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Simple Summary: Ophiopogon japonicus is susceptible to flooding because it grows in river alluvial
dams. In order to avoid the growth and development of Ophiopogon japonicus from being affected by
flooding, this project analyzed the changes in the genetic information of Ophiopogon japonicus under
flooding stress and identified genetic data that can enhance the flooding tolerance of Ophiopogon japon-
icus. These experimental results lay the foundation for breeding flood-tolerant Ophiopogon japonicus.

Abstract: Ophiopogon japonicus, a plant that thrives in river alluvial dams, often faces waterlog-
ging stress due to sustained rainfall and flood seasons, which significantly impacts its growth and
development. Currently, the mechanisms of waterlogging tolerance in Ophiopogon japonicus are
still unclear. This study analyzed the transcriptome and metabolome data for Ophiopogon japonicus
in the Sichuan region (referred to as CMD) under varying degrees of waterlogging stress: mild,
moderate, and severe. The results indicate that the group exposed to flooding stress exhibited a
higher number of differentially expressed genes (DEGs) compared to the control group. Notably,
most DEGs were downregulated and primarily enriched in phenylpropanoid biosynthesis, starch
and sucrose metabolism, and plant hormone signal transduction pathways. A total of 5151 differ-
entially accumulated metabolites (DAMs) were identified, with significantly upregulated DAMs
annotated to two clusters, namely flavonoids such as apiin, pelargonin, and others. Furthermore,
our study revealed significant upregulation in the expression of C2H2 (C2H2 zinc finger proteins)
and AP2/ERF-ERF (the subfamily ERF proteins of APETALA2/ethylene-responsive element binding
factors) transcription factors in CMD under flooding stress, suggesting their critical roles in enabling
CMD to adapt to these conditions. In conclusion, this research provides insights into the intricate
molecular mechanisms underlying CMD’s response to flooding stress and reports valuable genetic
data for the development of transgenic plants with improved waterlogging tolerance.

Keywords: Ophiopogon japonicus; transcriptome; metabolome; waterlogging; responding mechanism

1. Introduction

Ophiopogon japonicus (L. f.) Ker-Gawl (abbreviated as MD), which belongs to the
family Liliaceae, is a medicinal plant distributed in East Asia. Its dried tuberous roots
are used in traditional Chinese medicine [1]. MD cultivation is well-suited for the first
and second terraces of river alluvial dams due to the flat terrain and the presence of
primarily fresh alluvial soil with a moderate clay and sand content, meeting the ideal
growth conditions for MD. These river terraces also offer a network of self-flowing irrigation
channels, ensuring an adequate water supply for MD growth. However, the downside is
their susceptibility to waterlogging and flooding, imposing waterlogging stress on MD.
To mitigate the detrimental effects of waterlogging stress, agricultural practices such as
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ditching and draining, plowing and tilling, and increased application of organic fertilizers
have been implemented in production. However, these measures are associated with higher
labor costs [2]. Thus, the most effective approach and pivotal breeding objective remain
the development of MD varieties with enhanced flood tolerance to simplify cultivation
practices and reduce costs. Presently, most research on waterlogging tolerance in MD has
predominantly centered on the physiological aspects of resistance, leaving a substantial
gap in our understanding of the underlying molecular mechanisms.

Transcriptomic and metabolomic analyses are widely used in the field of plant molec-
ular research. Transcriptomics primarily focuses on analyzing gene expression in plants
across various developmental stages and under different environmental conditions to
elucidate the mechanisms governing plant growth, development, and adaptation to their
surroundings. Comparatively, metabolomics is used to study alterations in the composition
and content of metabolites within specific temporal and spatial contexts to establish connec-
tions between metabolites and physiological changes in plants. These powerful analytical
tools have been instrumental in investigating diverse aspects of plant biology including the
molecular mechanisms underlying plant growth, development, and the synthesis of active
compounds [3–6], responses to pests and pathogens [7–10], and the tolerance mechanisms
associated with abiotic stresses [11–14]. However, there is limited transcriptomic and
metabolomic research on MD under conditions of waterlogging stress.

