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ABSTRACT 
 

Zinc is an essential micro-nutrient that affects metabolic activities, including growth and cell 
proliferation in all living organisms. Zinc deficiency in agricultural soil has been increasing at an 
accelerated rate all over the world, leading to its deficiency in plants as well as humans. Zinc 
solubilising bacteria (ZSB) solubilise complex zinc in soil into plant absorbable compounds through 
several mechanisms such as the production of acid, chelating compounds, protons etc. further 
improving its bioavailability in plants and humans. Improving zinc nutrition through microbes is an 
effective measure to overcome its deficiency. ZSB with Plant Growth Promoting (PGP) traits can be 
an additional advantage as along with increasing zinc amount in plant it would also promote overall 
growth of plants through PGP traits and can act as a biocontrol agent against several crop 

Review Article 



 
 
 
 

Panda et al.; Int. J. Plant Soil Sci., vol. 36, no. 6, pp. 420-435, 2024; Article no.IJPSS.116935 
 
 

 
421 

 

pathogens. In this review we attempt to study the significance of zinc; status and deficiency of zinc 
in Indian soil and to understand how zinc solubilizing bacteria can prove to be an effective measure 
to increase zinc content in plants and overcome its deficiency. 
 

 
Keywords: Zinc; rhizosphere; deficiency of Zn; zinc solubilising bacteria; soil bacteria; plant growth 

promoting rhizobacteria; Zn nutrition. 
 

1. INTRODUCTION 
 
Zinc is an essential micronutrient for all living 
things. It is an essential component of several 
enzymes that are required for the synthesis, 
degradation, and metabolism of lipids, proteins, 
nucleic acids, carbohydrates, and other 
micronutrients. The molecular structure of 
cellular components must be preserved by zinc 
in order to maintain the integrity of cells and 
organs [1]. Deficiency of zinc affects metabolic 
activities, including growth and cell proliferation 
in plants, humans and microorganisms [2]. Zn 
deficiency prevails among approximately 2 billion 
people in the world causing growth retardation, 
an impaired immune system, hair loss, diarrhoea 
and delayed sexual maturation. Plants uptake 
zinc from the soil and subsequently, it moves up 
the food chain to humans. Prevalialence of zinc 
in soil is in the form of augite, biotite, hornblende, 
olivine, and sphalerite ores. Zinc deficiency in 
agricultural soil accounts for 49% of the global 
scale and in India, 48-50 % of such soil is 
deficient in zinc. This decline in soil 
micronutrients leads to low yield of crops 
including rice and also causes deficiency in 
human population causing several diseases. 
Rice being a staple food, consumed by maximum 
population, increasing its zinc content by 
fortification can be a step to overcome zinc 
deficiency in humans. In India, low Zn soils often 
cause insufficient intake of Zn in the human 
population causing its deficiency. In Odisha, rice 
variety Swarna is widely cultivated, which is also 
deficient in Zinc [3]. 
 
Despite the fact that the soil contains more than 
enough zinc to sustain crop growth, plants are 
unable to absorb it because of inaccessible zinc 
fragments. The availability of zinc in the soil is 
influenced by a wide range of factors, such as 
soil phosphorus, pH, texture, and weather. Since 
zinc quickly transforms into inaccessible 
components and accumulates in the soil, 
exogenous zinc use in fertilisers is also 
unconventional. The anticipated global 
population in 2050 will reach 9.7 billion people 
(approx.). India population is expected to 
increase by addition of 273 million by 2050 [4]. 

With the application of chemical fertiliser 
applications and many breeding procedures to 
boost the Zn content in cereal grains, 
researchers are looking at several strategies to 
reduce Zn insufficiency among human 
populations [5]. Zinc is supplemented to the soil 
through expensive chemical fertilizers in the form 
of Zn-Sulphate or Zn-EDTA which changes to 
insoluble complex structures within 7 days of 
application and cause environmental hazard [6]. 
Hence, an effective and inexpensive alternative 
to the chemical application is the use of Zinc 
Solubilizing Bacteria (ZSB).  
 
