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Abstract 
 

A class of distribution-free tests based on U-statistics with its kernel being function of subsample quantiles is 
proposed for a two-sample scale problem. The proposed class of tests is a general class of tests that includes 
numerous members which explore information from the tails of the distributions and tests resistant to 
outliers. This class of tests includes many existing classes of tests as its subclasses. The distribution of the 
proposed class of tests is derived and its relevance is discussed. One of its members, which is resistant to 
outliers in �-sample is investigated in detail. 
 

 

Keywords: Two-sample; quantiles; asymptotic relative efficiency (ARE); null distribution; empirical power. 

 

1 Introduction 
 
Suppose ���, �� , … , ��	 and ���, ��, … , �
	 are two random samples respectively from absolutely continuous 

distribution functions ���	  and ��	 � � ���� , � � 0 . A two-sample scale problem under consideration is 

testing ��: � � 1 against ��: � � 1. 
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In statistical literature, we find numerous procedures for two-sample scale problem, U-statistics approach being 
one of the prominent procedures. Construction of distribution-free tests based on U-statistics is of prime focus in 
nonparametric inference as they are based on symmetric kernels that are functions of order statistics which are 
sufficient and complete for a given family of continuous distributions. This also implies that the U-statistics are 
uniformly minimum variance unbiased estimators (UMVUE). 
 
Many distribution-free tests based on U-statistics exist in the literature for two-sample scale problem. Tests due 
to [1,2,3,4] are some of the earlier tests designed based on the two-sample U-statistics. Also, [5-13] study this 
problem using U-statistics approach. The asymptotic properties of the U-statistics are discussed in [1]. Some 
more distribution-free tests proposed for two-sample scale problem that explore [9] are ��� due to [14], ��� and ��� due to [15], ��� and ��� due to [16], ��� due to [17] and ��  due to [18]. The test in [14] is based on the 
subsample medians and hence is resistant to the outliers in both the samples. The tests discussed in [15,16,17] 
are based on subsample extremes and extract information from the tails of the distribution from which samples 
are drawn. The test studied in [18] is resistant to outliers in the first sample (�-sample) and is based on the 
information from the right tail of the second sample (�-sample). A detailed study of these tests is also contained 
in [19]. 
 
In this paper, we propose a class of tests based on subsample quantiles, !",#�$, %	  for two-sample scale 
problem. This is a general class of tests that includes [2,3,9,14-18] as its subclasses. Also, it includes the classes 
of tests which are resistant to outliers in �-sample and extract information from tails of the distribution of �-
sample discussed in this paper. This class of tests is a U-statistic that is developed utilizing the kernel of U-
statistics given in [20]. 
 
The advantage of the proposed class of tests is that the researcher may use any subclass among the various 
subclasses available according to the nature of the information contained in the samples under consideration. 
 
The class of tests is proposed in section 2 and its distributional properties are discussed in section 3. In section 4, 
we discuss about the significance of the class along with one of its members. In section 5, the performance of !",#�$, %	 is studied and conclusions are recorded in section 6. 
 

2 Proposed Class of Tests 

 
In this section, we propose the class of tests !",#�$, %	 for testing ��: � � 1 against ��: � � 1. !",#�$, %	 is a 

two-sample U-statistics based on a symmetric kernel &�⋅	 being a function of ()* quantile of subsample of size $ and +)*  quantile of subsample of size % respectively drawn from �-sample of size , and �-sample of size -. 
The class of tests is defined as 
 

!",#�$, %	 � .�,$ � �-%�/0� 1  3 &��45 , �46 , … , �47 , �85 , �86 , … , �89	 (2.1) 

 
where 3 denotes the sum over all possible :�; <:
=< arrangements of � and � sample observations, 
 &���, … , �;; ?�, … , ?=	

� @    1     if  0 < ()*quantile of���L, … , �;L	 < +)*quantile of�?�L, … , ?;L	, �4 , ?8 � 0−1     if  +)*quantile of�?�0, … , ?;0	 < ()*quantile of���0, … , �;0	 < 0, �4 , ?8 < 0,0                                                                                                                      Otherwise
S (2.2) 

 T � 1,2, … , $, V � 1,2, … , %, $ and % are positive integers such that $ ≤ , and % ≤ -. 
 
That is, 
 

&���, ��, … , �; , ?�, ?�, … , ?=	 � @   1     TX 0 < ��Y	L < ?�Z	L , �4 , ?8 � 0−1    TX ?�Z	0 < ��Y	0 < 0, �4 , ?8 < 00                                 Otherwise S (2.3) 
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where ��Y	L  and ��Y	0  are [)*  order statistics (os) based on a subsample of size $ respectively from positive and 

negative observations of the �-sample. Similarly ?�Z	L  and ?�Z	0  are defined based on �-sample. 

