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ABSTRACT

The mathematical structure of quantum field theories of first order and of second order partial
differential equations is analyzed. Relativistic properties of the Lagrangian density and the
dimension of its elements are examined. The analysis is restricted to elementary massive particles
that are elements of the Standard Model of particle physics. In the case of the first order Dirac
equation, the dimensionless 4-vector γµ and the partial 4-derivative ∂µ whose dimension is [L−1],
are elements of the mathematical structure of the theory. On the other hand, the mathematical
structure of second order quantum equations has no dimensionless 4-vector which is analogous
to γµ of the linear equation. It is proved that this deficiency is the root of inherent theoretical
inconsistencies of second order quantum equations. Problems of the Klein-Gordon particle, the
electroweak theory of the W±, Z particles and the Higgs boson theory are discussed.
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1 INTRODUCTION

The variational principle plays a primary role
in the present structure of physical theories.
In the case of classical mechanics of massive
particles, this principle uses a Lagrangian,
whereas quantum theories are derived from a
Lagrangian density. This approach is adopted
by contemporary textbooks. For example: the
variational principle is ”the foundation on which
virtually all modern theories are predicated” (see
[1], p. 353). The general form of a Lagrangian
density of a quantum theory is

L(ψ(x), ψ(x),µ), (1.1)

where ψ(x) is the function of an appropriate
quantum particle, and ψ(x),µ is its partial
derivative with respect to space-time coordinates.
Standard notation is used in this work. Another
textbook supports this approach and states that
”All field theories used in current theories of
elementary particles have Lagrangians of this
form” (see [2], p. 300). The Lagrangian density
(1.1) is regarded as the main expression of each
quantum theory, and the quantum equations of
motion are partial differential equations that are
the Euler-Lagrange equations which are derived
from the variational principle

∂L
∂ψ
− ∂

∂xµ
∂L

∂(∂ψ/∂xµ)
= 0 (1.2)

(see [2], p. 300, [3], p. 17). This principle is used
below in an examination of the mathematical
structure of quantum field theory (QFT) of several
kinds of elementary massive particles.

Various arguments support this approach.
Special relativity is a well-established theory
and any QFT should be consistent with it. This
requirement is satisfied if the Lagrangian density
is a Lorentz scalar. For example, it is stated
that ”the point of the Lagrangian formalism
is that it makes it easy to satisfy Lorentz
invariance and other symmetries: a classical
theory with a Lorentz-invariant Lagrangian
density will when canonically quantized lead
to a Lorentz-invariant quantum theory” (see

[2], p. 292). Furthermore, physical processes
abide by conservation laws, like those of energy,
momentum and angular momentum. The
Noether theorem proves that the Lagrangian
density (1.1), which does not explicitly depend
on space-time coordinates, yields equations
of motion that satisfy conservation of energy,
momentum and angular momentum (see e.g. [3],
pp. 17-22). Many aspects of the significance of
the Noether theorem are adequately discussed
in classical [4] and quantum [2, 3, 5] textbooks.
The main objective of this work is to use the
above mentioned framework for an examination
of the mathematical structure of quantum
theories of first order partial differential equations
and of quantum theories of second order
partial differential equations. The analysis
proves the consistence of the first order Dirac
theory. In contrast, unsettled problems exist with
second order quantum theories of elementary
massive particles, like those of the Klein-
Gordon (KG), W±, Z and the Higgs bosons,
which are described by second order partial
differential equations (see [5], pp. 16, 17, 701,
715). Quotations from the present mainstream
literature support this conclusion.
This work uses units where ~ = c = 1. It
follows that the action is dimensionless and the
dimension of a Lagrangian density L is [L−4].
Formulas take the standard form of a relativistic
covariant expression. The metric is diagonal
and its entries are (1,-1,-1,-1). The second
section presents several constraints that apply
to an acceptable quantum theory. The third
section shows that the first order Dirac equation
is consistent with these constraints. The fourth
section presents inconsistencies of second order
quantum theories of massive particles. The fifth
section contains a further discussion of these
issues. The last section summarizes this work.