MD primarily originates from regions in Sichuan and Zhejiang [15]. Sichuan MD
(abbreviated as CMD) represents a cultivated variety derived from the wild MD population
in the Sichuan area [16]. It possesses several advantages including a shorter planting dura-
tion, higher yield, and lower cost, which contribute to its dominant market presence and
make it the predominant MD species [17]. Therefore, CMD was selected for transcriptome
and metabolome analyses in this study, and the critical pathways of CMD adaptation to
waterlogging stress were identified by comparing the transcript levels of CMD genes and
metabolite accumulation under different degrees of waterlogging stress. These research
results reveal new genetic information on MD and the potential for improving the quality,
varieties, and waterlogging tolerance of MD.

2. Materials and Methods
2.1. Plant Material and Growing Conditions

CMD specimens were obtained from Sichuan Province, China (31◦30′ N, 104◦95′ E
and 31◦32′ N, 104◦89′ E) and botanically identified as Ophiopogon japonicus (L. f.) Ker-
Gawl by the researcher Tiezhu Chen. Tiller seedlings were cultivated in plastic pots in
the greenhouse facilities of the Sichuan Academy of Chinese Medicine Sciences (30◦37′ N,
104◦40′ E). During the growth and development of the CMD germplasm resources, watering
was controlled, and other cultivation management practices were kept consistent. After
an acclimatization period of 28 days, the seedlings were subjected to controlled watering
conditions and randomly allocated into four groups: control (BF-1), light waterlogging
(CF-1), moderate waterlogging (MF-1), and heavy waterlogging (SF-1), each comprising
three pots. The BF-1 group received standard watering, while the CF-1 group was exposed
to waterlogging conditions up to one-third of the roots, the MF-1 group was submerged up
to two-thirds of the roots, and the SF-1 group was inundated up to the rhizome junction.
The pots had a caliber of 24 cm, a base diameter of 19.5 cm, and a height of 26.5 cm. The
substrate was formulated with an organic matter content of 1.80 g/kg, total N 2.50 g/kg,
total P 1.50 g/kg, pH 6.8, and a maximum water holding capacity of the substrate of 25.87%.
After 21 days of incubation under these conditions, the roots were collected, washed with
distilled water, immediately frozen in liquid nitrogen, and stored at −80 ◦C for subsequent
transcriptome and metabolome analyses [18].

2.2. Transcriptome Analysis

RNA isolation and library construction were performed according to the manufac-
turer’s protocols with the RNeasy Plant Mini Kit (Qiagen, Germany) and NEBNext®Ultra™
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RNA Library Preparation Kit for Illumina® (NEB, Ipswich, MA, USA). The primer se-
quences (5′-3′): AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT; AGATCGGAA-
GAGCACACGTCTGAACTCCAGTCAC were used. A cDNA library was constructed
using CMD samples and sequenced in PE150 mode utilizing the Illumina NovaSeq6000
sequencing platform [19,20]. The raw sequencing data underwent a series of preprocessing
steps that involved the removal of reads containing adapters, reads containing poly-N
sequences, and low-quality reads. This preprocessing resulted in the generation of high-
quality clean data. Transcriptome assembly was performed using Trinity [21], with default
parameters except for the “min_kmer_cov” parameter, which was set to 2. Gene func-
tions were annotated by referencing several databases including NR (NCBI non-redundant
protein sequences) [22], Pfam (Protein family) [23], KOG/COG/eggNOG (Clusters of Or-
thologous Groups of proteins) [24], Swiss-Prot (a manually annotated and reviewed protein
sequence database) [25], KEGG (Kyoto Encyclopedia of Genes and Genomes) [26], and GO
(Gene Ontology) [27]. Intergroup DEGs were analyzed for BF-1, CF-1, MF-1, and SF-1 using
the DESeq R package (1.10.1) [28], and DEGs were functionally clustered via the KEGG
pathway and GO [29].