 Here, [ � ] $(                     if $( is an integer_$(` + 1    if $( is not an integerS 
b � ] %+                             TX %+ Tb c- T-defe[_%+` + 1            TX %+ Tb -gd c- T-defe[S 
 
such that _$(` �_%+`	 is the largest integer smaller than or equal to $( �%+	. 
 
For all values of , and -, 2 ≤ $ ≤ , and 2 ≤ % ≤ -, !",#�$, %	 are distribution-free and their large values are 
significant for testing �� against ��. 
 !",#�$, %	 can be expressed in terms of ordered ranks alternatively. Following [20] we give the alternative form 

of !",#�$, %	 as 
 !",#h �$, %	 � �,$ � �-%� !",#�$, %	 

� 1 1 iT − 1[ − 1j .,L − T$ − [ / . k�4	L − Tb − V − 1/ . -L − k�4	L + T% − b + V + 1/Z0�
8l�

�m

4l�
− 1 1 iV − 1b − 1j i-0 − V% − b j i ��8	0 − V$ − [ + T + 1j i,0 − ��8	0 + V[ − T − 1 jY0�

4l�

n

8l�  
(2.4) 

 
where k�4	L :��8	L < and k�4	0 :��8	0 <  are respectively the ranks of ��4	L :��8	L < and ��4	0 :��8	0 < in the joint rankings of ��L, … , ��mL , ��L, … , �
mL  and ��0, … , ��n0 , ��0, … , �
n0  such that ���	L < ���	L < ⋯ < ���m	L  are os of positive � -

observations, ���	0 < ���	0 < ⋯ < ���n	0  are os of negative � -observations, ���	L < ���	L < ⋯ < ��
m	L  are os of 

positive � -observations, ���	0 < ���	0 < ⋯ < ��
n	0  are os of negative � -observations, , � ,L + ,0  and - � -L + -0. 
 

3 Distribution of pq,r�s, t	 

 
In this section, we derive the distributional properties viz. mean, null mean and asymptotic variance of the 
proposed class of tests. 
 
The mean of !",#�$, %	 is given by 
 u",# � vw!",#�$, %	x� yw0 < ��Y	L < ��Z	L x − yw��Z	0 < ��Y	0 < 0x

� z  {
� �|}�~	m ��	X���	m ��	X��	%� − z  �

0{ �}�~	n ��	X���	n ��	X��	%�
� 1 − $!�[ − 1	! �$ − [	! 1  =

8lZ i%T j z  {
� �2��	 − 1	8�2̅��		=08�2���	 − 1	Y0�

    :2�|��	<;0Y2X��	%� − $!�[ − 1	! �$ − [	! 1  =
8lZ i%T j z  �

0{ �2��		8

    :1 − 2��	<=08:2���	<Y0�:1 − 2���	<;0Y2X��	%�.

 

(3.1) 
 
Under ��: ���	 � ��	, the null mean of !",#�$, %	 is given by 
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u��,� � v��w!",#�$, %	x � 1 − 2$!�[ − 1	! �$ − [	! 1  =
8lZ i%V j ��V + [, $ + % − V − [ + 1	 (3.2) 

where ���, �	 � �� − 1	! �� − 1	!�� + � − 1	! . 
 
According to [1], !",#�$, %	  has asymptotic normal distribution with mean u��,�  and variance �",#�  as its 

limiting distribution with , + - � � → ∞ such that 0 < � � lim�→{ �� < 1. The mean of !",#�$, %	 is u��,�  

and the asymptotic variance �",#�  is given by 
 

�",#� � $����� + %����1 − �. (3.3) 

 

Here, ��� is given by 
 ��� � �g�_&���, … , �; ; ��, … , �=	, &���, �;L�, … , ��;0�; �=L�, … , ��=	`

� z  {
0{ y�_�0 < [)* os  ��, ��, … , �;	 < b)*  os  ���, … , �=		S

    −S�b)*  os ���, … , �=	 < [)*   os ��, ��, … , �;	 < 0	`2X��	%� − �u��,���

� z  {
� y��X��	%� + z  �

0{ y��X��	%� − 2 z  {
� y�X��	%� z  �

0{ y�X��	%� − �u��,��� ,
 

(3.4) 
 

where 
 y� � yw0 < [)*   os  ��, ��, … , �;	 < ��Z	x� yw0 < � < ��Z	; �� < ⋯ < �Y0� < � < ⋯ < �;0�x    +yw0 < �Y0� < ��Z	; � < �� < ⋯ < �;0�x    +yw0 < �Y < ��Z	; �� < ⋯ < �Y < ⋯ < �x� y�� + y�� + y��,

 

(3.5) 
 

y�� � 1  ;0�
4lY0� i$ − 1T j �2���	 − 1	4�2�|��		;0�04 �1 − 1  =

8lZ i%V j �2���	 − 1	8�2�|��		=08�, 
 

y�� � �[ − 1	 i$ − 1[ − 1j ���$ − [ + 1, [ − 1	 1  ;0�
4l;0YL� i$ − 1T j �2���	 − 1	;0�04:2�|��	<4