2 CONSTRAINTS ON QUAN-
TUM THEORIES

Constraints on the structure of a physical theory
are useful elements because they prevent a
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construction of a theory that is inconsistent
with well-established physical laws. The
necessity to abide by relativistic covariance and
conservation laws is already mentioned above
in the introduction section. Other constraints on
QFT of massive particles are listed below.

C.1 ~ has the dimension of action. Hence,
in units where ~ = c = 1 the action
is dimensionless, and the dimension
of the Lagrangian density L of (1.1)
is [L−4]. This property determines
the dimension of the quantum functions
ψ of L. Obviously, expressions that
depend on quantum functions must satisfy
dimensional balance. This issue is used
below in several cases. Furthermore,
the discussion presents examples that
indicate that this self-evident attribute of
the quantum functions of L is apparently
not well known.

C.2 The nonrelativistic limit of QFT
corresponds to ordinary quantum
mechanics. Here is a quotation that
clearly states this issue. ”First, some good
news: quantum field theory is based on
the same quantum mechanics that was
invented by Schroedinger, Heisenberg,
Pauli, Born, and others in 1925-26, and
has been used ever since in atomic,
molecular, nuclear and condensed matter
physics” (see [2], p. 49). Below,
this requirement is called the Weinberg
correspondence principle.

C.3 Many textbooks explain the correspondence
between the classical limit of quantum
mechanics and classical physics. For
example: ”Classical mechanics must
therefore be a limiting case of quantum
mechanics” (see [6], p. 84; see also
[7], p. 15). This issue is called the
Bohr correspondence principle. Hence,
the Weinberg correspondence principle
together with the Bohr correspondence
principle mean that an appropriate limit of
QFT corresponds to classical physic.

C.4 An elementary classical massive particle
is pointlike (see [8], pp. 46, 47).
Hence, particle’s position is well-defined
in classical physics. The uncertainty
principle says that the position of

a quantum particle is approximately
described by an expression for its density.
The correspondence principles C.2 and
C.3 prove that a theory of an elementary
massive quantum particle must provide a
consistent expression for density, namely
for the j0 component of a conserved 4-
current jµ.

C.5 The interaction term of Maxwellian
electrodynamics is a contraction
of a conserved 4-current with the
electromagnetic 4-potential

Lint = ejµAµ (2.1)

(see [8], p. 75). This is another reason
for the need of a consistent expression for
a conserved 4-current of an elementary
charged particle.

C.6 The Noether theorem provides an
expression for a conserved 4-current of
a quantum particle. Assume that the
particle’s Lagrangian density is invariant
under a global phase transformation of
the quantum function

ψ(x)→ eiαψ(x), (2.2)

”where a single parameter α may run
continuously over real numbers” (see
[9], p. 314). An application of this
transformation yields

0 = iα

[
∂L
∂ψ

− ∂µ

(
∂L

∂(∂µψ)

)]
ψ + iα∂µ

(
∂L

∂(∂µψ)
ψ

)
(2.3)

The expression inside the square brackets
vanishes due to the Euler-Lagrange
equation (1.2). Furthermore, the variation
parameter α ̸= 0 means that the
expression inside the last brackets
represent a conserved 4-current

jµ,µ = 0, (2.4)

where
jµ =

∂L
∂(∂µψ)

ψ. (2.5)

Here j0 is the required density. It is
interesting to note that a nonvanishing
contribution to a Noether 4-current is
obtained from terms of the Lagrangian
density that contain a derivative ∂µψ of the
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quantum function. This important property
of the Noether 4-current (2.5) is mentioned
below in several cases.

C.7 Quantum states can be organized as
elements of a Hilbert space (see [2], pp.
49, 50). This space requires a well defined
inner product of any pair of its elements.