2.3. Metabolite Identification

The total metabolites of the CMD samples were extracted by initially weighing 50 mg
of the sample, followed by the addition of 1000 µL of an extraction solution containing an
internal standard (methanol: acetonitrile: water, 2:2:1, v/v, with 2-chloro-L-phenylalanine
(20 mg/L). The mixture was vortexed for 30 s and then subjected to mechanical disrup-
tion for 10 min using a grinder at 45 Hz, followed by a 10-min ultrasonication step in an
ice-water bath. Afterward, the sample was allowed to stand at 20 ◦C for 1 h and subse-
quently centrifuged at 4 ◦C and 12,000 rpm for 15 min. From the resulting supernatant,
500 µL was collected and vacuum-dried. Following this, 160 µL of an extraction solution
(acetonitrile:water, 1:1, v/v) was added, vortexed for 30 s, sonicated in an ice-water bath
for 10 min, and centrifuged at 4 ◦C and 12,000 rpm for 15 min. The analyzed sample was
processed using an LC-MS system (Aquity I-Class PLUS Ultra High-Performance Liquid
Tandem Waters Xevo G2-XS QTOF High-Resolution Mass Spectrometer) with separation
achieved using an Aquity UPLC HSS T3 column (1.8 µm, 2.1 × 100 mm) acquired from
Waters. Metabolites were detected in both cationic and anionic modes on a Waters Xevo
X2-XS QTof high-performance liquid spectrometer using the MSe mode, and the data were
obtained using MassLynx V4.2 software (Waters), which enabled the acquisition of primary
and secondary mass spectrometry data simultaneously. In each data acquisition cycle,
dual-channel data acquisition was conducted for both low and high collision energies,
where the low collision energy was set at 2 V, and the high collision energy ranged from
10 to 40 V. The parameters for the ESI ion source were configured as follows: capillary
voltage of 2500 V for positive ion mode and −2000 V for negative ion mode, cone-well
voltage of 30 V, ion source temperature of 100 ◦C, desolventization gas temperature of 500
◦C, blowback gas flow rate of 50 L/h, desolventization gas flow rate of 800 L/h, and a mass-
to-charge ratio (m/z) acquisition range of 50–1200. The raw data acquired using MassLynx
V4.2 were processed for peak extraction and peak alignment using Progenesis QI software
(4.0) [30]. The reproducibility of the samples was evaluated by principal component anal-
ysis (PCA). Metabolites were annotated utilizing the Kyoto Encyclopedia of Genes and
Genomes (KEGG), Human Metabolome Database (HMDB), and lipid profiles [31]. Based
on the grouping information, the degree of differences was computed and compared, and
the significance levels (p-values) for each compound were determined using a t-test. The
OPLSDA model was constructed using the R language software (3.6.1) package ropls [32],
and the model’s reliability was confirmed by 200 alignment tests. Multiple cross-validations
were conducted to calculate the VIP value of the model. Differentially expressed metabo-
lites were identified using a combination of criteria including fold change (FC > 1), p-value
(p-value < 0.05), and VIP value (VIP > 1). Statistical analysis of the metabolome data was
performed using the BMKCloud platform (Biotechnology Co. Ltd., Beijing, China).
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2.4. Real-Time Quantitative PCR Validation

Six genes were randomly selected for qRT-PCR. The specific primers were designed
using Primer Premier 5.0 software; details are shown in Table 1. The qRT-PCR was per-
formed in a 20 µL reaction mixture consisting of 10 µL of 2× ChamQ SYBR Color qPCR
Master Mix, 2 µL each of the upstream and downstream primers, 4 µL of template cDNA,
and ddH2O was added to reach a total volume of 20 µL. The reaction conditions were as
follows: initial denaturation at 95 ◦C for 30 s, followed by 40 cycles of 15 s at 95 ◦C, and 30 s
at 60 ◦C. The relative mRNA expression levels were calculated using the 2−∆∆Ct method,
and all experiments were conducted in triplicate.