Several methods have been employed recently 
to lessen host plant zinc deficiencies. Among 
these, applying chemical fertilisers is an 
expensive and unsustainable method that 
increases crop susceptibility to diseases and 
gradually lowers soil fertility. Furthermore, 
careless fertiliser application has contaminated 
the water and soil, posing a risk to plant life as 
well as human health. As a result, scientists are 
particularly interested in using affordable, 
environmentally friendly methods to increase 
nutrient availability (particularly zinc) without 
compromising the environment [7]. ZSB readily 
solubilise complex zinc present in soil into 
soluble compound improving its bioavailability 
and uptake by the crop plants, subsequently 
entering to human through the food [8]. Zinc 
solubilising bacteria solubilise complex zinc by 
mechanisms like acidification [9], production of 
siderophores [8] and proton, oxidoreductive 
systems on cell membranes. Biofortification of 
Zinc through microbes is an effective measure to 
overcome its deficiency [10]. ZSB with Plant 
Growth Promoting traits can be of additional 
advantage which cannot only increase availability 
of Zn and other elements in soil but also can 
enhance growth of plants through PGP traits and 
can perform as a biocontrol agent against 
several crop pathogens [11].  
 
Therefore, an attempt has been made to review 
the significance of zinc; status and deficiency of 
zinc in Indian soil and to understand how zinc 
solubilizing bacteria can effectively increase zinc 
content in crops and overcome its deficiency. 
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2. SIGNIFICANCE OF ZINC 
 

2.1 Plants 
 
Zinc (Zn), an essential micronutrient, is required 
for healthy plant, animal, human, and microbial 
growth and development. It is essential for 
protein synthesis, glucose metabolism, enzyme 
activation and activities in general [12]. Zinc has 
a critical function in plant physiology, particularly 
in photosynthesis, chlorophyll synthesis, nitrogen 
metabolism, and stress resistance in plants. It is 
necessary for the development of optimal fruit 
size and high crop yields [13,14]. Zn is required 
for auxin synthesis in plants. Basically, auxin 
governs the process of cell division and 
elongation, hence in Zn deficit conditions, 
stunted growth, small & distorted leaves, reduced 
pollen production and internode restrictions are 
seen [15].  Moreover, zinc plays a significant role 
in transcription factors needed for cell 
differentiation and proliferation [16]. Zinc is 
primarily known to inhibit enzyme activities as an 
antioxidant and to cause high levels of oxidative 
stress, which may be the cause of the 
chloroplasts' deformation [17]. Reduced leaf 
photosynthetic ability as a result of such 
photosynthetic centre death makes leaves more 
vulnerable to photodegradation [18]. 
 

2.2 Animals and Human Beings 
 
All living organisms' cellular processes depend 
critically on zinc, which also helps 
human's immune systems. Several body 
enzymes have zinc as a catalytic and structural 
component. Zinc deficiency in the body can 
cause a variety of health issues, such as 
weakened body muscles, a compromised 
immune system, problems with learning and 
physical development, memory loss, hair loss, 
and skin problems. Inadequate levels of Zn also 
lead to DNA damage and can aggravate the risk 
of cancer [19]. Infertility is a common threat that 
has been observed with zinc deficient male 
population. In case of pregnancy, reduced Zn 
intake results in stunted brain development of the 
fetus and also congenital diseases like 
acrodermatitis enteropathica [20-24,12]. 
 

2.3 Microbes 
 
Zinc plays a significant role in the regulation of 
microbial virulence and host immune 
responses.Deficiency of zinc levels in microbes 
can cause imbalance in zinc homeostasis  and 
disregulation of intracellular signalling pathways. 

Additionally zinc acts as a cofacter for several 
bacterial proteins such as DNA replication and 
protein synthesis, hence it is required for 
enzymatic reactions, responses to oxidative 
stress situations, DNA repair and regulatory roles 
in various physiological processes in bacteria 
[25]. 
 