C.8 Observables are represented by
Hermitian operators that apply to elements
of a Hilbert space (see [2], p. 50).
In particular, let ψ be a normalized
eigenfunction of an operator A whose
eigenvalue is α, then

Aψ = αψ and (ψ,Aψ) = α, (2.6)

where the second expression is the inner
product of the Hilbert space. The
primary objective of a physical theory is to
provide a good description of experimental
data. Hence, a quantum theory must
have a well-defined form of relevant
observables. In particular, the Hamiltonian
is a vital element of quantum mechanics.
Therefore, the Weinberg correspondence
principle means that QFT must provide a
consistent expression for the Hamiltonian.

Below, each of these requirements is denoted
by C.n, where n is the figure of the respective
requirement.

Here is a simple example that explains the vital
need for a consistent expression for some of
the above mentioned quantities. Consider the
leptonic decay of the Z particle [10]

µ− ← Z → µ+. (2.7)

Experimental devices measure the (t,x) values
of the outgoing µ−, µ+ leptons and their energy-
momentum. These data determine the trajectory
of each of the outgoing particles. If the two
trajectories have a common space-time very
small region that belongs to the common region
of the primary colliding beams, and if the invariant
energy of the two particles agrees with that
of the Z boson then the event is recognized
as a Z decay. The decay (2.7) is a particle
creation and destruction process, which belongs
to the QFT domain of validity. It follows that an
acceptable QFT theory must provide appropriate
expression for density and for energy-momentum

of particles. This example explains the relevance
of requirements C.4, C.5 and C.8 to the real
world.

3 THE DIRAC EQUATION

The Lagrangian density of a free Dirac particle is

LD = ψ̄(γµi∂µ −m)ψ, (3.1)

where ψ̄ ≡ ψ†γ0 (see [3], p. 54, [5], p.
78). Here ψ̄, ψ are complex functions that
are treated as distinct independent variables of
LD. As required, the Lagrangian density (3.1)
is a Lorentz scalar. The [L−4] dimension of
a Lagrangian density and the linearity of (3.1)
prove that the dimension of a Dirac function ψ
is [L−3/2]. The Lorentz invariance of the first
term of (3.1) is obtained from a contraction of two
different 4-vectors: γµ and ∂µ.

An important feature of (3.1) is that it is not
a symmetric expression with respect to ψ̄, ψ.
Indeed, (3.1) contains a derivative of ψ but it is
free of a derivative of ψ̄. This issue plays an
important role in the structure of the Dirac 4-
current.

The Lagrangian density (3.1) is invariant under
the global phase transformation

ψ(x)→ eiαψ(x), (3.2)

where α is a real constant (see [9], p. 314).
In this case, the Noether theorem C.6 yields an
expression for a conserved 4-current whose form
is

jµ =
∂L

∂(∂µψ)
ψ = ψ̄γµψ, (3.3)

(see e.g. [3], p. 56). The density of the Dirac
particle is

j0 = ψ†ψ, (3.4)

where the relation ψ̄γ0 = ψ† is used. It is
interesting to note that while the Dirac Lagrangian
density (3.1) is not symmetric with respect to
ψ̄, ψ, its associated 4-current (3.3), is symmetric
with respect to these functions!

The symmetric 4-current (3.3) plays an important
role in the structure of the Dirac theory. Consider
for example the Dirac Lagrangian density (3.1).
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The Hamiltonian density that is obtained from
(3.1) is

HD = ψ†[−iααα · ∇∇∇+ βm]ψ, (3.5)

where ααα, β denote the four ordinary Dirac
matrices (see e.g. [3], p. 55). This form shows
that the quantity inside the brackets of the (3.5) is
the operator form of the Dirac Hamiltonian, which
stands between the functions ψ†, ψ. Since ψ†ψ
is the Dirac density, one finds the well-known
form of the Hamiltonian operator of a free Dirac
particle

HD = −iααα · ∇∇∇+ βm (3.6)

(see [5], p. 52). Evidently, the Dirac Hamiltonian
is a Hermitian operator. The ψ†ψ Dirac density
means that the 3-dimensional integration of (3.5)
takes the required inner product of the Hilbert
space (2.6)

(ψ,HDψ) ≡
∫
d3xψ†[−iααα · ∇∇∇+ βm]ψ. (3.7)

This expression for the Dirac Hamiltonian
satisfies requirement C.8.

