rural population. The 
study which was part of a Sustainable Livelihood 
project of Wetlands International in the Niger 
Delta has provided the potential to map the 
biodiversity conservation status of mangroves in 
areas under Nipa invasion. It provides a 
pioneering effort in the capacity to accurately 
assess the ecosystem services valuation of both 
mangrove and Nipa with its attendant 
socioeconomic implications.  

 
6. CONCLUSION 
 
The paper has shown that, using textural 
features that reveal differences in leaf 
morphology and spectral information and 
groundtruth, Nipa was distinguished for the first 
time from Mangrove. The second objective which 
is also significant was the indicative capacity to 
map the Biodiversity conservation status of the 
Mangrove species which is being aggressively 
displaced by the Nipa species.  
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