3. DEMAND AND SUPPLY OF ZINC 
 
Soil is the primary source of Zinc to plants 
whereas animals including humans obtain it 
through the food chain. Ideally, the Zinc 
concentration of healthy and productive soil 
should be 10–300 mg/kg [26]. However, it is the 
most deficient micronutrient in the soil and 
according to estimates, the zinc content of 49% 
of the world's agricultural soils is insufficient. 
About 50% of agricultural soil in India is affected 
with Zn deficiency, which ranges between 30-72 
mg/kg and hence, responsible for nearly 40% 
reduction in productivity [27]. Zinc content is 
considerably high, mostly present in mineral 
forms like smithsonite (ZnCO3), Zincite (ZnO), 
Sphalerite (ZnS) and several other ferrous and 
silicon mineral forms but it is insoluble and 
unavailable for plant uptake leading to its 
deficiency [21]. Optimal zinc concentration 
required for plants ranges between 20-100 
mg/kg. Since the soluble zinc content is low in 
soil, deficiency of zinc in plants has also been 
observed.  
 
Low Zn soils in India often result in inadequate 
Zn intake in the population, which causes a 
deficiency. Furthermore, one third of the world's 
population affected with zinc deficiency. 
Considering that human body is unable to store 
zinc, it has to be consumed from zinc enriched 
food sources. For an adult human, the optimal 
dietary requirement of zinc is 15mg per day [12] 
necessary component for several zinc binding 
proteins and nucleic acid. Meat products like 
beef, pork, chicken and breakfast cereals such 
as oats, almond, peanut, walnut etc. and yogurt, 
cheese, milk and other dairy products are known 
to be rich in Zinc content [28-31]. Reduced 
cellular immunity and a later antibody response 
can result from insufficient Zn absorption and 
uptake [32] hence, it is required to be taken up 
by human body in adequate amount. In case of 
animals, zinc supplements are found to be 
efficient for cattle to accelerate recovery in case 
of bovine rhinotracheitis [33]. Zn deficiency 
causes several viral infections in animals. Even 
though it is required in a less amount zinc is truly 
indispensable by all living forms. 
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4. CAUSE OF ZINC DEFICIENCY IN SOIL 
 
In soil zinc is mainly present in complex insoluble 
form that is unavailable to plant. Worldwide, zinc 
concentration of soil ranges approximately 
between 2-25 ppm of which a large proportion is 
trapped in iron and manganese oxides and other 
insoluble forms [34] leading to zinc deficiency 
and significantly affecting the crop yield. There 
are several factors that give rise to zinc 
deficiency in soil. Soil texture for instance; 
scalped and sandy soils are more prone to zinc 
deficiency than well managed soils such as silty 
or clayey soil. Besides, severe soil compaction 
leads to zinc deficit conditions. In addition to soil 
texture; pH, phosphorous and Iron content and 
weather conditions influences the zinc content of 
the soil. Solubility of zinc is mostly influenced by 
the pH of the soil; hence, alkaline conditions 
reduce zinc's solubility and availability. 
Consequently, zinc deficiency widely prevails in 
soil with pH above 6.5 [35]. Along with pH, zinc 
deficiency appears more in flooded soil and wet 
weather as compared to sunny weather [36,34]. 
Hence water content of the soil is an important 
determinant for bioavailability of zinc [37]. 
Furthermore, overuse of Phosphorous fertilizers 
may lead to zinc deficiency in some cases as 
phosphorous precipitates zinc in soil or at root 
soil interface and intervene with zinc metabolism 
inside the plant cells [34]. High concentration of 
Iron has also found to decrease the bioavalability 
of Zinc under anaerobic condition [38]. 
Therefore, in order to enhance the bioavailability 
of Zn, use of organic matter could be taken into 
account [39]. 
 
Insufficient amount of Zinc in soil severely affects 
the quality of production and yield of crops. It 
was opined by several researchers that 15-60 
ppm of Zn supply is necessary for proper 
metabolic functioning of plant tissue and crop 
plant [40,41]. In agricultural practices expensive 
chemicals in form of Zn-Sulphate and Zn-EDTA 
are applied to the soil to supplement zinc. 
Nevertheless, these chemical inputs 
subsequently change into insoluble complex 
structures within 7 days of application and cause 
environmental hazard [6]. Besides, these 
fertilizers are expensive and unaffordable by the 
farmers. Hence, an organic, environment friendly 
substitute to the chemical approach is the 
application of Zinc Solubilizing Bacteria (ZSB) 
which readily solubilises complex Zinc present in 
soil into a soluble compound increasing its 
availability to plants. 
 

