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Abstract 

 
The study of graph width parameters is highly significant in graph theory and combinatorics. Among these 

parameters, linear-width is particularly well-regarded and established. The concepts of Single Filter and 

Linear Obstacle pose challenges to achieving optimal linear-width in a connectivity system. In this concise 

paper, we present an alternative proof that establishes the cryptomorphism between Single Filter and Linear 

Obstacle. Although this proof may not be highly novel, we hope it will enhance the understanding of the 

intricate relationship between graph width parameters and ultrafilters. 
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1 Introduction 
 

The "graph width parameter" is a metric in graph theory that measures the width of a graph. It generally 

represents the maximum width across all cuts or layers in a hierarchical decomposition of the graph. The study 

of width parameters is pivotal in graph theory and combinatorics, as evidenced by the extensive literature on this 

topic (e.g., [1-6,7-12,13-26]).  

 

One of width parameter is tree-width and branch-width. Branch-width and tree-width are two important 

concepts in graph theory that measure different aspects of a graph's complexity. Each provides a framework for 

understanding how a graph can be decomposed, which has applications in algorithm design and other areas of 

theoretical computer science. Similarly, linear width, a specialized variant of branch-width, has also been 

extensively explored. Thus, the investigation into both branch-width and linear width is of critical importance. 

 

The concept of a Single filter, introduced in reference [3], serves as a modeling tool for the mathematical "filter" 

in Boolean algebra and topology. Within a connectivity system, the Single filter acts as the counterpart to linear 

width, a relationship that is also discussed. Connectivity systems provide a mathematical framework primarily 

used in graph theory and combinatorial optimization to analyze the connectivity properties of structures such as 

graphs, networks, and matroids. Additionally, the concept of a linear obstacle in a connectivity system is 

identified as another counterpart to linear width [6,22]. 

 

In this paper, we explore the cryptomorphism result between single filters and linear obstacles. While this proof 

may not be highly novel, we aim to enhance the understanding of the intricate relationship between graph width 

parameters and ultrafilters [27,28]. 

 

2 Definitions in This Paper 
 

This section provides mathematical definitions for each concept. In this short paper, we use expressions like A 

⊆ X to indicate that A is a subset of X, A ∪ B to represent the union of two subsets A and B, both of which are 

subsets of X, or A = ∅  to signify an empty set. Specifically, A ∩ B denotes the intersection of subsets A and B. 

A similar logic applies to A \ B. 

 

2.1 Symmetric submodular function and connectivity system 
 

A symmetric submodular function is a set function characterized by both submodularity and symmetry, meaning 

it exhibits diminishing returns and remains unchanged when elements are interchanged. This function is widely 

used in combinatorial optimization, particularly in applications such as clustering, facility location, and network 

design. Although symmetric submodular functions typically assume real values, this paper specifically focuses 

on those functions restricted to natural numbers. The definition of a symmetric submodular function is provided 

below [29]. 

 

Definition 2.1.1  

 

Let X be a finite set. A function f: X → ℕ is called symmetric submodular if it satisfies the following conditions:  

 

∀A⊆X, f(A) = f(X\A). ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

 

To illustrate the use of the function and provide a clear understanding, here is an example. 

 

Example 2.1.2 

 
Consider X = {a, b, c} and the function f: X → ℕ defined as follows: 

 

f(∅) = 0,f({a}) = f({b}) = f({c}) = 1,f({a, b}) = f({a, c}) = f({b, c}) = 2,f({a, b, c}) = 1 

 

This function is symmetric because f(A) = f(X ∖ A) for all A ⊆ X.  
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It is also submodular because for any A, B ⊆ X, the inequality f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) holds. For 

example, let A = {a} and B = {b, c}: 

 

f(A) + f(B) = f({a}) + f({b, c}) = 1 + 2 = 3, f(A ∩ B) + f(A ∪ B) = f(∅) + f({a, b, c}) = 0 + 1 = 1 

 

Since 3 ≥ 1, the function satisfies the submodularity condition. ■ 

 

A symmetric submodular function possesses the following properties. This lemma will be utilized in the proofs 

of lemmas and theorems presented in this paper. 

 

Lemma 2.1.3 [7] 

 

A symmetric submodular function f satisfies: 

 

 1. ∀A⊆X, f(A) ≥ f(∅) = f(X) = 0, 

 

 2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

 

In this brief paper, a connectivity system is defined as a pair (X, f) consisting of a finite set (an underlying set) X 

and a symmetric submodular function f. And, throughout this paper, we use the notation f to refer to a symmetric 

submodular function, a finite set (an underlying set) X, and natural numbers k, m. A set A is said to be k-efficient 

if f(A) ≤ k [30]. 

 

2.2 Single filter on a connectivity system (X,f) 
 

The definition of a single filter on a connectivity system (X,f) is given below. The concept of a single filter is 

useful when discussing linear branch-decomposition. 

 

Definition 2.2.1 [3] 

 

Let X represent a finite set and f denote a symmetric submodular function. A subset S ⊆ 2X   is called an order k 

+ 1 single ultrafilter on a connectivity system (X, f) if it satisfies the following conditions: 

 

(S1) For any A ∈ S, e ∈ X, if f({e}) ≤ k and f(A ∩ (X/{e})) ≤ k, then A ∩ (X/{e}) ∈ S. 

