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Abstract 
 

Robust parameter design is a principle in quality improvement methodologies that is directed towards 

reducing the effects of errors which are either poised by the noise factors or the control factors. Response 

surface methodology is an effective approach to robust parameter design. Previous studies discussed Robust 

parameter design based on the response surface model by considering measurement errors in control variables 

for a single response variable. However, in process design, determining optimal levels of control variables is 

an important issue in some problems with different outputs. This study therefore investigates the impacts of 

measurement errors in the levels of control variables on processes with multiple quality characteristics 

(responses). Different variances of error were tested on the levels of control variables and the analysis of 

response surface modeling and optimization was performed. The result showed that as measurement errors in 

the levels of control variables increase, the coefficient of determinations for the multi-response and the 

expected quality loss deviates from what is obtainable in the initial state. It can be concluded based on the 

result however, that measurement errors in the levels of control variables exert impacts on robust parameter 

design for multi-response.  
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1 Introduction 
 

Robust parameter design (RPD) is a technique used to improve average quality in products and processes 

through the proper setting of levels of controllable variables. The technique was introduced by Taguchi [1,2] 

and it seeks to cut the effect of noise variables on the control variables (parameters in Taguchi’s terminology). 

To make the product or process robust, is to organize the levels of control variables to make the response 

(outcome) variables insensitive to the variability posed by noise variables. Taguchi suggested the signal-to-noise 

ratio statistics that provide information about the mean and variance and had been employed hugely to the 

characteristic analysis of systems in different aspects of the manufacturing industries with testimonies of good 

performance. He described the system as consisting of two categories of input variables – the controllable 

factors called the control factors denoted as X and the noise factors denoted as Z [3]. It is assumed that the 

majority of variability around the target Y (response variable), is generated by the presence of this second set of 

factors – the noise factors. Noise factors cannot be controlled in the design of a product or in the normal 

operation of the process and as a result, transmits variability to the target (response variable Y). Box [4] studied 

confounding of the mean and variance in the signal-to-noise (a kind of summary statistic used to evaluate the 

performance of a system relative to variation caused by the noise) analysis, which weakened Taguchi’s 

approach. Vining and Myers [5] further incorporated the idea of response surfaces each for the process mean 

and process variance to minimize variations and optimize performance and improve quality. 

 

One major glitch with Taguchi’s approach is in the inability to accommodate interactions which in its very 

essence, have a very large contribution to product or process performance. An approach that readily incorporates 

and handle interaction problems, is the response surface approach proposed by Welch et al. [6], which defines 

the relationship between the response variable and candidates of input variables to include control variables, 

noise variables and the interaction between control variables and noise variables. 

 

Over the years, researchers have proposed various approaches to address the issues of RPD. Rakhmawati et al. 

[7] studied the performances of processes with asymmetric tolerances in the presence of gauge measurement 

error (GME). Ardakani [8] presented that poor estimation of the response model can be caused by errors in the 

noise variables and hitherto, affect the optimal setting of the control factors. Giovagnoli [9] offered an 

adjustment to the dual response surface modelling, which incorporates the option of stochastically simulating 

some of the noise factors when their probabilistic behaviour is known. The method applied to the design of 

high-precision optical profilometer as it was suitable for designing complex measurement systems. Lin and Tu 

[10] gives an idea of mean square error (MSE) that allows for some gap from the mean of the target value and as 

well minimizes the variance. Koksoy and Doganaksoy [11] adopted MSE reduction technique and joint 

optimization of the mean and variance. Steiner and Hamada [12] presented that some measurement errors might 

appear during the product or process execution stage, notwithstanding, negligible measurement errors only show 

up during the product or process designing stage and by this postulation, the response model obtained from the 

experimental results is unaffected by measurement errors. Zhai et al. [13] issues that errors in measurements 

would happen unavoidably as a result of various events like human errors and equipment imprecision. Loken 

and Gelman [14] put forward that errors in the measurements introduce noise into predictions, and affect 

parameter estimations, making it difficult to discover new phenomena. Generally notwithstanding, they consider 

errors due to noise variables only. 

 

Concurrently, multi-response optimization in RPD became much more necessary following the recognition of 

dimensionality in quality characteristics. Harrington et al. [15] proposed the idea of a desirability function to 

optimize multi-responses. Hsieh et al. [16] applied artificial neural network to the problem of multi-response 

optimization in RPD. Pal and Gauri [17] presented using multiple regression and the Taguchi signal-to-noise 

ratio to robust parameter design the event of dynamic characteristics. Fang et al. [18] studied the analysis of 

fatigue in truck cabins with respect to multi-response optimization based robust parameter design. Nejlaoui et al. 

[19] applied RPD and multi-response optimization technique in the analysis of a railway vehicle trajectory. 

Mares-Castro [20] also studied RPD and economical multi-objective optimization on characterizing rubber for 

shoe soles. However, the works do not consider the implication of measurement errors in the levels of control 

variables on RPD. 
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Wu et al. [21] presented robust parameter design considering measurement errors in the control variables and 

pointed out that errors in control variables affect parameter estimations and predictions. However, the work only 

considered the effect of measurement errors on modelling for a single response situation. 

 

In some problems with different outputs, determining the optimal level of control variables is an important issue 

in a process design. This type of problem is called a multi-objective response optimization problem and given 

the expanded nature of threats posed by measurement errors associated to processes and/or systems as a whole, 

it becomes imperative to study the influence of error multi-dimensionally [22]. 