The fact that the Dirac 4-current (3.3) is
independent of derivatives of ψ is a crucial
property, which is used in its electromagnetic
interaction

Lint = −ejµAµ = −eψ̄γµψAµ (3.8)

(see [2], p. 349, [3], p. 84). This term is free
of derivatives of the fields, which means that the
introduction of electromagnetic interaction does
not change the Noether 4-current (3.3). Hence,
the Dirac theory is consistent with requirements
C.4, C.5. Moreover, the fact that density does
not change means that the interaction term (3.8)
does not affect the inner product of the Hilbert
space, and requirement C.7 holds.

4 INHERENT PROBLEMS
OF SECOND ORDER
QUANTUM EQUATIONS

A second order quantum field theory of a massive
particle is derived from a Lagrangian density
whose general form is

L = ϕ†
,µϕ,νg

µν −m2ϕ†ϕ+OT, (4.1)

where OT denotes other terms. Here, like in
the standard form of (1.1), the quantum function
ϕ ≡ ϕ(x), where x denotes the four space-
time coordinates. The first term of (4.1) is
a Lorentz-contraction of two 4-gradients of the
field functions ϕ†, ϕ. In some cases a Lorentz-
contraction of two 4-curls replaces the first term
of (4.1). This term is bilinear in derivatives of
ϕ†, ϕ. Hence, the second term of the Euler-
Lagrange equation (1.2) yields a second order
partial differential equation. The first and the
second terms of (4.1) are the KG Lagrangian
density (see e.g. [2], p. 21, [11], p. 191).

Textbooks show that the first term of (4.1) yields
a Noether 4-current that is antisymmetric with
respect to ϕ†, ϕ

jµ = i(ϕ†ϕ,µ − ϕ†
,µϕ) (4.2)

(see e.g. [2], p. 27, [3], p. 40, [11], p. 193).
In particular, the expression for density, j0 is
antisymmetric with respect to ϕ†, ϕ. In contrast,
the Hamiltonian density is the T00 component
of the energy-momentum tensor. Hence, the
Hamiltonian density that is derived from (4.1) is
symmetric with respect to ϕ†, ϕ. For example, the
KG Hamiltonian density is

H = ϕ†
,0ϕ,0 +

3∑
i=1

ϕ†
,iϕ,i +m2ϕ†ϕ (4.3)

(see e.g. [2], p. 22, [3], p. 38, [11], p. 192).

The opposite ϕ†, ϕ symmetry of the density (4.2)
and of the Hamiltonian density (4.3) prove that
in the case of a second order quantum theory
one cannot extract the Hamiltonian operator from
the Hamiltonian density. This shortcoming differs
from the corresponding feature of the first order
Dirac theory which provides an explicit form
of the Hamiltonian operator (see (3.5), (3.6)).
Therefore, second order quantum theories of
a massive particle are inconsistent with the
Weinberg correspondence principle, because
the Hamiltonian operator is a crucial element
of quantum mechanics.
Another discrepancy of a second order quantum
theory stems from the density j0 of (4.2).
Here density depends on time-derivative of
the field functions ϕ†, ϕ. Therefore, the
Heisenberg picture cannot be used for this theory,
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because field functions of this picture are time-
independent. Hence, in the case of second
order quantum equation, one cannot be sure
of a physical property whose validity relies on the
Heisenberg picture (see e.g. [2], pp. 109, 288,
297, 298, 425).
A special problem exists in the case of an
electrically charged particle that belongs to a
second order quantum theory, like the charged
KG particle and the electroweak W± bosons.
Here, neither of the following alternatives
describes properly electromagnetic interaction.

