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Abstract 
Accurately approximating higher order derivatives is an inherently difficult 
problem. It is shown that a random variable shape parameter strategy can 
improve the accuracy of approximating higher order derivatives with Radial 
Basis Function methods. The method is used to solve fourth order boundary 
value problems. The use and location of ghost points are examined in order 
to enforce the extra boundary conditions that are necessary to make a 
fourth-order problem well posed. The use of ghost points versus solving an 
overdetermined linear system via least squares is studied. For a general 
fourth-order boundary value problem, the recommended approach is to ei-
ther use one of two novel sets of ghost centers introduced here or else to use a 
least squares approach. When using either ghost centers or least squares, the 
random variable shape parameter strategy results in significantly better accu-
racy than when a constant shape parameter is used. 
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1. Introduction 

This work examines Radial Basis Function (RBF) methods for the solution of 
fourth order boundary value problems (BVPs) involving the linear Biharmonic 
equation  
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For the problem to be well posed, two boundary conditions  

( ) ( )1 1 2 2, , ,u g x y u g x y= =   

must be applied at each boundary point where 1  and 2  may be Dirichlet, 
Neumann, Robin, or Laplace type boundary conditions. The Biharmonic equa-
tion is used in numerous applications such as the flex of elastic plates, the flow of 
particulate suspensions, the flow of molten metals and in the modeling of fluid 
flow. 

Two inherent difficulties exist for fourth order BVPs. First, it is more difficult 
to accurately approximate fourth order derivatives than it is to approximate 
lower order derivatives. A variable shape parameter is used to alleviate this issue. 
Second is the need to apply two boundary conditions at each boundary point. 
Two approaches have been used previously to enforce the dual boundary condi-
tions. The first is to solve an overdetermined linear system via least squares (LSQ) 
[1]. The second is to add ghost points (also called fictitious points or ghost cen-
ters) in order to apply the second boundary condition [2] [3]. This leads to a 
square linear system to solve, but there is no theory that dictates how to locate 
the ghost points. The best locations seem to be problem dependent. 

In addition to the RBF method with ghost points or least squares, other ap-
proaches to solving higher order BVPs have been used. Some of the approaches 
include: wavelet methods in references [4] and [5], a differential transformation 
method in [6], and a decomposition shooting method in [7]. 

2. RBF Methods for BVPs 

RBF methods for BVPs are based on differentiating a RBF interpolant. RBF in-
terpolation uses a set of N distinct points { }1 , ,c c

NX x x=   in d  called cen-
ters. No restrictions are placed on the shape of problem domains or on the loca-
tion of the centers. The RBF interpolant has the form  

 ( ) ( )21
,

N
c

N k k k
k

f x a x xφ ε
=

= −∑  (2) 

where a is a vector of expansion coefficients. The RBF expansion coefficients are 
determined by enforcing the interpolation conditions  

 ( ) ( ) , 1,2, ,c c
N k kf x f x k N= =   (3) 

which result in a N N×  linear system  

 Ba f=  (4) 

to be solved for the expansion coefficients. The matrix B with entries  

 ( )2
, , , 1, ,c c

jk j k kb x x j k Nφ ε= − =   (5) 

is called the system matrix. The shape parameter kε  may be the same at each 
center, a constant shape parameter, or may be different at each center, a variable 
shape parameter. Throughout, the inverse multiquadric (IMQ) RBF  
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 ( )
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1
1

r
r

φ
ε

=
+

 (6) 

is used in all examples. The IMQ is a representative member of the class of glob-
al, infinitely differentiable RBFs containing a shape parameter and that interpo-
late with exponential accuracy under suitable circumstances [8]. With a constant 
shape parameter, the IMQ system matrix is symmetric positive definite (SPD) 
and therefore is invertible. 