− 1  =
8lZ i%V j ��$ + % − V − [ + 1, V + [

− 1	 1  ;L=0�
�l;L=080YL� i$ + % − 1� j �2���	 − 1	;L=0�0�:2�|��	<�� 

 

and 
 

y�� � �$ − [	 i$ − 1[ − 1j ���[, $ − [	 1  ;0�
4lY i$ − 1T j �2���	 − 1	4�2�|��		;0�04 S

    S− 1  =
8lZ i%V j ��V + [, $ + % − V − [	 1  ;L=0�

�l8LY i$ + % − 1� j �2���	 − 1	��2�|��		;L=0�0�� . 
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Similarly, 
 y� � yw��Z	 < [)*   os  ��, ��, … , �;	 < 0x� yw��Z	 < � < 0; �� < ⋯ < �Y0� < � < ⋯ < �;0�x    +yw��Z	 < �Y0� < 0; � < �� < ⋯ < �;0�x    +yw��Z	 < �Y < 0; �� < ⋯ < �Y < ⋯ < �x.  

(3.6) 
 
Also, 
 ��� � �g�_&���, … , �;; ��, … , �=	, &��;L�, … , ��;; ��, �=L�, … , ��=0�	`

� z  {
0{ y�_�0 < [)*   os���, … , �;	 < b)*   os �?, ��, … , �=		S

    −S�b)*   os �?, ��, … , �=	 < [)*  os ���, … , �;	 < 0	`2X�?	%? − �u��,���

� z  {
� �y�h	�X�?	%? + z  �

0{ �y�h	�X�?	%? − 2 z  {
� y�hX�?	%? z  �

0{ y�hX�?	%? − �u��,��� ,
 

(3.7) 
 
where, 
 y�h � yw0 < ��Y	 < b)*  os  �?, ��, … , �=	x� yw0 < ��Y	 < ?; �� < ⋯ < �Z0� < ? < ⋯ < �=0�x    +yw0 < ��Y	 < �Z0�; ? < �� < ⋯ < �=0�x    +yw0 < ��Y	 < �Z; �� < ⋯ < �Z < ⋯ ?x,  

and y�h � ywb)*  os  �?, ��, … , �=	 < ��Y	 < 0x� yw? < ��Y	 < 0; �� < ⋯ < �Z0� < ? < ⋯ < �=0�x    +yw�Z0� < ��Y	 < 0; ? < �� … < �=0�x    +yw�Z < ��Y	 < 0; �� < ⋯ < �Z < ⋯ < ?x.  

Since the kernel under consideration is symmetric, from (3.4) and (3.7) we have 
 $���� � %����. (3.8) 
 

4 Importance of pq,r�s, t	 

 !",#�$, %	 is a general class of two-sample scale tests that includes many classes of tests which are existing in 
literature [2,3,9,14-18]. For different values of $ , % , (  (or [ ) and +  (or b ) we get various subclasses of !",#�$, %	. For $ � %, [ � b � ;L�� , we get test due to [9]. For $ ≠ %, [ � ;L��  and b � =L��  where $ and % are 

odd positive integers, we get the class of tests ��� which is outlier resistant to 
;0��  outliers in �-sample and 

=0��  

outliers in the �-sample. For [ � $, b � % and [ � 1, b � 1, we get the classes of tests ���, ���, ���, ��� and ��� which explore the information in the tails of the probability distributions. For [ � ;L�� , $ is an odd positive 

integer and b � % we get the class of tests ��  which is outlier resistant to 
;0��  outliers in �-sample and is based 

on extreme observations from �-sample. 
 
Sometimes the outliers present in �-sample contribute to variation in the variance of ��	 leading to faulty 
analysis. Hence a class of tests which is outlier resistant in �-sample becomes a necessity. In this paper, we 
carry out detailed discussion on such a class of tests, !∗�$, %	 which is obtained from !",#�$, %	 by taking &�⋅	 
to be the function of maximum os and the median of subsamples of sizes $ and % respectively from � and � 
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samples. !∗�$, %	 emerges from !",#�$, %	 by substituting [ � $ and b � =L��  (% being an odd positive integer) 

in (2.3). This subclass of tests explores information from right tail of �-sample and is resistant to 
=0��  outliers in � -sample. The alternative form of !∗�$, %	  in terms of ordered ranks and its distributional properties are 

respectively obtained by substituting for [ and b in (2.4) and (3.2), (3.3). Also, an equivalent statistic to !∗�$, %	 

exists when [ � 1 and b � =L��  is substituted in (2.3). 

 
Using the alternative expression of !∗�$, %	 in terms of ordered ranks, its null distribution is obtained and is 
presented in Fig. 1. The null distribution is generated using 10000 random samples from Uniform distribution. 
 