Q.1 Consider an application of the
transformation

∂µ → ∂µ − eAµ (4.4)

to a Lagrangian density (see e.g. [2],
p. 9, [11], p. 198). This transformation
is called the minimal interaction. The
first term of (4.1) proves that in second
order theories the transformation (4.4)
yields a Lagrangian density that depends
quadratically on the 4-potential Aµ (see
e.g. [11], p. 198). Hence, Maxwellian
electrodynamics is violated, because this
theory depends linearly on Aµ (see e.g.
[8], pp. 78-80).

Q.2 The original form of the Noether 4-current
(4.2) is used in an expression of the
electromagnetic interaction

Lint = [i(ϕ†ϕ,µ − ϕ†
,µϕ)]A

µ. (4.5)

This term depends explicitly on
derivatives. Hence, it destroys the
Noether expression for the 4-current (4.2)
upon which it depends.

Q.3 The general structure of a second
order Lagrangian density (4.1) and its
Noether 4-current (4.2) demonstrate an
intrinsic difference between the Dirac
linear quantum theory and theories that
have a second order equation: As
stated above, in the case of a Dirac
theory, the Lagrangian density (3.1) is
not symmetric with respect to ψ̄, ψ,
whereas the corresponding 4-current (3.3)
is symmetric with respect to these
functions. In contrast, in a second order

quantum theory the Lagrangian density
(4.1) is symmetric with respect to ϕ†, ϕ, but
the corresponding Noether 4-current (4.2)
is antisymmetric with respect to these
functions. It is shown above that this quite
unfavorable property of a second order
quantum theory disables a construction
of a Hamiltonian operator, which is
required by the Weinberg correspondence
principle.

The literature provides strong evidence that
indicates the correctness of the foregoing result,
which proves that no consistent expression can
describe the electromagnetic interaction of an
electrically charged elementary quantum particle
that satisfies a second order quantum equation.
For this purpose, let us compare the status
of electromagnetic interactions of the Dirac first
order quantum equation with that of second order
quantum equations. In the case of the first order
quantum theory, electromagnetic interaction is
correctly described in the original Dirac paper
(see eq. (14) in [12]). Furthermore, an explicit
expression of a conserved 4-current of a Dirac
particle has been found about one month later
[13]. By contrast, many decades have already
elapsed since the rise of the electroweak theory
but very large research centers, like CERN
and Fermilab, still use effective expressions
for the electroweak description of the W±

electromagnetic interactions [14, 15]. Here
the effective expression violates Maxwellian
electrodynamics because its interaction term
contains derivatives, and it is not based on a
consistent 4-current.

Here are two quotations from textbooks that
provide another support for the claim about the
discrepancy of a second order quantum theory
of a charged particle with respect to Maxwellian
electrodynamics. ”... electrodynamics of spinless
particles is more complicated” (see [2], p.
349). Another statement describes problems
of electromagnetic interactions of a charged KG
particle: ”Indeed, they appear with a vengeance,
since the coupling prescription (15.1) introduces
interaction terms containing derivatives” (see [3],
p. 87). (Note that (15.1) of this textbook is the
above mentioned minimal interaction (4.4).)
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5 DISCUSSION

It is pointed out above that the first order Dirac
theory can use the dimensionless 4-vector γµ

and the partial 4-derivative ∂µ whose dimension
is [L−1] as elements of the theory, whereas
second order quantum theories have no analog
for the γµ 4-vector of the Dirac theory. An
interaction of a quantum particle with an external
second-rank antisymmetric tensor provides an
example that illustrates this drawback of second
order theories.

The idea that the electron may also interact
directly with external electromagnetic field has
been suggested a long time ago (see [16], p.
223, [2], pp. 14, 517, 520). The corresponding
interaction, which is called the Pauli term, takes
the form

L′ = dψ̄σµνFµνψ, (5.1)

where
σµν ≡

i

2
(γµγν − γνγµ) (5.2)

(see [17], p. 21), Fµν is the electromagnetic
field tensor (see [8], p. 65), and the coefficient
d has the dimension of length. The interaction
(5.1) alters the Dirac expression for the electron’s
dipole moment (see [16], p. 223, [2], p. 14).
As a matter of fact, the ordinary Dirac interaction
(3.8), which contains no term like (5.1), yields a
very good prediction for the electron’s magnetic
dipole moment. Hence, the Pauli term (5.1) has
been removed from the standard expression for
the electron’s electromagnetic interaction.