It is well established that the RBF method is most accurate when the system 
matrix is poorly conditioned [9]. Typically it is most accurate when the condi-
tion number of the system matrix B is ( )1610 . In some cases, the theoretically 
SPD system matrix may not be numerically SPD and a Cholesky factorization 
will fail. However, the linear system can be effectively regularized by the method 
of diagonal increments (MDI) [10] [11] so that the matrix is numerically SPD 
and also potentially restore several decimal places of accuracy when compared to 
the unregularized system. 

Derivatives are approximated by differentiating the RBF interpolant as  

 ( )( ) ( )21
,

N
c

N k k k
k

f x a x xφ ε
=

= −∑    (7) 

where   is a linear differential operator. The operator   may be a single dif-
ferential operator or a linear differential operator such as the Laplacian or Bi-
harmonic operator. Evaluating (7) at the centers X can be accomplished by mul-
tiplying the expansion coefficients by the evaluation matrix H  with entries  

 ( )2
, , , 1, , .c c

jk j k kh x x j k Nφ ε= − =   (8) 

That is, f H a≈  . Alternatively, derivatives can be approximated by mul-
tiplying the function values at the center locations, ( ){ }

1

Nc
k k

f x
=

, by the differen-
tiation matrix 1D H B−=   since  

 ( ) ( )1 1 .f H a H B f H B f− −≈ = =    (9) 

The solution of fourth order BVPs is approximated by solving a linear system  

 Ha F=  (10) 

using LU factorization for the expansion coefficients of the solution and then the 
solution is obtain by multiplying the expansion coefficients by the system matrix  

 .u Ba=  (11) 

The form and shape of H depends on how the boundary conditions are en-
forced. 

Let IN  be the number of interior points, BN  the number of boundary 
points, GN  the number of ghost centers, I BN N N= +  the number of centers, 
and GM N N= +  the number of centers and ghost points. Additionally, let c

Ix  
be interior centers, c

Bx  be boundary centers, and c
Gx  be ghost centers. 

In the least squares approach, centers are in an array that is ordered as 
;c c

IX x x =    and the linear system Ha f=  for the expansion coefficients has 
the form  
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( )
( )
( )
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



 (12) 

The three blocks of H have elements  

( ) ( )2
, , 1, , 1, ,c c

j k k Ijk x x j N k Nφ φ ε= − = =    

( ) ( )1 1 2
, , 1, , 1, ,c c

j k k Ijk x x j N N k Nφ φ ε= − = + =    

( )( ) ( )2 2 2
, , 1, , 1, , .

B

c c
j k k Ij N k x x j N N k Nφ φ ε

+
= − = + =    

In the overdetermined system H is M N× , a is 1N ×  and F is 1M × . The 
approximate solution is then u Ba=  where the elements of the system matrix B 
are given by Equation (5). 

If two boundary conditions are applied at each boundary point, centers are in 
an array that is ordered as ; ;c c c

IX x x x =     and the linear system Ha f=  for 
the expansion coefficients has the form  

 

( )
( )
( )

1 1

2
2

c
I

c
B

c
B

f x

a g x

g x

φ
φ
φ

 
   
   =   
    

 





 (13) 

The three blocks of H have elements  

 ( ) ( )2
, , 1, , 1, ,c c

j k k Ijk x x j N k Mφ φ ε= − = =    

 ( ) ( )1 1 2
, , 1, , 1, ,c c

j k k Ijk x x j N N k Mφ φ ε= − = + =    

 ( ) ( )2 2 2
, , 1, , 1, ,c c

j k kjk x x j N M k Mφ φ ε= − = + =    

The approximate solution is then ˆu Ba=  where the elements of the system 
matrix B are given by Equation (5) and the vector â  contains the first N ele-
ments of a. 

When ghost centers are used, the linear system still has the structure of Equa-
tion (13), but instead of the boundary points being repeated, ghost centers are 
added to the end of the array of centers, that is ; ;c c c

IX x x x =    . This changes 
the last GN  elements of the right vector in (13) from ( )2

c
Bg x  to ( )2

c
Gg x . 