 

(S2) For any A ∈ S and A ⊂ B ⊆ X, if f(B) ≤ k, then B ∈ S. 

 

(F3) ∅ is not belong to S. 

 

(S4) For any A ⊆ X, if f(A) ≤ k, either A ∈ S or (X/A) ∈ S. 

 

And single ultrafilter is non-principal if the single ultrafilter satisfies following axiom: 

 

(F5) A ∉ S for all A ⊆ X with |A| = 1, f(A)≦k. 

 

2.3 Linear obstacle on a connectivity system (X,f) 
 

The definition of Linear obstacle is shown below. This concept is deep relation to (k,m)-obstacle in literature 

[6]. And the concept of a linear obstacle is useful when discussing linear branch-decomposition. 

 

Definition 2.3.1 [22] 

 

Let X represent a finite set and f denote a symmetric submodular function. In a connectivity system (X,f), the set 

family O ⊆2X is called a linear obstacle of order k + 1 if the following axioms hold true: 

 

(O1) A ∈ O, f(A) ≤ k, 
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 (O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O, 

 

 (O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ 1 ⇒ either A ∈ O or B ∈ O. 

  

3 Results: Cryptomorphism between Single Filter and Linear Obstacle 
 

The result of this short paper is below. This theorem demonstrates the cryptomorphism between a single filter 

and a linear obstacle. 

  

Theorem 3.1 

 

 Let X represent a finite set and f denote a symmetric submodular function. Assuming that f({e}) ≤ k for every e 

∈ X, S is a single ultrafilter of order k+1 on (X,f) if and only if O={A| X\A∈S} is a linear obstacle of order k+1 

on (X,f). 

 

Proof: To prove this theorem, we need to show two implications: 

 

- If S is a single ultrafilter of order k+1, then O = {A | X \ A ∈ S} is a linear obstacle of order k+1. 

- If O = {A | X \ A ∈ S} is a linear obstacle of order k+1, then S is a single ultrafilter of order k+1. 

 

(1) Single Ultrafilter to Linear Obstacle: 

 

Assume S is a single ultrafilter of order k+1. We need to show that O = {A | X \ A ∈ S} satisfies the axioms 

(O1), (O2), and (O3) of a linear obstacle. 

 

Condition (O1): Let A ∈ O and f(A) ≤ k. By definition, A ∈ O means X \ A ∈ S. Since f(A) ≤ k, f(X \ A) = f(A) ≤ 

k, which by the definition of S being a single ultrafilter means X \ (X \ A) = A ∈ S, ensuring A ∈ O. 

 

Condition (O2): Let A ⊆ B ⊆ X, B ∈ O, and f(A) ≤ k. Since B ∈ O, X \ B ∈ S. Given f(A) ≤ k, f(X \ A) ≤ k. 

Because X \ A ⊇ X \ B and X \ B ∈ S, by condition (S2), X \ A ∈ S, hence A ∈ O. 

 

Condition (O3): Let A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, and |C| ≤ 1. We need to show 

that either A ∈ O or B ∈ O. Assume for contradiction that A ∉ O and B ∉ O. Then X \ A ∉ S and X \ B ∉ S. Since 

f(A) ≤ k and f(B) ≤ k, f(X \ (X \ A)) = f(A) ≤ k and f(X \ (X \ B)) = f(B) ≤ k, by condition (S4) of the single 

ultrafilter, either X \ A ∈ S or X \ B ∈ S. This leads to a contradiction. Therefore, either A ∈ O or B ∈ O. 

 

Hence, O satisfies all conditions for being a linear obstacle of order k+1. 

 

(2) Linear Obstacle to Single Ultrafilter: 

 

Assume O = {A | X \ A ∈ S} is a linear obstacle of order k+1. We need to show that S satisfies the axioms (S1), 

(S2), (S3), and (S4) of a single ultrafilter. 

 

Condition (S1): Let A ∈ S and e ∈ X such that f({e}) ≤ k and f(A ∩ (X \ {e})) ≤ k. Since A ∈ S, X \ A ∈ O. Given 

f(A ∩ (X \ {e})) ≤ k, f(X \ (A ∩ (X \ {e}))) = f((X \ A) ∪ {e}) ≤ k. By condition (O2), since (X \ A) ∪ {e} ∈ O, X \ 

(A ∩ (X \ {e})) ∈ S, so A ∩ (X \ {e}) ∈ S. 

 

Condition (S2): Let A ∈ S and A ⊆ B ⊆ X such that f(B) ≤ k. Since A ∈ S, X \ A ∈ O. Given f(B) ≤ k, f(X \ B) ≤ k. 

Since X \ B ⊆ X \ A and X \ A ∈ O, by condition (O2), X \ B ∈ O. Therefore, B ∈ S. 

 

Condition (S3): By definition, ∅ ∉ S. 

 

Condition (S4): For any A ⊆ X, if f(A) ≤ k, either A ∈ S or X \ A ∈ S. Since O = {A | X \ A ∈ S}, and f(A) ≤ k, by  

 

Condition (O3), either A ∈ S or (X \ A) ∈ S. 
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Thus, S satisfies all conditions for being a single ultrafilter of order k+1.Since both implications are true, the 

theorem is proven. 

 

4 Conclusion 
 

We proved the cryptomorphism result between single-filter and linear obstacle. We plan to continue examining 

the algebraic characteristics of single filters in the future.  
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