 
 

Fig. 1. Null distribution of ph�s, t	 for different values of �, �, �L, �L, s and t 

 
It is observed that, for larger values of ,, - and smaller values of $, % the null distribution of !∗�$, %	 follows 
Normal distribution. 
 
The large sample performance of the proposed class of tests can be compared with any other test using Pitman 
ARE given in [21]. The ARE of �� with respect to (wrt) any test �� is given by 
 

�kv���, ��	 � e���	e���	, 
(4.1) 
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where e��4	, T � 1,2 is known as the efficacy of the test �4  and is defined as 
 

e��4	 � � %%� wv�5��4	x�l�� �
�
. 

 
The efficacy of !",#�$, %	 is given by 
 

ew!",#�$, %	x �  $%:;0�Y0�<:=0�Z0�<_¡� − ¡�`¢�
�",#� , (4.2) 

  

where ¡� � z  {
� ��2���	 − 1	YLZ0��2�|��		;L=0Y0Z�2X��		�%�, 

¡� � z  �
0{ ��2���		YLZ0��1 − 2���		;L=0Y0Z�2X��		�%� and �",#�  is given by �3.3	. 

 

5 Performance of pq,r�s, t	 

 
In this section, we study the large sample and small sample performances of !",#�$, %	. The efficiencies of 
different subclasses of tests of !",#�$, %	 are already discussed in literature and here we discuss about the 
performance of the subclass of tests, namely !∗�$, %	. We compute its efficacy and compare its performance 
with its competitors. The efficacies of !∗�$, %	 are presented in Table 1 of appendix, in Figs. 2 and 3. 
 

 
 

Fig. 2. Efficacy of p∗�s, t	 for a given s and increasing values of t 
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Fig. 3. Efficacy of p∗�s, t	 for a given t and increasing values of s 

 
We observe that, the efficacy of !∗�$, %	 is high for smaller values of % for a given $�< 5	 and it decreases as % 
increases for all the distributions under consideration, Cauchy distribution being an exception. For $ � 5 and % < 9 under Logistic and Laplace distributions the efficacy increases with increasing value of %, whereas, for a 
given % and increasing $ the efficacy values are decreasing except for Uniform and Exponential distributions. 
 
The large sample performance of !∗�$, %	 is compared with various subclasses of tests in terms of Pitman ARE. 
We take various subclasses of tests of !",#�$, %	 as its competitors. The ARE of !∗�$, %	 wrt ���, ���, ��� 
and ��� are respectively given in Tables 2, 3 and 4 and the �kv�!∗�$, %	, �� 	 is given in Table 5 of appendix. 
 
The �kv�!∗�$, %	, ���	 � �kv�!∗�$, %	, ���	 since �kv����, ���	 � 1. 
 
And �kv�!∗�$, %	, ���	 � 0.5 ∗ �kv�!∗�$, %	, ���	 since �kv����, ���	 � 2. In all the tables, d is taken as 
the sum of subsamples of the competitors. 
 
Table 2 reveals that !∗�$, %	 outperforms ��� under Uniform, Triangular, Exponential, Normal, Logistic and 
Laplace distributions when smaller values of d are chosen for a given b. It is also observed that, under all these 
distributions, the ARE decreases with increasing values of d. 
 
Table 3 shows that, !∗�$, %	 is better than ��� under Uniform, Logistic and Laplace distributions. The ARE 
values for a given set of $ and % decrease with increasing values of d. That is !∗�$, %	 outperforms ��� when 
the values of $, % and d are smaller. 
 
Table 4 reveals that, !∗�$, %	 outperforms ��� under Cauchy distribution. The ARE values of !∗�$, %	 wrt to ��� are increasing with increasing values of $, % and d. !∗�$, %	 outperforms ��� under Uniform, Triangular, 
Exponential, Logistic, Laplace and Cauchy distributions for all values of $, % and d considered. Also, the ARE 
values in these cases are found to be increasing with increasing values of $, % and d. 
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According to Table 5, !∗�$, %	  is equivalent to ��  when $ � % . In case of light tailed distributions like 
Uniform, Triangular and Exponential distributions, !∗�$, %	 is better than ��  when $ � %. In case of Normal, 
Logistic, Laplace and Cauchy distributions !∗�$, %	 is better than ��  when $ < %. 
 
The small sample performance of !∗�$, %	 is studied in terms of its empirical power and is given in Table 6 of 
appendix. The empirical power of the class of tests is obtained from Monte-Carlo simulation technique using 
10000 random samples from a specified distribution under different alternative hypotheses. The alternative 
hypothesis considered for the study included different magnitudes of shifts in the scale parameter �. According 
to Table 6, the empirical power is high in case of uniform distribution and decreases for distributions with 
thicker tails. The empirical power is found to increase with increasing values of ,, - and $, %. Also, for most of 
the combinations of sample and subsample sizes considered, the highest empirical power is achieved when 
smallest values of subsamples, i,e. $ � 2 and % � 3 are chosen. 
 