The described RBF method for boundary value problems is known as the 
asymmetric RBF collocation method due to the fact that the matrix H is not 
symmetric. The method is also known as Kansa’s method [12] in reference to the 
researcher who first described the method. 

Even when employing a constant shape parameter, the evaluation matrix H 
cannot be shown to always be invertible. In fact, examples have been constructed 
in which the evaluation matrix is singular [13]. Despite the lack of a firm theo-
retical underpinning, extensive computational evidence indicates that the matrix 
H is very rarely singular and the asymmetric method has become well estab-
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lished for steady problems. 
Kansa’s method is well documented in the research monographs [8] [14]-[16] 

which can be consulted for more information on the method and for more ex-
amples of application of Kansa’s method. 

3. Variable Shape Parameter 

In the majority of implementations of RBF methods a constant shape parameter 

kε ε=  is used. Another possibility is to use a different value of the shape para-
meter kε  at each center k which is called a variable shape parameter strategy. 
Variable shape strategies result in shape parameters that are different in each 
column of the system matrix (5) and the evaluation matrix (8). Figure 1 plots 
several IMQ basis functions with a constant and variable shape. In the left image, 
the basis functions are all horizontal translations of the same basis function 
when a constant shape is used. In the right image, a variable shape results in the 
basis functions having different shapes as is the case in polynomial based me-
thods. One argument for using a variable shape parameter is that it leads to 
more distinct entries in the RBF matrices which in turn lead to lower condition 
numbers. A negative consequence of using a variable shape is that the system 
matrix is no longer symmetric and the standard results of the invertibility of the 
system matrix for a constant shape parameter no longer apply. However, with 
Kansa’s method for BVPs this is not an issue as stated in Section 2, the matrix H 
(11) cannot be shown to always be invertible with a constant shape. 

 

 

Figure 1. Left: basis functions with the same shape parameter. Right: basis functions with 
different shape parameters. 

 
Several variable shape parameter strategies have been proposed and can be 

found in reference [15]. The particular variable shape parameter strategy em-
ployed in this work is the random variable shape that is described in [17]. In this 
strategy, the shape parameter is specified as  

 ( ) ( )min max min rand 1, .k Nε ε ε ε= + − ×  (14) 

Equation (14) returns N random shape parameters between minε  and maxε . 
The function rand returns random samples from a uniform distribution over 
[ )0,1 . Each time the function is called, different random numbers are returned. 
However, the results can be made reproducible if the rand function is given the 
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same seed before each function call as is illustrated in the follow Python code 
fragment:  

 

 
 

In the numerical results that follow, the random variable shape implementa-
tion is compared with constant shape implementations using the average shape 
parameter  

 ( )avg max min
1
2

ε ε ε= +  (15) 

as well as minε  and maxε . 
In subsequent sections, the random variable shape parameter and constant 

shape parameter are compared in approximating higher order derivatives and 
the solution of fourth order BVPs. Additional comparisons with interpolation 
problems, lower order derivatives, and second order BVPs can be found in ref-
erence [17]. 

4. Approximating Fourth Order Derivatives 

Polynomial based pseudospectral methods, such as the Chebyshev pseudospec-
tral (CPS) method, have closed form formulas for the elements of their differen-
tiation matrices (DMs) [18] [19]. Despite being able to accurately specify the 
elements of its DMs, the CPS method is less accurate for higher order derivatives 
than it is for lower order derivatives. Formulas for the RBF DM elements do not 
exist. Instead an ill-conditioned linear system must be solved to form DMs 
which makes the problem of accurately calculating higher order derivatives even 
worse. The random variable shape parameter strategy of the previous section can 
be used to somewhat alleviate this problem. 