The Pauli term has recently been rediscovered,
and it can be shown that it describes weak
interactions, where parity violation is proved
[18, 19, 20]. Here the transition from the
Lagrangian density to the Hamiltonian density
adds a γ0 factor, and the product γ0σµν of
(5.1) splits into a sum of a vector and an
axial vector. The Pauli term (5.1) shows the
flexibility of the first order Dirac theory, where the
dimensionless γµ 4-vector enables to write down
a consistent derivative-free covariant expression
for the interaction of a Dirac particle with a second
rank antisymmetric field tensor that takes the
form of Fµν .

Problems arise if an analogous attempt is
made with the W±, which the electroweak

theory regards as elementary charged particles
belonging to the second order category of
quantum theories. A term that represents the
Standard Model W± interaction with an external
second rank antisymmetric tensor V νη is

LWWV = iW †
µWνV

µν (5.3)

(put kv = 1 in eq. (3) of [15]. See also [14], [21],
[22]). According to the definition of [15], V νη is
either the ordinary electromagnetic field tensor
Fµν or an appropriate tensor of the electroweak
theory.

Dimensional considerations totally reject this
expression. Indeed, as shown above, the
dimension of the electroweak quantum function
W± is [L−1]. It means that the dimension
of the product W †

µWν of (5.3) is [L−2]. This
value disagrees with the [L−3] dimension of
the electric charge density. Therefore, the
electroweak interaction term (5.3) strongly
violates Maxwellian electrodynamics, where the
interaction is proportional to the strength of the
electric charge.

It is well known that dimensional balance is a
very strong requirements that every physical
expression must abide with. Requirement
C.1 states that the Lagrangian density of the
variational principle determines the dimension
of the field functions ψ of (1.1). The term
(5.3), which violates dimensional balance of
charge density, is used in [14], [15], [21],[22],
and the total number of the authors of these
publications is a number of four decimal digits.
This evidence indicates that the dimension
attribute of a quantum function is still not very
well known.

Some points of this work explain why
the electroweak theory suffers unsettled
contradictions. The following items demonstrate
one issue.

EW.1 The electroweak theory is based on a
Lagrangian density and the dimension of
each of its terms is [L−4].

EW.2 The second order of the differential
equations of the electroweak theory
proves that the dimension of each of its
quantum functions is [L−1].
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EW.3 The electroweak theory regards the
W± as elementary charged particles.
Maxwellian electrodynamics is based on
a conserved 4-current. The 4-current’s
dimension is [L−3], and it satisfies the
continuity equation (2.4).

EW.4 The dimension of the product of the
electroweak functions W †W is [L−2].
Therefore, dimensional balance requires
that any 4-current of the W± must depend
on a derivative with respect to the space-
time coordinates.

EW.5 Items Q.1 and Q.2 of section 4 prove that
a derivative destroys the compatibility of
the W± electromagnetic interaction.

EW.6 The straightforward observation of real
facts which is presented near the
end of the previous section relies on
commonsense. These facts provide a
very strong support for the inability to find
a consistent expression for the 4-current
of the electroweak W± particles: After
about half a century, the literature still
does not show a consistent 4-current of
the electroweak W±; CERN and Fermilab
use an electromagnetic interaction term of
the W± whose 4-current does not satisfy
the continuity equation (2.4).