6 Conclusions 

 
Based on our study, we arrive at the following conclusions. 
 

1. The proposed class of tests !",#�$, %	 comprises of numerous subclasses of tests which can be chosen 
as per the information available.  

2. The member ��� is useful in cases where there are outliers present in both samples.  
3. In case of information available on extreme order observations, the tests ���, ���, ���, ��� and ��� 

are employable.  
4. The class of tests ��  can be used when an outlier is present in �-sample whereas the class of tests !∗�$, %	 can be made use of when the outliers are present in the �-sample. 
5. !∗�$, %	 is found to be better than ��� under all distributions considered for smaller values of $ and %, 

Cauchy being an exception and is better than ��� , ��� , ���  and ���  under light and heavy tailed 
distributions.  

6. !∗�$, %	 performs better than ��� for heavy tailed distributions. 
7. The performance of !∗�$, %	  is equivalent to ��  for $ � % , is better than ��  for light tailed 

distributions when $ � % and heavy tailed distributions when $ < %. 
8. The empirical power of !∗�$, %	 is better under light tailed distributions as compared to distributions 

with heavier tails.  
9. The general class of tests !",#�$, %	 is highly useful for two-sample scale problem as it contains 

umpteen subclasses and their members which are applicable in multitude of scenarios. 
10. The proposed class of tests may be modified by taking any common quantile other than median. Also, 

it may be extended to test two-sided alternatives and for �-sample problem for ordered and umbrella 
alternatives. 
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Appendix 

 
Table 1. Efficacy of p∗�s, t	 for different values of s and t 

 s t Uniform Triangular Exponential Normal Logistic Laplace Cauchy 

2 1 5.6250 2.5000 0.4340 2.2794 1.9635 1.4061 0.9238 
3 3.9773 2.1948 0.3905 2.1495 1.8991 1.3535 0.9659 
5 3.4483 2.0475 0.3654 2.0620 1.8437 1.3113 0.9753 
7 3.1780 1.9572 0.3490 2.0002 1.8008 1.2794 0.9756 
9 3.0103 1.8949 0.3374 1.9544 1.7676 1.2548 0.9730 

3 1 6.2222 2.4584 0.4564 2.1467 1.8198 1.3070 0.8134 
3 4.1250 2.1645 0.4136 2.0770 1.8191 1.2985 0.8984 
5 3.5065 2.0249 0.3858 2.0160 1.7928 1.2763 0.9306 
7 3.2055 1.9396 0.3668 1.9681 1.7654 1.2549 0.9438 
9 3.0243 1.8794 0.3528 1.9296 1.7405 1.2361 0.9487 

4 1 7.0313 2.4517 0.4626 2.0742 1.6934 1.2207 0.7101 
3 4.3794 2.1539 0.4271 2.0127 1.7420 1.2460 0.8258 
5 3.6296 2.0144 0.3997 1.9716 1.7393 1.2398 0.8775 
7 3.2766 1.9302 0.3801 1.9364 1.7270 1.2288 0.9043 
9 3.0693 1.8723 0.3646 1.9052 1.7110 1.2160 0.9179 

5 1 7.9200 2.4567 0.4625 1.9425 1.5854 1.1469 0.6234 
3 4.6847 2.1526 0.4343 1.9533 1.6689 1.1965 0.7563 
5 3.7884 2.0108 0.4094 1.9313 1.6881 1.2053 0.8241 
7 3.3741 1.9259 0.3902 1.9062 1.6884 1.2027 0.8621 
9 3.1351 1.8671 0.3742 1.8812 1.6805 1.1954 0.8840 

 
Table 2. ARE of p∗�s, t	 wrt ©ª« 

 s t ¬ Uniform Triangular Exponential Normal Logistic Laplace Cauchy 

2 3 6 1.1278 1.0481 1.1648 1.0193 1.0072 1.0092 0.9683 
 8 1.2315 1.1035 1.2013 1.0573 1.0376 1.0409 0.9741 
 10 1.3051 1.1441 1.2297 1.0864 1.0613 1.0655 0.9806 
5 6 0.9778 0.9778 1.0897 0.9778 0.9778 0.9778 0.9778 
 8 1.0677 1.0294 1.1239 1.0143 1.0073 1.0085 0.9836 
 10 1.1315 1.0674 1.1505 1.0421 1.0303 1.0323 0.9902 
7 6 0.9011 0.9347 1.0408 0.9485 0.9551 0.9540 0.9780 
 8 0.9840 0.9840 1.0735 0.9839 0.9839 0.9839 0.9839 
 10 1.0428 1.0203 1.0988 1.0109 1.0064 1.0071 0.9905 