To illustrate, the first four derivatives of the infinitely differentiable function  

 ( ) ( )sine xf x π=  (16) 

are approximated on the interval [ ]1,1−  at 100N =  centers located at the 
Chebyshev-Gauss-Lobatto points  

 cos , 0,1, , 1
1k

kx k N
N

 = − = − −
π

 
  (17) 

that are required in the implementation of the CPS method. The results are in 
Table 1. The RBF method is implemented with a random variable shape rang-
ing between min 2.4ε =  and max 4ε =  with avg 3.2ε =  and with three constant 
shapes that correspond to minε , maxε , and avgε . Moving from the first to fourth 
derivative, the CPS method loses approximately three accurate decimal places 
with each increase in derivative order. All three constant shape RBF methods are 
less than half as accurate as the CPS method and do not have any decimal places 
of accuracy in approximating the fourth derivative. The RBF method with a 
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random variable shape parameter has approximately four more decimal places 
of accuracy than any of the three constant shape methods. All four of the RBF 
methods have system matrices with condition numbers that are either ( )1510  
or ( )1610 . 

 
Table 1. Order ρ  derivative accuracy. 

ρ  2.4ε =  3.2ε =  4ε =  2.4 4ε≤ ≤  CPS 

1 7.0e−6 7.6e−6 8.2e−6 5.2e−10 1.5e−12 

2 3.1e−3 4.5e−3 6.0e−3 4.3e−7 5.8e−9 

3 6.6e−1 1.3e+0 2.1e+0 1.2e−4 3.8e−6 

4 8.5e+1 2.2e+2 4.5e+2 1.7e−2 5.1e−3 

5. Ghost Centers 

Ghost centers have been used in a variety of different methods for the numerical 
solution of differential equations. The points have been used for several reasons. 
The reasons include eliminating spurious eigenvalues and time stepping difficul-
ties in the pseudospectral method solution of high order time dependent PDEs 
[20], for applying boundary conditions for fourth order BVPs in the RBF me-
thod, and for improving the accuracy of the RBF method for the solution of 
second order BVPs by adding ghost centers in order to collocate both the PDE 
and apply boundary conditions at the boundary points [21]. This work focuses 
solely on the use of ghost centers for applying boundary conditions in fourth 
order BVPs. 

There is no theoretical guidance available that specifies how to locate ghost 
points in order to obtain the best result. Rather, their use seems more art than 
science. A fundamental difference exists in using ghost points in polynomial 
based methods, such as pseudospectral and finite difference methods, and RBF 
methods since polynomial based methods depend on the locations of centers 
and RBF methods do not depend on center locations, but only the distances be-
tween centers. A large number of strategies to locate the points have been consi-
dered in the literature and it is not possible to evaluate each strategy. The fol-
lowing four representative strategies of how to add Nb ghost centers have been 
considered. Figure 2 illustrates the four strategies for a domain that is a unit 
square. 

• Strategy G1 reuses the boundary centers as ghost centers. The ghost centers 
coincide with the boundary centers (upper left image of Figure 2).  

• Strategy G2 uses ghost centers with locations that are small random pertur-
bations of the boundary centers. With strategy G2 the ghost centers may be in-
side or outside of the domain (upper right image of Figure 2).  

• Strategy G3 places ghost centers in an outline of the domain boundary that 
is the same shape as the boundary. The outlining ghost centers may be close or 
far from the domain boundary (lower left image of Figure 2). References [1] [2] 
[22] and [23] have used this strategy.  
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Figure 2. Interior centers (black), boundary centers (blue), and ghost centers (red). Up-
per left: strategy (G1). Upper right: strategy (G2). Lower left: strategy (G3). Lower right: 
strategy (G4). 

 
• Strategy G4 places ghost centers in a circle outside of the domain (lower 

right image of Figure 2). Reference [3] uses a similar strategy, but locates centers 
randomly outside a domain and not necessarily in a circle.  

While strategies G3 and G4 have been used elsewhere in the literature, we are 
unaware of strategies G1 and G2 previous being used. 

6. Numerical Examples 

A fourth order ODE BVP and three problems containing the Biharmonic oper-
ator in two space dimensions are considered. In the two dimensional problems, 
scattered centers are located according to a minimal energy algorithm imple-
mented in the software package from reference [24]. The centers are scattered 
but cover domains in a fairly uniform manner. Each problem is evaluated using 
each of the four ghost center strategies and also by using a least squares ap-
proach which does not add ghost centers but instead solves an overdetermined 
system. 