Table 1. List of qRT-PCR primers in this study.

Gene Name Primer Sequence (5’-3’)

actin-F ATTCCCAAGGCAGCCACAA
actin-R ATACAGACACCCAGCCTCCTTTA
DN2723101-F CGTTCCTCAACAACTCCCAA
DN2723101-R GAAGAAAAGAAGTCAGTGTAATCCC
DN914502-F TTCACATGTATGCTGCTAACAAGTC
DN914502-R CAGGTAAGTCTACTGCAAAACGAAA
DN3612101-F CATAGGCACAACCACGGCA
DN3612101-R AATTTTCACCGTCCCAGCC
DN496621-F TAGGCCGACAATATTTCTAGAGATC
DN496621-R AATCCTCCACATCCGCCTT
DN122401-F ACCACCATCTCATCAAACTCCTCA
DN122401-R ATACAGCGTGAAGGTCAAGTCCC
DN1086201-F CAAACCTAGAGTGCATGACCATAAT
DN1086201-R GAGGGATTTTATCTCCATAGCGA

2.5. Statistical Analysis

Excel 2019 software was used for statistical analysis. Bar graphs are shown using the
mean ± SD of three independent experiments.

3. Results
3.1. Analysis of Transcriptome Results

Three root samples were collected from each of the following groups: blanks, mild
waterlogging (BF-1), moderate waterlogging (CF-1), and heavy waterlogging (SF-1) for tran-
scriptome sequencing, yielding a total of 12 qualified libraries, from which clean reads were
obtained by eliminating low-quality reads, resulting in approximately 76.25 Gb of clean
data. The clean data of each sample exceeded 5.73 Gb, with Q30 bases accounting for over
91.21%. A total of 53,704 unigenes were obtained after assembly. The assessment of the gene
expression level correlations among samples is important for verifying the reproducibility
of biological experiments, evaluating the reliability of differentially expressed genes (DEGs),
and identifying any outliers. In this study, Pearson’s correlation coefficient (PC) analysis
was used to assess the correlations and reproducibility among the samples. As shown in
Figure 1, duplicate samples exhibited significant clustering, indicating consistency among
biological replicates and reliable sequencing results. Differential gene screening, based
on the criteria of |Fold Change| ≥ 2 and FDR < 0.01, showed that the number of DEGs
exceeded 11,000 between SF-1 and the other three groups, with a notable predominance of
downregulated genes (Figure 2). In contrast, the number of DEGs between CF-1 and MF-1
was minimal, signifying minor gene expression variations between mild and moderate
waterlogging conditions, aligning with the findings presented in Figure 1.
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3.2. Differential Gene Function Analysis

In order to verify the biological functions of the differentially expressed genes in
response to the waterlogging stress treatments, we annotated these genes into the Gene
Ontology (GO) Database and classified them into three main categories: biological process,
cellular component, and molecular function. As shown in Figure 3, the top two enriched
GO entries remained consistent across various levels of waterlogging stress. In the bio-
logical process category, the differential genes were predominantly enriched in cellular
processes and metabolic processes. Likewise, in the cellular component category, these
genes exhibited enrichment in cellular anatomical entities and intracellular components.
In the molecular function category, the DEGs were primarily associated with binding
and catalytic activity. Notably, there were variations in the number of upregulated and
downregulated DEGs among the different treatment groups. Specifically, CF-1 demon-
strated a higher number of upregulated DEGs compared to downregulated DEGs, while
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the opposite trend was observed for MF-1 and SF-1, where downregulated DEGs exceeded
the upregulated DEGs in number.
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The KEGG enrichment analysis revealed distinct pathway enrichments in response
to different waterlogging treatments (Figure 4). In the CF-1 group, the DEGs were signifi-
cantly enriched in pathways related to phenylpropanoid biosynthesis, starch and sucrose
metabolism, and cysteine and methionine metabolism. For the MF-1 group, the DEGs