5. ZINC SOLUBILIZING BACTERIA (ZSB) 
 
A particular group of microorganisms can be 
used to convert the soil insoluble zinc into 
soluble form can overcome zinc deficiency 
achieving the objective of nutrient management 
and sustainable agriculture [42]. ZSB are the 
rhizospheric bacteria which can be used in the 
form of bio-inoculants to increase availability of 
native zinc for crop assimilation. Several 
bacterial and fungal strains are known to 
solubilise zinc. Some zinc solubilising                   
bacteria are species of Bacillus, 
Gluconacetobacter, Azotobacter, Azospirillum, 
Thiobacillus ferrooxidans, Thiobacillus 
thiooxidans, Acinetobacter, Cyanobacteria, 
Serratia, Pseudomonas and facultative 
thermophilic iron oxidizers [43-45]. (Table.1). In 
case of fungal strains, arbuscular mycorrhizae 
and Trichoderma are known to exhibit zinc 
solubilising traits [46]. Bacillus sp. are given 
special interest as they are spore-forming, hence 
they can sustain in adverse stress conditions, 
and can be mass cultured into easy formulation 
and also known to form non-specific association 
with several host crops [47-49]. Bacteria 
immobilize zinc metal by the process of 
precipitation and adsorption. As zinc is a limiting 
factor in crop productivity, zinc solubilization by 
bacteria plays an important role in zinc nutrition 
to plants [45]. 
 
Although adopting suitable crop rotation can 
prove to be a positive agronomy approach for 
improving Zn phytoavailability, application of 
beneficial zinc solubilising rhizospheric microbes 
as bio-inoculants to increase tissue zinc 
concentration in plants and crops can be 
advocated to be a long-term cost-effective 
solution to attain sustainable agriculture [48] and 
to eliminate the zinc malnutrition in humans                 
[80]. Therefore, utilization of zinc solubilising                
and mineralizing bacteria could be a                         
relevant solution to zinc deficiency in crops and 
human. 
 

6. MECHANISMS OF ZSB 
 
Zinc solubizing bacteria solubilise complex zinc 
through various mechanisms like production of 
chelating ligands, amino acids, vitamins, 
phytohormones, siderophores, acidification, 
oxido-reductive systems on the cell membrane 
and proton extrusion [81]; [9]; [63]. Some of the 
basic mechanisms exhibited by ZSBs for zinc 
solubilisation are: 
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6.1 Acidification 
 

Among all, the secretion of organic acids is a 
major zinc solubilizing process ZSB release 
organic acids in the soil that sequester Zinc 
cations while simultaneously decreasing the pH 
of the neighbouring soil and making it available 
to plants, increasing Zn content [9]. Amongst all 
the organic acids, 2-ketogluconic acid and 
gluconic acid produced by the isolates, results in 
solubilisation of zinc. However, the organic acid 
secretion by microbes varies depending upon the 
substrate of Zn minerals. It is also reported that 
some species of ZSB produce several organic 
acids such as oxalic, lactic, citric, malic, glycolic, 
malonic, tartaric, formic and succinic acids to 
solubilise zinc [82-84]. Additionally, a change in 
pH with inoculation of Pseudomonas spp. and 
Bacillus spp. in broth culture indicate 
solubilisation of ZnS, ZnO and ZnCO3 [81]. 
Furthermore, the acid production tends to vary 
with respect to the Zn substrate provided in the 
media [84]. Several reports have suggested that 
ericoid and arbuscular mycorrhizal fungi lower 
the pH of rhizospheric soil by producing organic 
acids that solubilise complex zinc [56,85]. 
Bacillus sp. AZ6 was able to readily solubilize 
complex metals by secreting cinnamic, caffeic, 
chlorogenic, syringic, ferulic and gallic acid in a 
liquid medium [44]. 
 