6.1. 1d BVP 

The first example considered is the ODE BVP  

 ( ) ( ) ( )4 4exu x u x− =  (18) 

on the interval [ ]0,1Ω = . Both Dirichlet and Neumann boundary conditions 
are applied at each boundary point as follows:  

( ) ( ) ( ) ( )0 1, 0 2, 1 2 and 1 3e.u u u e u′ ′= = = =  
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The exact solution is ( ) ( )1 exu x x= + . On the interior and boundary, 50N =  
non-uniformly spaced centers are distributed according to  

 
( )( )( )

( )
arcsin 0.99cos 11 1 , 0,1, , 1.

2 arcsin 0.99 2k

k N
x k N

− π −
= + = −  (19) 

The centers are more densely clustered near the boundary points than in the 
interior of the domain. Ghost centers are located outside the domain a distance 
δ  from each endpoint. 

The numerical results are in Table 2. Taking 0δ =  corresponds to ghost 
point strategy G1 and with a variable shape parameter produces the most accu-
rate results with the solution having eight accurate decimal places. However, 
with a constant shape, the results are highly inaccurate. The reason why will be 
explored in the next example. With 0.01δ =  (strategy G2), the constant and 
variable shape approaches all result in about one accurate decimal place in the 
solution. The second most accurate approach is the LSQ method with a variable 
shape parameter which has about five more accurate decimal places than the 
LSQ method with a constant shape. 

 
Table 2. Max errors from the solution of problem (18). 

 2.2ε =  2.4ε =  2.6ε =  2.2 2.6ε≤ ≤  

0δ =  4.0e+9 1.1e+7 5.0e+6 1.32e−9 

0.01δ =  1.9e−2 1.9e−2 1.8e−2 1.8e−2 

1δ =  2.7 3.3 3.8 2.4 

LSQ 2.3e−3 6.8e−3 4.9e−3 5.2e−8 

6.2. Linear Biharmonic Equation 

Equation (1) is considered on a domain which is the unit square and with the 
forcing term  

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

4 4

4

, 16 cos 2 1 cos 2 16 cos 2 1 cos 2

32 cos 2 cos 2 .

f x y x y y x

x y

π π π π π π

π π

− −

+ π

= +
 

Dirichlet  

( ) ( )( ) ( )( ), 1 cos 2 1 cos 2u x y x y= − −π π  

and Neumann conditions  

0u
n
∂

=
∂

 

are enforced. The exact solution is  

( ) ( )( ) ( )( ), 1 cos 2 1 cos 2 .u x y x yπ − π= −  

Example center and ghost center locations for the problem are in Figure 2. 
The numerical results were obtained with 541IN = , 84bN =  and 709M = . 
Ghost center strategy G4 used a circle with radius 0.4R =  and center ( )1.5,1.5 . 
The numerical results are in Table 3. 
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Table 3. Max errors from the solution of the linear Biharmonic equation on the unit 
square. 

 1.8ε =  2.0ε =  2.2ε =  1.8 2.2ε≤ ≤  

G1 1.2e+3 2.9e+4 3.4e+2 3.4e−6 

G2, 0.01δ =  3.4e−4 5.5e−5 4.1e−5 1.9e−6 

G3, 0.1δ =  1.3e+3 4.1e+3 1.9e+4 1.4e−6 

G3, 0.01δ =  3.6e+6 1.8e+7 6.7e+5 3.0e−5 

G4 2.2e−4 4.9e−3 2.1e−2 1.8e−3 

LSQ 2.5e−3 2.3e−3 2.6e−3 2.2e−4 
 

The least accurate constant shape approaches are with G1 and G3 with both 
0.1δ =  and 0.01δ = . In the right image of Figure 3, for a large range of shape 

parameter, the condition number of the matrix H is in excess of 1019. Such large 
condition numbers are difficult to calculate accurately in double precision float-
ing point arithmetic and indicate that the matrix is essentially numerically sin-
gular. Note how much better the matrices are conditioned with a variable shape 
in the left image of the figure. This improvement in conditioning results in the 
significant increase in accuracy of the three approaches when a variable shape is 
used. The most accurate results are with a variable shape parameter and with 
ghost center strategies G1, G2 with 0.01δ = , and G3 with 0.1δ = . 