The foregoing discussion shows some
inconsistencies of the Standard Model of particle
physics (SM). It turns out that other SM problems
do exist. Here is just one example. The hard
photon data show that ”the limiting photon total
cross sections on neutrons and protons are
nearly the same” (see [23], p. 269). Evidently,
a proton and a neutron have different charged
constituents. Hence, the photon’s interaction
with their charged constituents cannot explain the
data. An expression called the hadronic structure
of the photon aims to provide an explanation for
the effect. This explanation says that a physical
photon is a combination of a massless pointlike
pure electromagnetic photon and a massive
composite hadron, which is a bound state of
quarks. However, this explanation is theoretically
unacceptable, because it violates the Wigner
analysis of the unitary representations of the
inhomogeneous Lorentz group [24]. This
analysis proves that a massive quantum particle

and a massless quantum particle are completely
different objects. And indeed, although the
photon is an elementary particle, and the proton
and the neutron are the best well-known baryons,
SM textbooks do not discuss the interaction
of a hard photon with a nucleon. It means
that the SM provides no explanation for the
fundamental physical effect of hard photon-
nucleon interaction.

6 CONCLUDING REMARKS

This work shows the consistency of the Dirac
theory of a massive quantum particle, that
is described by first order partial differential
equation with respect to the four space-time
coordinates. In particular, the 4-current (3.3)
and the associated density (3.4) are consistently
described. These variables enable the extraction
of the Dirac Hamiltonian operator from the
Hamiltonian density. This objective is required for
the Weinberg correspondence between QFT and
quantum mechanics. Moreover, it is well known
that the Dirac 4-current enables a consistent
description of electromagnetic interaction (3.8).

By contrast, inherent problems hold for massive
quantum particles, like those of the KG, W±, Z
and the Higgs bosons, which are described
by second order partial differential equations
(see [5], pp. 16, 17, 701, 715). In particular,
no consistent expression for density holds,
and electromagnetic interactions of charged
particles are described by non-Maxwellian
phenomenological expressions. Furthermore,
a consistent Hamiltonian operator cannot be
extracted from the Hamiltonian density, and a
Hilbert space cannot be constructed. Hence, the
Weinberg correspondence principle fails.

The flexibility of the Dirac theory, which has
two different 4-vectors, γµ and ∂µ, is shown
as a useful theoretical element. These 4-
vectors enable a construction of a consistent
Lagrangian density which is a Lorentz scalar
whose dimension is [L−4]. Second order
quantum theories have no analog for the Dirac
γµ 4-vector, and they have no consistent
expressions for the Lagrangian density. In
particular, no consistent 4-current exists and it
is proved above that the fundamental structure
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of Maxwellian electrodynamics fails. Moreover,
no Hamiltonian operator exists, and the time-
independent Heisenberg picture cannot be used.
It is also shown that an indirect support for these
conclusions can be found in mainstream scientific
literature. The present structure of the SM is
based on the above mentioned theories of the
W±, Z and the Higgs bosons. This work proves
that the SM suffers fundamental problems.

The solid status of the Dirac electron theory
is manifested in experimental tests and in
textbooks. Here are just few examples:

1. The Dirac theory predicts the existence of
an antiparticle of a Dirac particle, where
the antiparticle has the same physical
properties as those of the Dirac particle,
but its charge takes the opposite sign.
This issue is experimentally confirmed and
the mass, magnetic moment and charge
of the positron agree with those of the
electron for more than 7 decimal digits
[10].

2. A calculation of the magnetic moment of a
Dirac electron agrees with experiment for
10 decimal digits (see [25], p. 7).

3. R. P. Feynman, who has made an
important contribution to QED, has
described it as ”the jewel of physics–our
proudest possession” (see [25], p. 8).
Evidently, the Dirac electron theory is an
important part of QED.

No similar experimental or theoretical evidence
pertain to theories of other quantum particles.
This state of affairs indicates that problems
may exist with other quantum theories. This
work proves that indeed, problematic points do
exist in quantum theories of elementary massive
particles that have a second order equation.

It is interesting to mention that these results
agree with Dirac’s lifelong objection to second
order equation of a massive quantum particle
(see [2], p. 14, [26], p. 3).
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