Biology 2024, 13, 197 8 of 17

exhibited significant enrichment in phenylpropanoid biosynthesis, plant hormone signal
transduction, and the starch and sucrose metabolism pathways. In the SF-1 group, the
differential genes were significantly enriched in pathways related to plant hormone signal
transduction, phenylpropanoid biosynthesis, and the MAPK signaling pathway-plant path-
way. Overall, it can be deduced that phenylpropanoid biosynthesis plays a pivotal role in
the response of CMD to waterlogging stress across all treatments, and as the severity of
waterlogging increased, there was a notable transition in the primary response pathway.
Specifically, the shift was observed from starch and sucrose metabolism in CF-1 and MF-1
to plant hormone signal transduction in MF-1 and SF-1.

3.3. Metabolomic Analysis

To investigate the inherent material differences within CMD in response to waterlog-
ging stress, LC-QTOF-MS metabolomics was performed to identify differential metabolites.
Principal component analysis (PCA) revealed a high level of data consistency among repli-
cate samples within each group (Figure 5), demonstrating clear separation of metabolites in
CMD subjected to varying degrees of waterlogging treatments. Metabolite identification in
this study was based on data detected in both positive and negative ion modes, resulting
in the annotation of a total of 5151 peaks. As illustrated in Figure 6, the flooded group dis-
played approximately 4000 differential metabolites (DAMs) compared to the blank group,
with approximately 2265 upregulated and 1700 downregulated DAMs. Remarkably, the
influence of waterlogging severity on DAMs was relatively minor. Specifically, the number
of upregulated DAMs decreased proportionally from mild to moderate waterlogging but
increased in the moderate waterlogging group compared to the heavy waterlogging group.
In essence, the variations in DAMs between different waterlogging levels were small. How-
ever, a significant difference was observed between the flooded and blank groups in the
number of DAMs.
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3.4. The Material Basis of CMD Response to Waterlogging Stress

The 5151 DAMs were categorized into eight clusters based on their abundance and
variance (Figure 7). Notably, the contents of metabolites in cluster 1, cluster 3, cluster 4,
and cluster 5 increased after waterlogging, while the contents of metabolites in clusters 2, 7,
and 8 decreased, and that of cluster 6 remained relatively stable. Cluster 3, encompassing
four metabolites, and cluster 5, comprising 21 metabolites, displayed significantly higher
levels of metabolites such as homoharringtonine, apiin, pelargonin, and chelidonic acid
in the flooded group compared to the blank group (Table 2). Collectively, our findings
suggest that these compounds may constitute the material basis for the adaptation of CMD
following submersion due to waterlogging stress.
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Table 2. Types and relative contents of differential metabolites in clusters 3 and 5.