 

 

Figure 3. Condition number of H with the four ghost point strategies. Left: variable shape. Right: 
constant shape. 

6.3. A Complexly Shaped Domain 

This example considers a Biharmonic type equation  

 ( ) ( ) ( )2 2 sin cos ,u uu xyu y x y x f x y
x y
∂ ∂

∆ + + − =
∂ ∂

 (20) 

where  

 
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
, cos sin cos sin sin cos

2 cos cos sin sin

f x y xy x y y x x y y x y x x

y y x y x y x

= + + + −

+ + +
 (21) 

in a complexly shaped domain. The domain is bounded by the curve  

( ){ }, | cos and sinx y x yρ θ ρ θ∂Ω = = =  
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where 0 2θ≤ ≤ π  and ( ) ( )2cos 2 1.1 sin 2ρ θ θ= + −  (Figure 4). Both Di-
richlet boundary conditions  

 

 

Figure 4. Left: domain shape and scattered centers for problem (20). Right: pointwise errors from vari-
able shape parameter and ghost center G1 approach. 

 
( ) ( ) ( ), sin cosu x y y x x y= +  

and Laplace type boundary conditions  

( ) ( ) ( ), cos sinu x y x y y x∆ = − −  

are applied. The exact solution is  

 ( ) ( ) ( ), sin cos .u x y y x x y= +  (22) 

The numerical results in Table 4 were obtained with 343IN = , 77bN =  
and 497M = . This is a relatively sparse discretization of the domain with such 
a small number of centers. Ghost point strategy G4 was implemented with a cir-
cle of radius 0.5R =  and center (5, 5). Strategy G3 was easily implemented for 
the simply shaped square domain in the previous example but it is significantly 
more difficult to effectively implement G3 with a more complexly shaped do-
main and thus its results are omitted. 

 
Table 4. Max errors for problem (20). 

 1.5ε =  1.6ε =  1.7ε =  1.5 1.7ε≤ ≤  

G1 2.4e+4 1.5e+4 1.4e+3 5.3e−4 

G2, 0.001δ =  4.5e−4 4.9e−4 8.6e−4 2.2e−3 

G4 1.6e−1 1.1 9.8e−2 3.5e−1 

LSQ 1.5e−1 2.4e−1 3.2e−1 3.7e−3 

 
With a variable shape parameter, method G1 (right image of Figure 4) has 

three accurate decimal places followed by G2 and LSQ with 2 accurate decimal 
places. With a constant shape, G2 with very small perturbations of the boundary 
points with 0.001δ =  was most accurate. In addition to the results in Table 4, 
similar or even better accuracy, can be obtained with other variable shape para-
meter ranges. For example, if the LSQ approach is taken with the same center 
locations that produced the results in Table 4 and with the shape parameter 
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range 0.9 1.9ε≤ ≤ , the maximum error is 6.3e−4. 

6.4. Steady Incompressible Fluid Flow past a Cylinder 

This example considers the Biharmonic Equation (1) on the semi-annular do-
main in Figure 5. The forcing term is ( ), 0f x y = . On the two linear portions 
of the boundary from (−5, 0) to (−1, 0) and from (1, 0) to (5, 0), a Dirichlet BC,  