6.2 Chelating Ligands 
 

There are specific and non-specific transporters 
involved in essential metal ions uptake across 
the cytoplasmic membrane of bacteria driven by 
a chemiosmotic gradient [86]. Zinc is a highly 
reactive metal that is less persistent in soil which 
leads to its deficiency in plant. Zinc bioavailability 
can be enhanced with help of Zn chelating 
compounds [87]. The rhizospheric microflora is 
known to release Zn chelating compounds that 

increase its availability to plant roots. Reports 
suggest that production of Zn chelating 
metallophores by Pseudomonas monteilii, 
Microbacterium saperdae and Enterobacter 
cancerogenus  helps in generation of soluble 
zinc molecules in soil for plant uptake [88]. 
Another report suggested that biofertilizer 
consortia of Pseudomonas sp. (96-51), 
Azospirillum lipoferum (JCM-1270, ER-20) and 
Agrobacterium sp. (Ca-18) produced ethylene 
diamine tetra acetic acid as a chelator that 
attached to Zn and increases its availability for 
plant uptake [89]. 
 

6.3 Alteration in Root Structure 
 
Reports also indicate that change in root 
structures affects the availability of soluble zinc. 
Increase in surface area and root growth can 
lead to maximum uptake of Zn [85]. For instance, 
mycorrhizal fungus tends to increase the surface 
area of the roots that results in increased uptake 
of nutrients including zinc by plants. Arbuscular 
mychrohhizae are able to acquire zinc from 
40mm distance of root surface [90]. With 
inoculation of potent ZSBs, there was 
accelerated growth in root weight, length, volume 
and zinc content of rice [89].  
 

6.4 Others 
 
In some cases, cell wall modification and bio-
precipitation has also been reported [91]. 
Gluconacetobacter diazotrophicus PA15 was 
able to solubilize ZnO by producing sugar such 
as glucose or sucrose as the potent carbon 
source [43].  Several Bacillus strains are known 
to readily solubilizes complex Zn through 
production of plant hormones, amino acids, 
proton extrusion and oxido-reductive systems of 
the cell membranes [92]. 

 

 
 

Fig. 1. Zinc solubilising bacteria mechanisms 
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Table 1. Some effective zinc solubilizers isolated and characterized 
 

Microorganisms known to solubilise zinc  Source of organism Source of Zinc References 

Aspergillus niger A.  omius A. oryzae - ZnO,  Zn3(PO4)2 [50] 

Penicillium luteum soil ZnO,  Zn3(PO4)2 [51] 
Pseudomonas fluorescence forrest soil Zn3(PO4)2 [52] 

Trichoderma harzianum Rifai soil Granular metallic Zn [53] 

Pseudomonas aeruginosa  Airborne bacteria isolated from a tannery air 
environment 

ZnO and  Zn3(PO4)2 [54] 

Bacillus sp. and Pseudomonas sp.  zinc ore sphalerite;  paddy soil ZnO, ZnS and ZnCO3. [55] 

Hymenoscyphus ericae and Oidiodendron maius)  
(Ericoid mychorrhizae) 

Heavy metal polluted sites ZnO, Zn3(PO4)2 [56] 

Beauveria caledonica Unpolluted soil, lawn, UK Zn3(PO4)2 [57] 
Gluconacetobacter diazotrophicus Rot tissue of carrot, raddish, beetroot and coffee ZnO ZnCO3 or  Zn3(PO4)2 [58,43] 

Klebsiella sp. Pseudomonas sp. Soybean  and Mung bean rhizosphere  ZnO,  Zn3(PO4)2 [21] 

Burkholderia sp., Acinetobacter sp.  and Acinetobacter 
sp.  

soil DTPA [59] 

A. terreus (ZSF-9) Agricultural field soils ZnO, ZnCO3,  Zn3(PO4)2 [60] 

Enterobacter cloacae Rice rhizosphere  ZnO,  ZnCO3, Zn3(PO4)2 [10] 

Bacillus cereus Zn deficit soil ZnO,  Zn3(PO4)2 [61] 

Ralstonia picketti, Burkholderia cepacia, and Klebsiella 
pneumoniae 

Zinc fertilizer rich rice rhizosphere ZnO , ZnCO3 [62] 

Bacillus sp., Bacillus aryabhattai , Bacillus subtilis  and 
Bacillus aryabhattai  