Cluster Compounds Molecular
Formula

Molecular Weight
(g/mol) HMDB_taxonomy

cluster3 Homoharringtonine C29H39NO9 545.62 Cephalotaxus alkaloids
cluster3 Apiin C26H28O14 564.49 Naphthalenes
cluster3 All-trans-phytofluene C40H62 542.92 Prenol lipids
cluster3 Pelargonidin 3-O-beta-D-sambubioside C26H29O14 565.50 --
cluster5 Copal-8-ol diphosphate C20H38O8P2 468.50 --
cluster5 Ganoderenic acid A C30H42O7 514.65 Prenol lipids
cluster5 Solamargine C45H73NO15 868.06 Azaspirodecane derivatives
cluster5 OA-6129 A C20H31N3O7S 457.55 --
cluster5 O-Phospho-L-homoserine C4H10NO6P 199.02 Carboxylic acids and derivatives
cluster5 (3S,2′S)-4-Ketomyxol 2′-alpha-L-fucoside C46H64O8 745.00 --
cluster5 Bacoside A3 C47H76O18 929.10 --
cluster5 Schaftoside 4′-O-glucoside C32H38O19 726.60 Flavonoids
cluster5 Pelargonin C27H31O15 595.526 Flavonoids
cluster5 Muzanzagenin C27H38O5 442.60 Steroids and steroid derivatives
cluster5 Amaranthin C30H34N2O19 726.59 Betalains
cluster5 DL-4-Hydroxy-2-ketoglutarate C5H6O6 162.10 --
cluster5 PG(16:0/0:0) C22H45O9P 484.60 --
cluster5 D-Maltose C12H22O11 342.30 Organooxygen compounds
cluster5 3.alpha.-Mannobiose C12H22O11 342.30 --
cluster5 Chelidonic acid C7H4O6 184.10 Pyrans
cluster5 ω-Pentadecalactone C15H28O2 240.38 --
cluster5 Gypenoside XVII C48H82O18 947.20 Prenol lipids
cluster5 PG(20:2(11Z,14Z)/16:1(9Z)) C42H77O10P 773.00 --
cluster5 Dioctyl phthalate C24H38O4 390.60 Benzene and substituted derivatives
cluster5 DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) C39H64O5 612.90 Fatty Acyls

3.5. Key Pathways of CMD in Response to Waterlogging Stresses

Phenylalanine and tyrosine play vital roles in the waterlogging tolerance of CMD.
After exposure to waterlogging, the phenylpropanoid biosynthesis pathway of CMD
exhibited a response involving 20 key enzymes and 36 metabolites (Figure 8). Notably,
the expression levels of enzymes such as PAL, 4CL, and CCR decreased proportionally
with the severity of waterlogging. CMD’s strategy for coping with waterlogging stress
was found to primarily involve reducing phenylalanine and tyrosine metabolism while
increasing their accumulation.
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Figure 8. Differences in the phenylpropanoid biosynthesis pathway in CMD under different
levels of waterlogging. Heat maps representing the relative transcript levels of the enzymes.
PAL: phenylalanine ammonia-lyase; 4CL: 4-coumarate-CoA ligase; CCR: cinnamoyl-CoA re-
ductase; bglB/bglX/β-G: beta-glucosidase; CYP73A: trans-cinnamate 4-monooxygenase; CAD:
cinnamyl-alcohol dehydrogenase; UGT72E: coniferyl-alcohol glucosyltransferase; POD: peroxi-
dase; HCT: shikimate O-hydroxycinnamoyltransferase; CSE: caffeoylshikimate esterase; COMT:
caffeic acid 3-O-methyltransferase/acetylserotonin O-methyltransferase; CCoAOMT: caffeoyl-CoA
O-methyltransferase; REF1: coniferyl-aldehyde dehydrogenase; F5H: ferulate-5-hydroxylase; F6H:
feruloyl-CoA 6-hydroxylase; TOGT1: scopoletin glucosyltransferase.
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3.6. Key TFs of CMD in Response to Waterlogging Stresses

Multiple transcription factors (TFs) played a significant role in regulating the tolerance
of CMD to waterlogging. As shown in Figure 9, 14 of the top 20 ranked differential TFs
between the treatment and blank groups were common across all three waterlogging
treatment groups, representing a 70% overlap. Among these, the top five TFs included
C2H2, AP2/ERF-ERF, bHLH, and NAC, with four of them being shared. Together, these
four TFs accounted for 34.6% to 43.4% of the total among the top 20 TFs, highlighting their
pivotal role in regulating CMD’s waterlogging tolerance.
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3.7. Validation of qRT-PCR

To validate the accuracy of the DEGs, six key DEGs (DN2723101, DN914502, DN3612101,
DN496621, DN122401, and DN1086201) involved in phenylalanine and tyrosine metabolism
were selected for qRT-PCR validation. The results demonstrated that the expression trend
of the six selected genes in each sample was consistent with the RNA-Seq expression levels,
which highly confirmed the reliability and credibility of the RNA-Seq results (Figure 10).
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Figure 10. Expression verification of 6 key genes involved in phenylalanine and tyrosine metabolism
in CMD.