0u = , and a BC 
2

2 0u
y
∂

=
∂

 are enforced. On the outer semi-circular portion of 

the boundary a tangential BC, 0u
s
∂

=
∂

, and a Laplace type BC, 0u−∆ = , are 

specified. On the inner semicircular portion of, the boundary a Dirichlet BC, 

0u = , and a Neumann BC, 0u
n
∂

=
∂

, are applied. Reference [22] derives the ex-

act solution for the problem which is  

( ) ( ) ( )2 2 2 21
2 3 42 2

1, ln
5

k yu x y k y k y x y k y x y
x y

 
= + + + + + + 

 

where  

( ) ( )
1 2

1225 12, 4441776 2500ln 5 25ln 5
25

k k= =
− + −

 

and  

( ) ( )( )3 4
1 25, .444 2 888 1250ln 5ln 5

625

k k= =
−− +

 

 

 

Figure 5. Left: Domain and scattered centers for fluid flow past a cylinder problem. Right: pointwise 
errors from variable shape parameter and ghost center G2 approach. 

 
The PDE models creeping fluid flow through a periodic arrangement of cy-

linders [25]. 
The numerical results in Table 5 in the relatively large domain were obtained 

with 2325IN = , 175bN =  and 2675M = . Ghost point strategy G4 is imple-
mented with a circle of radius 1R =  that is centered at (20, 20). In this example 
the variable shape LSQ approach is most accurate followed by method G2 with 

0.05δ =  with a variable shape parameter (right image of Figure 5). 
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Table 5. Max errors from the cylinder flow problem. 

 0.5ε =  1.0ε =  1.5ε =  0.5 1.5ε≤ ≤  

G1 7.9e+14 4.3e+14 1.2e+15 1.6e−2 

G2, 0.05δ =  3.2e−2 2.2e−2 1.1 5.9e−4 

G4 2.2e−1 3.1e−2 9.5e−2 1.5e−2 

LSQ 9.1e−4 1.9e−2 3.3e−1 1.1e−4 

 
As in the previous examples, the shape parameters used many not be optimal 

for all approaches. For example, if 0.5 1.4ε≤ ≤  is used the LSQ error is 8.2e−5. 
Reference [2] solves the same problem using the RBF method with the multi-

quadric RBF [15] using a ghost center strategy somewhat similar to the G3 
strategy described here excepted that the ghost centers are not the same distance 
from the domain boundary around the entire boundary. The best reported ac-
curacy that is realized in reference [2] is about one accurate decimal place. In 
reference [2], the location of the ghost points are displayed in an image but a 
formula for their exact location is not given. Thus, we were not able to fairly 
compare to their results. 

7. Conclusions 

The numerical solution of fourth order boundary value problems is challenging 
due to the inherent difficultly in accurately approximating fourth order deriva-
tives and due to the necessity of applying two boundary conditions at each 
boundary point. It has been demonstrated that a random variable shape para-
meter strategy can allow the Radial Basis Function method to realize several 
more decimal places of accuracy in approximating any order derivative when 
compared to the more commonly used constant shape parameter approach. 

Two approaches have been used to apply the dual boundary conditions that 
are necessary to make a fourth order BVP well-posed: a least squares solution of 
an overdetermined linear system and the use of ghost centers. Ghost centers 
have been successfully used by multiple researchers but a theoretical underpin-
ning that states where the centers should be located does not exist. The optimal 
locations seem largely problem dependent. 

In all numerical examples, the random variable shape parameter strategy per-
formed better than using a constant shape parameter regardless of whether least 
squares or a ghost center methodology was used. The variable shape least 
squares approach was not the most accurate on the majority of examples, but it 
produced accurate results on each of the problems. Instead of the location of 
ghost points being problem and boundary condition dependent, strategies G1 
and G2 with a variable random shape parameter provided good results in all 
example problems and were easily implemented for any shaped domain. 

The least squares approach and ghost center strategies G1 and G2 with a ran-
dom variable shape parameter are the recommended approaches. Each can easily 
be implemented for a fourth-order boundary value problem regardless of the 
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type of boundary conditions or the shape of the domain. All results in this ma-
nuscript are reproducible via scripts in the folder/papers/JAMP2024/ in version 
2.1 of the Python Radial Basis Function Toolbox [26]. 
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