3 3 6 1.1696 1.0337 1.2335 0.9849 0.9647 0.9682 0.9006 
 8 1.2772 1.0883 1.2722 1.0217 0.9939 0.9986 0.9060 
 10 1.3536 1.1284 1.3023 1.0497 1.0166 1.0222 0.9121 
5 6 0.9943 0.9670 1.1508 0.9560 0.9508 0.9517 0.9329 
 8 1.0857 1.0180 1.1869 0.9917 0.9795 0.9815 0.9385 
 10 1.1506 1.0556 1.2149 1.0189 1.0019 1.0047 0.9448 
7 6 0.9089 0.9263 1.0941 0.9332 0.9362 0.9357 0.9461 
 8 0.9925 0.9752 1.1284 0.9681 0.9645 0.9651 0.9518 
 10 1.0519 1.0111 1.1551 0.9947 0.9866 0.9879 0.9582 

4 3 6 1.2418 1.0286 1.2738 0.9544 0.9238 0.9291 0.8278 
 8 1.3560 1.0829 1.3138 0.9901 0.9517 0.9583 0.8328 
 10 1.4371 1.1228 1.3448 1.0173 0.9735 0.9809 0.8384 
5 6 1.0292 0.9620 1.1921 0.9349 0.9224 0.9245 0.8797 
 8 1.1238 1.0128 1.2295 0.9698 0.9503 0.9535 0.8850 
 10 1.1910 1.0501 1.2585 0.9965 0.9720 0.9760 0.8909 
7 6 0.9291 0.9218 1.1338 0.9182 0.9159 0.9163 0.9065 
 8 1.0145 0.9704 1.1694 0.9525 0.9436 0.9450 0.9120 
 10 1.0752 1.0062 1.1970 0.9787 0.9651 0.9673 0.9181 
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s t ¬ Uniform Triangular Exponential Normal Logistic Laplace Cauchy 

5 3 6 1.3283 1.0279 1.2953 0.9262 0.8851 0.8922 0.7582 
 8 1.4505 1.0822 1.3360 0.9608 0.9118 0.9202 0.7628 
 10 1.5372 1.1221 1.3675 0.9872 0.9327 0.9419 0.7679 
5 6 1.0742 0.9602 1.2210 0.9158 0.8953 0.8987 0.8262 
 8 1.1730 1.0110 1.2594 0.9500 0.9223 0.9269 0.8311 
 10 1.2431 1.0482 1.2891 0.9761 0.9434 0.9488 0.8367 
7 6 0.9567 0.9197 1.1637 0.9039 0.8954 0.8968 0.8643 
 8 1.0447 0.9683 1.2002 0.9377 0.9225 0.9249 0.8695 
 10 1.1072 1.0040 1.2286 0.9634 0.9436 0.9468 0.8753 

 
Table 3. ARE of p∗�s, t	 wrt ©ª 

 s t ¬ Uniform Logistic Laplace 

2 3 5 1.5712 15.6304 20.6017 
6 1.1299 12.3881 16.1712 
7 0.8811 10.7051 13.8540 

5 5 1.3623 15.1742 19.9589 
6 0.9796 12.0265 15.6667 
7 0.7639 10.3927 13.4217 

7 5 1.2555 14.8218 19.4730 
6 0.9029 11.7472 15.2853 
7 0.7041 10.1513 13.0950 

3 3 5 1.6296 14.9721 19.7640 
6 1.1719 11.8663 15.5137 
7 0.9138 10.2543 13.2907 

5 5 1.3853 14.7557 19.4261 
6 0.9962 11.6948 15.2485 
7 0.7768 10.1061 13.0634 

7 5 1.2664 14.5299 19.1010 
6 0.9107 11.5158 14.9932 
7 0.7102 9.9514 12.8448 

4 3 5 1.7301 14.3372 18.9654 
6 1.2441 11.3632 14.8868 
7 0.9702 9.8195 12.7536 

5 5 1.4339 14.3149 18.8711 
6 1.0311 11.3455 14.8128 
7 0.8041 9.8042 12.6902 

7 5 1.2944 14.2143 18.7035 
6 0.9308 11.2657 14.6813 
7 0.7259 9.7353 12.5775 

5 3 5 1.8507 13.7360 18.2116 
6 1.3309 10.8866 14.2951 
7 1.0378 9.4077 12.2467 

5 5 1.4966 13.8941 18.3448 
6 1.0763 11.0120 14.3997 
7 0.8393 9.5160 12.3363 

7 5 1.3329 13.8963 18.3056 
6 0.9585 11.0137 14.3689 
7 0.7475 9.5175 12.3099 
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Table  4. ARE of p∗�s, t	 wrt ©ª® and ©ª¯ 

 s t ¬ ©ª® ©ª¯ 

Cauchy Uniform Triangular Exponential Normal Logistic Laplace Cauchy 

2 3 5 1.3604 3.5354 2.4688 2.1696 0.1420 2.0915 1.8799 1.3604 
6 1.5504 4.5196 3.0190 2.5524 0.1731 2.5220 2.2153 1.5504 
7 1.7498 5.5087 3.5688 2.9363 0.2046 2.9627 2.5490 1.7498 