Maize Rhizosphere ZnO [63] 

Pseudomonas fragi , Pantoea dispersa  and Pantoea 
agglomerans  

soil ZnCO3 [9] 

Acinetobacter sp., Serratia sp.  Rice soil, Malaysia ZnO ZnSO4 [64] 

B. aryabhattai,  Pseudomonas taiwenensis Stone quarry Dust Powder ZnO,  Zn3(PO4)2, ZnCO3 [65] 
B. megaterium Rhizosphere of wild pepper ZnO,  Zn3(PO4)2 ZnCO3 [66] 
Agrobacterium tumefaciens and Rhizobium sp. Rhizosphere of barley and tomato  ZnO,  Zn3 (PO4)2, ZnCO3 [67] 
Pseudomonas sp. and Bacillus sp.  Chickpea Rhizospheric  (Zn3 (PO4)2.4H2O [68] 

Bacillus megaterium Cow dung ZnO , ZnCO3 [69] 

Sphingobacterium multivorum, Burkholderia 
cenocepacia, Bacillus xiamenensis, Burkholderia 
ambifaria, and Bacillus aerius 

Mycorrhizal corn roots  ZnO,  ZnCO3 [70] 
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Microorganisms known to solubilise zinc  Source of organism Source of Zinc References 

Acinetobacter baumannii; Burkholderia cepacia - ZnO, Zn3(PO4)2, ZnSO4.7H2O [71] 
Burkholderia vietnamiensis and Burkholderia seminalis Rice rhizosphere Zn3(PO4)2 and ZnCO3 [72] 

Pseudomonas frederiksbergensis Jujube rhizosphere ZnO, Zn3(PO4)2 [73] 

Serratia sp., Acenitobacter sp. Wetland Rice field ZnO, Zn3(PO4)2, ZnCO3 [74] 

Pseudomonas aeruginosa, Pseudomonas taiwanensis 
and Beijerinckia fluminensis 

Rhizospheric region ZnO, Zn3(PO4)2, ZnCO3 [75] 

Bacillus sp. & Enterobacter sp. Root nodules of wild legumes ZnCl2 (0.2-1.0 g conc.) [76] 

Priestia megaterium, Priestia aryabhattai Rhizosphere soils of peanuts, sweet potatoes, 
and cassava 

ZnO and ZnCO3 [77] 

Bacillus altitudinis, B. subtilis, B. 
megaterium, B.licheniformis, Brevibacillus borstelensis 
and B. xiamenensis 

Rhizosphere of wheat grown in the eastern parts 
of the Indo-Gangetic Plain of India 

ZnO, Zn3(PO4)2, ZnCO3 [78] 

Acinetobacter pittii and Stenotrophomonas maltophilia Soil and vegetation sample ZnSO4 [79] 
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7. ZSB WITH PLANT GROWTH 
PROMOTING TRAITS 

 
It is evident that zinc solubilising bacterial 
inoculants can be used to increase bioavailability 
of native zinc for crop assimilation and therefore 
can help in reducing zinc deficiency in crops and 
human being. The effectiveness of zinc 
solubilising bacteria can be enhanced if they also 
possess plant growth promoting traits in addition 
to the zinc solubilisation. In order to achieve 
proper growth and enhanced productivity, bio 
augmentation of zinc solubilising microbial 
strains with PGP traits is imperative. It can result 
in enhanced growth, increase in yield and quality 
of crop produce due to the direct and indirect 
mechanisms. The direct mechanisms include 
nitrogen fixation, phosphate solubilisation, 
siderophore production, phytohormone 
production (IAA & ACC Deaminase) etc. The 
indirect mechanisms mainly comprise of the 
application of microorganisms as biocontrol 
agents, to control the plant diseases [93,94]. 
That includes production of HCN, Induced 
systemic resistance (ISR), Siderophore, 
antifungal activity etc. [95]. Application of Zn-
solubilizing microorganisms with plant growth 
promoting characteristics can not only address 
zinc deficiencies in humans through crops, but 
can also be used as an alternative to chemical 
fertilisers and pesticides to improve crop growth 
and development. 
 