4. Discussion

The analysis of transcriptomic and metabolomic variations in CMD exposed to varying
degrees of waterlogging stress provides valuable insights into the intricate metabolic
adjustments CMD undergoes to adapt to such stress conditions. In the subsequent sections,
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we comprehensively discuss these gene expression products and metabolites to shed light
on these vital aspects of the response of CMD to waterlogging stress.

4.1. Impact of Waterlogging on the CMD Transcriptome and Metabolome

Metabolic regulation is an important mechanism enabling plants to sustain their
physiological functions during waterlogging [33–36]. Plant gene transcription and product
metabolism actively engage in multiple metabolic pathways to adapt to such stressors. In
the context of waterlogging stress, different plant varieties can exhibit significant impacts
on metabolic pathways and gene transcription levels. For instance, flood-tolerant onions
demonstrated a higher prevalence of downregulated genes [37], while cotton displayed a
robust response involving antioxidant enzyme genes and transcription factor genes after
20 days of waterlogging [14]. Similarly, waterlogging stress induced notable changes in
gene expression and metabolites in CMD. Interestingly, under mild waterlogging stress,
CMD exhibited a greater number of upregulated DEGs compared to downregulated DEGs.
In contrast, CMD subjected to moderate and severe waterlogging stress displayed a higher
number of downregulated DEGs than upregulated DEGs. Overall, across all inundation
groups, the number of upregulated DEGs exceeded the downregulated DEGs, with minimal
variation observed between the groups, suggesting that waterlogging stress significantly
influences gene expression and metabolite content in CMD, but their responses differ based
on the stress severity. While the degree of stress has a substantial impact on gene expression,
it has a comparatively lesser effect on the number of metabolites.

4.2. Significantly Adjusted Biosynthesis Responses in Waterlogged CMD

The tricarboxylic acid (TCA) cycle in mitochondria constitutes the respiratory metabolism
of plant cells and serves as a vital pathway for providing energy to various organelles, thereby
sustaining essential physiological functions [38]. Previous research has indicated that TCA
cycle metabolites such as succinate, α-ketoglutarate, and fumarate are reduced in drought-
tolerant maize following water stress [39]. Interestingly, after subjecting CMD to waterlogging
stress, most enzymes in the phenylpropanoid biosynthesis pathway displayed negative
feedback regulation, with their levels positively correlated with the severity of waterlogging,
which was directly proportional to the degree of waterlogging. The reduction in the gene
transcription of metabolic enzymes increased the accumulation of phenylalanine and tyrosine,
indirectly boosting the gene transcription activity of enzymes in the phenylalanine and
tyrosine metabolism pathways (Figure 11). The elevated levels of fumarate induced changes
in the tricarboxylic acid cycle pathway, subsequently impacting the metabolism of sugars, fatty
acids, and amino acids. These findings suggest that the regulation of primary metabolism,
particularly energy metabolism, may represent one of the strategies employed by CMD to
adapt to waterlogging stress. In addition, proteins involved in carbon metabolic pathways
such as glycolysis are also important material bases in response to waterlogging stress [40–42],
but need to be further explored and validated in CMD.