5 5 1.3737 3.0652 2.3032 2.0298 0.1363 2.0305 1.8213 1.3737 
6 1.5655 3.9186 2.8164 2.3880 0.1660 2.4484 2.1462 1.5655 
7 1.7669 4.7761 3.3293 2.7471 0.1963 2.8762 2.4695 1.7669 

7 5 1.3741 2.8249 2.2016 1.9387 0.1322 1.9833 1.7769 1.3741 
6 1.5660 3.6114 2.6922 2.2809 0.1611 2.3916 2.0939 1.5660 
7 1.7674 4.4017 3.1825 2.6239 0.1904 2.8094 2.4094 1.7674 

3 3 5 1.2653 3.6667 2.4348 2.2976 0.1372 2.0034 1.8035 1.2653 
6 1.4420 4.6875 2.9774 2.7031 0.1672 2.4158 2.1252 1.4420 
7 1.6275 5.7133 3.5196 3.1095 0.1977 2.8379 2.4454 1.6275 

5 5 1.3107 3.1169 2.2777 2.1435 0.1332 1.9745 1.7726 1.3107 
6 1.4937 3.9847 2.7852 2.5218 0.1623 2.3809 2.0889 1.4937 
7 1.6858 4.8567 3.2925 2.9010 0.1919 2.7969 2.4036 1.6858 

7 5 1.3293 2.8494 2.1818 2.0379 0.1301 1.9443 1.7430 1.3293 
6 1.5149 3.6427 2.6680 2.3976 0.1585 2.3445 2.0539 1.5149 
7 1.7098 4.4398 3.1539 2.7581 0.1873 2.7541 2.3633 1.7098 

4 3 5 1.1631 3.8928 2.4228 2.3727 0.1330 1.9185 1.7306 1.1631 
6 1.3255 4.9766 2.9627 2.7914 0.1621 2.3134 2.0393 1.3255 
7 1.4960 6.0656 3.5022 3.2112 0.1916 2.7176 2.3466 1.4960 

5 5 1.2359 3.2263 2.2660 2.2205 0.1303 1.9155 1.7220 1.2359 
6 1.4085 4.1245 2.7709 2.6123 0.1588 2.3098 2.0292 1.4085 
7 1.5897 5.0271 3.2755 3.0051 0.1877 2.7134 2.3349 1.5897 

7 5 1.2736 2.9125 2.1712 2.1119 0.1280 1.9020 1.7067 1.2736 
6 1.4515 3.7234 2.6551 2.4846 0.1559 2.2935 2.0112 1.4515 
7 1.6382 4.5382 3.1386 2.8582 0.1843 2.6943 2.3142 1.6382 

5 3 5 1.0653 4.1642 2.4213 2.4128 0.1291 1.8380 1.6618 1.0653 
6 1.2140 5.3235 2.9609 2.8386 0.1573 2.2164 1.9583 1.2140 
7 1.3702 6.4885 3.5001 3.2654 0.1859 2.6036 2.2533 1.3702 

5 5 1.1607 3.3675 2.2619 2.2744 0.1276 1.8592 1.6740 1.1607 
6 1.3228 4.3050 2.7659 2.6758 0.1555 2.2419 1.9726 1.3228 
7 1.4930 5.2471 3.2696 3.0782 0.1838 2.6336 2.2698 1.4930 

7 5 1.2143 2.9992 2.1663 2.1676 0.1260 1.8595 1.6704 1.2143 
6 1.3839 3.8342 2.6491 2.5501 0.1535 2.2422 1.9684 1.3839 
7 1.5619 4.6733 3.1315 2.9336 0.1815 2.6340 2.2649 1.5619 

 
Table  5. ARE of p∗�s, t	 wrt ©ª° 

 s t Uniform Triangular Exponential Normal Logistic Laplace Cauchy 

3 3 1.0000 1.0002 0.9999 1.0000 1.0000 1.0000 1.0000 
3 5 0.7485 0.9406 0.8884 1.0321 1.0743 1.0667 1.2304 
3 7 0.5970 0.8974 0.8366 1.0641 1.1460 1.1310 1.4791 
5 3 1.3360 1.0629 1.1257 0.9689 0.9309 0.9375 0.8127 
5 5 1.0000 0.9998 1.0002 1.0000 1.0000 1.0000 1.0000 
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Table  6. Empirical power of ph�s, t	 for different values of �, �, �L, �L, s, t and various distributions 

for 10% level of significance 

 � � �L �L s t Distribution ± 

1.2 1.5 2 2.5 3 4 5 

8 8 4 4 2 3 Uniform 0.1187 0.1661 0.1870 0.2133 0.2242 0.2509 0.2594 
Normal 0.1407 0.1606 0.1974 0.2175 0.2386 0.2586 0.2708 
Logistic 0.1340 0.1541 0.1792 0.2114 0.2118 0.2398 0.2628 
Laplace 0.1277 0.1436 0.1703 0.1831 0.2019 0.2187 0.2251 
Cauchy 0.1210 0.1309 0.1414 0.1451 0.1476 0.1617 0.1710 