Several plant growth promoting rhizobacteria 
have been reported earlier as they are also 
known to solubilise complex zinc in soil. The 
prime focus of agriculture has always been to 
improve yield through plant breeding techniques 
but with regards to the nutritional quality of the 
crops, chemical supplements or industrial 
fortifications have always been prioritised. 
Biofortification of essential micronutrients is the 
process to increase availability of nutrients 
through microbial intervention which otherwise 
could be achieved through agronomic practices 
like conventional plant breeding and 
biotechnology viz. genetic engineering [96,97]. 
Although these approaches help in enhancing 
the nutrients availability, nevertheless are 
expensive, causes environmental pollution and 
ethical issues [12]. Hence to overcome this 
issue, the application of potent PGPR agents 
with ability to solubilise complex nutrients can 
prove to be a highly effective solution. Therefore, 
biofortification of crops with application of PGPRs 
can be an efficient supplementary method to 
improved nutrition and yield.  

8. ZINC BIOFORTIFICATION 
APPROACHES 

 

The deficit of zinc in humans can only be 
eradicated if its concentration is enhanced in the 
parts of plants that are consumed on a daily 
basis. Hence, the popularity of biofortification of 
such essential micronutrients in cereal crops 
countries has come to existence as they are the 
staple food in many developing countries [13,96]. 
The main approaches to biofortification include 
plant breeding, agronomic strategies and use of 
biotechnology. The major intent behind 
biofortification is to produce varieties that have 
maximum uptake and accumulation of Zn in the 
edible portion of the crops.  Agronomical 
strategies predominantly include zinc fertilizers 
which is a short term and trouble-free task. 
Different kinds of zinc fertilizers that are used for 
this process but predominantly zinc sulphate 
(ZnSO4) is applied to increase zinc concentration 
in crops. Although these approaches are 
effective, relentless use of chemical fertilizers in 
agriculture leads to pollution of soil and 
environment. These chemicals are highly 
persistent and turn into complex insoluble forms 
in soil.   
 

Although plant breeding strategies appears to be 
cost effective and sustainable, it is time 
consuming and complicated. Hence, there is 
necessity of developing a sustainable, effective 
and environment friendly approach to 
biofortification of zinc in grains. Transgenic 
approaches have considerable effects on 
biofortification process and the crop varieties with 
increased zinc concentration in grains [12].  The 
main targets for enhancing zinc concentration 
are the expression of ZIP family (transcription 
factors) and transport proteins which are 
responsible for zinc uptake and accumulation. 
However, overexpression of genes responsible 
for transport protein can lead to enhanced zinc 
uptake in the root regions [97].   
 

9. ROLE OF ZIP FAMILY IN ZINC 
SOLUBILISATION 

 

Zinc loading in grains is determined not only by 
the availability of zinc in the soil, but also by zinc 
uptake and translocation into the grains. 
Considering rice being the staple food, zinc 
fortification of rice grains could prove to be a 
propitious approach to diminish the zinc 
deficiency in humans. The expression of Zn 
transporting genes can be affected by ZSB 
inoculation in rice [10]. ZSB can regulate the 
uptake and translocation of zinc in plants. The 



 
 
 
 

Panda et al.; Int. J. Plant Soil Sci., vol. 36, no. 6, pp. 420-435, 2024; Article no.IJPSS.116935 
 
 

 
428 

 

zinc uptake can take place by transport 
mechanisms such as phytosiderophore 
production and ZIP family of transporters which 
as Zn-regulated transporters and Fe-regulated 
transporter like protein family [98]. The ZIP 
proteins are the Zn-regulated, Fe-regulated 
transporter like proteins that help in cellular 
uptake of Zn, translocation, intracellular 
trafficking and plant detoxification [99]. The ZIP 
family of transporters are responsible for the 
transportation of four essential micronutrients 
such as Zn, Fe, Cu and Mn [100,101]. ZIP family 
of proteins were first reported to be present in 
Saccharomyces cerevisiae and Arabidopsis 
thaliana [102,103]. However, about 15 members 
of ZIP protein family are found in Arabidopsis 
[101], 17 members in case of Rice (Oryza 
sativa), 12 members reported in Barley, 14 in 
wheat (Triticum aestivum) and 23 members of 
ZIP family reported in case of common bean 
[104,105]. ZIP proteins are comprised of 309 to 
470 amino acids having 8 transmembrane 
domains. The amino and carboxyl ends of the 
proteins are located on the outer surface region 
of the plasma membrane [98].   
 