Secondary metabolites play a pivotal role in regulating various physiological activities
of plants, enabling them to adapt to diverse abiotic stresses [43–46]. For instance, Brassica
napus, subjected to drowning stress, exhibited a significant enrichment of different genes
in metabolic pathways including the biosynthesis of secondary metabolites and flavonoid
biosynthesis [33]. In soybeans, the content of flavonoids showed a proportional increase
with drought stress severity [47]. In the case of Syntrichia caninervis, after exposure to
drought conditions, the differentially expressed transcripts were significantly enriched in
pathways such as phenylpropanoid biosynthesis, which positively correlated with indi-
cators such as absolute water content [48]. Similarly, after CMD underwent waterlogging
stress, the levels of phenylpropanoid metabolism and flavonoid metabolism, initiated
by phenylalanine and tyrosine, were significantly impacted, resulting in the increased
accumulation of downstream metabolites and their derivatives including pelargonin, apiin,
schaftoside 4′-O-glucoside (Table 1). These observations suggest that alterations in the accu-
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mulation of secondary metabolites, particularly flavonoids, represent another mechanism
through which CMD adapts to waterlogging stress.
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In addition, the mechanism of plant response to waterlogging stress is also closely re-
lated to plant species and duration of flooding. For example, onion (Allium cepa L.) showed
significant changes in the phenylalanine metabolic pathway, pathogenesis-related proteins,
and energy production after 72 h of waterlogging treatment [37]. Cotton (Gossypium hir-
sutum L.) showed a significant increase in several metabolites including sinapyl alcohol,
adenosine, and galactaric acid after 10–20 days of waterlogging [14]. The mechanisms by
which CMD responds to waterlogging stress are different from the literature, but there are
similarities. After 21 days of waterlogging, the metabolite contents of apii, pelargonin, and
other metabolites were increased in CMD, which was different from the response mecha-
nism in cotton. The phenylalanine metabolic pathway also showed a downregulation in
gene transcription like onion, so it suggests that the phenylalanine metabolic pathway is
one of the important pathways in plant response to waterlogging stress.

4.3. Differentially Expressed TF Responses in Waterlogged CMD

TFs hold significant importance in the responses of plants to abiotic stressors [49–52].
Previous studies have established that members of the C2H2, AP2/ERF-ERF, bHLH, and
NAC TF families play crucial roles in the abiotic stress responses of plants and their ability
to tolerate waterlogging stress [53–58]. For instance, C2H2 and NAC TFs contribute to
maintaining iron homeostasis in waterlogged rice, a region known for Fe2+ toxicity [59].
C2H2 is involved in tissue and organ development in cucumbers and plays a role in
responding to various abiotic stresses such as drought, cold, and salt [60]. Additionally,
waterlogging stress has been associated with the upregulation of AP2/ERF-ERF and the
downregulation of bHLH in kiwifruit [61,62]. In this study, differential expression of
these TFs was also observed (Figure 12). The TFs C2H2, AP2/ERF-ERF, bHLH, and
NAC in CMD correlated positively with the severity of waterlogging stress as a whole.
Notably, the expression of C2H2 and AP2/ERF-ERF was higher than that of the control,
while the expression of bHLH and NAC was lower than that of the control, aligning with
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the existing literature, suggesting that C2H2, AP2/ERF-ERF, bHLH, and NAC are key
transcription factors regulating CMD genes under waterlogging stress, especially C2H2 and
AP2/ERF-ERF. C2H2 can regulate the effects of waterlogging stress by activating the ABA
pathway [63]. ERF-VII is a subgroup of AP2/ERF-ERF that mediates hypoxia signaling
in plants and interacts with calcium-dependent protein kinases to enhance plant hypoxia
sensing [64,65].
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5. Conclusions

In this study, we exposed CMD to mild, moderate, and severe waterlogging stress
treatments. Comprehensive transcriptomic and metabolomic analyses revealed that the
phenylpropanoid biosynthesis pathway in CMD exhibited negative feedback regulation in
response to waterlogging stress, leading to an increased accumulation of phenylalanine
and tyrosine, which impacted the phenylalanine metabolism, tyrosine metabolism, phenyl-
propanoid metabolism, and flavonoid metabolism pathways. Additionally, the expression
of transcription factors C2H2 and AP2/ERF-ERF was significantly upregulated, suggesting
their pivotal role in the adaptation of CMD to waterlogging stress. These findings con-
tribute valuable insights into the gene regulatory mechanisms involved in enhancing flood
tolerance for breeding flood-tolerant CMD varieties.
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