8 8 4 4 3 3 Uniform 0.1488 0.1928 0.2288 0.2349 0.2529 0.2607 0.2675 
Normal 0.1688 0.1925 0.2179 0.2309 0.2480 0.2483 0.2396 
Logistic 0.1605 0.1798 0.2004 0.2121 0.2293 0.2316 0.2312 
Laplace 0.1619 0.1762 0.1884 0.2075 0.2084 0.2195 0.2256 
Cauchy 0.1573 0.1499 0.1596 0.1641 0.1603 0.1799 0.1674 

10 10 5 5 2 3 Uniform 0.1055 0.1475 0.1750 0.2043 0.2309 0.2493 0.2693 
Normal 0.1179 0.1478 0.1797 0.2128 0.2341 0.2481 0.2538 
Logistic 0.1173 0.1381 0.1683 0.1962 0.2019 0.2379 0.2377 
Laplace 0.1158 0.1291 0.1510 0.1683 0.1920 0.2043 0.2183 
Cauchy 0.1051 0.1141 0.1180 0.1362 0.1348 0.1455 0.1537 

10 10 5 5 3 3 Uniform 0.1160 0.1483 0.1908 0.2089 0.2247 0.2444 0.2519 
Normal 0.1250 0.1537 0.1837 0.1995 0.2149 0.2212 0.2210 
Logistic 0.1271 0.1443 0.1677 0.1881 0.1956 0.2077 0.2080 
Laplace 0.1162 0.1356 0.1576 0.1708 0.1801 0.1925 0.2009 
Cauchy 0.1128 0.1173 0.1233 0.1197 0.1270 0.1353 0.1354 

14 14 7 7 2 3 Uniform 0.0605 0.0937 0.1262 0.1442 0.1620 0.1922 0.2081 
Normal 0.0771 0.0925 0.1299 0.1439 0.1675 0.1806 0.1803 
Logistic 0.0753 0.0873 0.1172 0.1380 0.1443 0.1590 0.1771 
Laplace 0.0676 0.0832 0.1011 0.1098 0.1223 0.1449 0.1554 
Cauchy 0.0650 0.0680 0.0772 0.0729 0.0778 0.0888 0.0925 

14 14 7 7 2 5 Uniform 0.0977 0.1473 0.1916 0.2199 0.2411 0.2728 0.2926 
Normal 0.1265 0.1529 0.1960 0.2219 0.2412 0.2761 0.2829 
Logistic 0.1123 0.1480 0.1739 0.2026 0.2300 0.2440 0.2606 
Laplace 0.1101 0.1324 0.1526 0.1852 0.1834 0.2141 0.2204 
Cauchy 0.1060 0.1079 0.1124 0.1300 0.1260 0.1372 0.1509 

30 30 15 15 2 3 Uniform 0.1002 0.1952 0.2716 0.3465 0.3806 0.4518 0.4894 
Normal 0.1383 0.2001 0.2768 0.3433 0.3794 0.4469 0.4623 
Logistic 0.1342 0.1864 0.2558 0.3005 0.3446 0.4018 0.4200 
Laplace 0.1268 0.1544 0.2122 0.2487 0.2810 0.3207 0.3530 
Cauchy 0.1095 0.1214 0.1360 0.1483 0.1568 0.1751 0.1781 

50 50 25 25 2 3 Uniform 0.1039 0.2226 0.3336 0.4251 0.4988 0.5931 0.6407 
Normal 0.1466 0.2319 0.3489 0.4456 0.5040 0.5690 0.6028 
Logistic 0.1386 0.2039 0.3055 0.3826 0.4426 0.5067 0.5365 
Laplace 0.1304 0.1778 0.2489 0.3036 0.3522 0.4115 0.4604 
Cauchy 0.1060 0.1189 0.1426 0.1594 0.1709 0.1885 0.2026 

100 100 50 50 2 3 Uniform 0.0967 0.2991 0.4789 0.6147 0.6987 0.7958 0.8473 
Normal 0.1789 0.3024 0.4942 0.6262 0.7111 0.7895 0.8241 
Logistic 0.1622 0.2687 0.4257 0.5479 0.6249 0.7216 0.7733 
Laplace 0.1387 0.2122 0.3260 0.4182 0.4878 0.5926 0.6541 
Cauchy 0.1085 0.1257 0.1560 0.1819 0.2005 0.2326 0.2635 
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