Moreover, different plant ZIP family members 
have different functions when it comes to uptake 
and translocation. The expression of zip genes 
are known to vary from root to shoot to grains 
translocation. Particularly in Rice (Oryza sativa) 

several zip genes were reported such as: 
OsIRT1, OsIRT2, OsZIP1, OsZIP3, OsZIP4, 
OsZIP5, OsZIP6, OsZIP7 and OsZIP8 which 
regulate the zinc uptake from soil to root to shoot 
and also the storage in rice grains [106-107, 10].  
 
These ZIP genes are also known to be induced 
by zinc deficiency [18,108]. The upregulation of 
ZIP genes are known to occur due to expression 
of Leu-zipper transcription factors (bZIP19 AND 
bZIP23) [109]. Under zinc deficit situation, 
expression of OsZIP1 in roots was higher as 
compared to shoots [110,18]. The rice plasma 
membrane zinc transporters mainly include 
OsZIP1, OsZIP3, OsZIP4, OsZIP5 and OsZIP8 
which are also induced by zinc deficit conditions 
[111]. Furthermore, overexpression of OsZIP4 
and OsZIP5 leads to increased zinc 
accumulation in roots but decreased 
accumulation in shoots [106]. From germination 
to grain filling, expression level of all these rice 
ZIP genes was differed. Even though OsZIP1 
and OsZIP3 are constitutively present and 
expressed, the expression of OsZIP3 is generally 
localised in the area of nodes, therefore it is 
known to be responsible for translocation of zinc 
and its distribution to other developing tissues of 
the plant [112]. A recent report  opined that the 
Zn transporter OsZIP9 is responsible for the 
uptake of Zn in zinc deficit and hydrophonic 
conditions [105]. 

 

 
 

Fig. 2. Role of ZIPs in rice 
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Several reports suggest OsZIP1 is responsible 
for Zn uptake from soil [113], however the exact 
physiological functions of these ZIP genes and 
their role in Zinc uptake by plants remains poorly 
understood. Although the ZSBs are known to 
produce organic acids in their rhizospheric region 
to solubilise zinc and facilitate their uptake by the 
roots. ZSB can confer resistance on plants 
against specific abiotic stressors; consequently, 
enhancing ZSB density in the plant rhizosphere 
may serve as a viable substitute strategy to 
boost host plant growth and productivity [7]. 
However, to understand their role in regulation of 
expression of ZIP genes is still remains 
undefined. To elucidate the interaction between 
the zinc solubilizers and Zn transporters genes 
can help in eliminating zinc deficiency and 
improving zinc absorption by plants. ZSB 
inoculation of rice seedlings may regulate the Zn 
transporters protein expression through zinc 
assimilation. However, more research in this field 
is highly essential to understand the interactions 
and how it is helpful for zinc fortification. 
 

10. CONCLUSION 
 

The Zn deficiency is prominent in soil-plant 
system which leads to inadequate levels of zinc 
in humans. To improve the deficiency of zinc in 
soil chemical fertilizers are being supplemented, 
nevertheless they get converted into an insoluble 
complex that cannot be uptaken by the plants. In 
an attempt to increase the soluble or available 
zinc in soil, application of potent zinc solubilising 
bacteria can prove to be really beneficial to 
improve zinc nutrition in soil, plants and hence in 
humans. ZSBs solubilise zinc by acid production, 
chelation, production of amino acids, vitamins, 
proton extrusion etc. ZSBs are known to 
influence the expression of zinc transporters 
proteins belonging to ZIP family that help in its 
uptake and translocation. ZSBs possessing plant 
growth promoting traits such as nitrogen fixation, 
phosphate solubilisation etc. can potentially be 
an organic, environmentally friendly and cost-
effective approach to Zinc fertilizers, that can not 
only increase the zinc availability in soil but also 
can improve the nutrition and help in the growth 
of plants. 
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