 

This paper therefore presents the impacts of measurement errors in the control variables on robust parameter 

design for multi-response using a response surface model. 

 

2 Materials and Methods 
 

2.1 Data used for the study 
 

The data used for the study was from a case study of the vulcanization process of rubber shoe sole experiment 

provided in Mares-Castro [20] involving three control factors- pressure, time, mold temperature and one noise 

factor- the environmental temperature. Each of the input factors are set at low, medium and high levels 

respectively and coded as +1, 0, -1. The experiment was carried out using Box-Behnken design. 

 

The target for the maximum load is 𝑡1 = 0.35𝑘𝑁 1 0.35t kN=
 with a tolerance limit between 0.25kN to 

0.45kN and the target for the hardness is 2 67.5t =
Shore A, with a tolerance limit between 64.5Shore A to 

70.5Shore A. and it is assumed that measurement errors exist in the design process and that the involved design 

variables are independently and identically distributed (iid) random variables with variance of measurement 

errors as 0, 0.06, 0.07, 0.08, 0.09, 0.1. 

 

2.2 Model fitting 
 

The second-degree response surface model for the responses- maximum load and hardness each is given by; 

 

0 1 2( , ) ' ' ' 'y f x z X Z X C X X C Z   = = + + + + +                              (2.1) 

  

Where η0 is a constant term, X = (X1, X2 … . Xk)′ is a vector of controllable variable k, Z = (Z1, Z2 .  . . . Zq)′ is a 

vector of the noise variable q, β′ = (β1, β2, . . . . . βk) and γ′ = (γ1, γ2, . . . . . . γq) are the coefficient vectors for x 

and z, C1 = (β11, β12, . . . . βk1, β1k, βk2, . . . . βkk)  and C2 = (b11, b12, .  .  . . b1q, bq1, bk1, bk2, . . . . . . bkq)  are 

respectively the coefficient matrix for the quadratic and interaction terms. The error is assumed to be normally 

distributed with zero mean and constant variance i.e ε~N(0, σε
2). Additionally, it is assumed that E(z) = 0, and 

var(z) = σz
2 implying that the noise variable is uncorrelated with known variance. 

 

So that θ̂ is represented as a px1 vector of intercept η0 and the coefficients β′, γ′, C1, C2 and are determined 

using  

 

θ̂ = (X′X)−1X′y                  

 

 i.e θ̂ = c(η0, β1, β2, β3, γ1, β12, β13, b11, β23, b12, b13 β11,  β22,  β33) 

  

X is a nxp model matrix consisting of the levels of the independent variables expanded to model form, y is a nx1 

vector of responses. 

 

The expectation of Equation 2.1 with respect to the noise variable z, is given thus; 
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0 1( ) ' 'y zry E y X X C X  = = = + +                                                              2.2 

 

ry , y  is the estimated response 

 

This means that the process mean, denoted as ( )zE y , is equal to the terms involving only the control variables. 

 

Table 1. Factors with their ranges (levels) 

 

Parameter Lower level 

(-1) 

Middle level 

(0) 

Higher level 

1 

Pressure (psi) 1200 1250 1300 

Time (min) 2.50 3.00 3.50 

Mold temperature (℃) 145 150 155 

Environmental 

temperature (℃) 

20 25 30 

Source; [20] 
 

Table 2. Experimental data of the design matrix 
 

Run  Pressure 

(psi) 

 

1x  

Time 

(min) 

 

2x  

Mold 

temperature 

(℃) 

3x  

Environmental  

Temperature  

(℃) 

z  

Maximum  

Load  

(kN) 

1Y  

Hardness  

(Shore A) 

 

2Y  

1 -1 -1 0 0 0.42 68.0 

2 1 -1 0 0 0.34 66.0 

3 -1 1 0 0 0.40 65.7 

4 1 1 0 0 0.32 67.2 

5 0 0 -1 -1 0.36 68.7 

6 0 0 1 -1 0.36 69.0 

7 0 0 -1 1 0.30 66.8 

8 0 0 1 1 0.30 69.2 

9 -1 0 0 -1 0.42 68.8 

10 1 0 0 -1 0.38 64.2 

11 -1 0 0 1 0.38 69.5 

12 1 0 0 1 0.42 66.5 

13 0 -1 -1 0 0.36 67.2 

14 0 1 -1 0 0.38 67.3 

15 0 -1 1 0 0.40 69.3 

16 0 1 1 0 0.36 68.0 

17 -1 0 -1 0 0.44 68.2 

18 1 0 -1 0 0.36 68.7 

19 -1 0 1 0 0.40 67.5 

20 1 0 1 0 0.34 68.7 

21 0 -1 0 -1 0.38 66.7 

22 0 1 0 -1 0.38 68.2 

23 0 -1 0 1 0.32 68.2 

24 0 1 0 1 0.38 67.3 

25 0 0 0 0 0.40 67.0 

25 0 0 0 0 0.36 66.2 

27 0 0 0 0 0.32 66.5 
Source; [20] 
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2.2.1 Adequacy checks 

 

Coefficient of multiple determination: this is defined as  

 

R2 =
SSR

SST
= 1 −

SSE

SST
                                                                                                                              (2.3) 

 

Where 
1

( )

' '

n

i
R

y

SS b X y
n

== −


 with k degree of freedom 
1

( )

'

n

i
T

y

SS y y
n

== −


 with n-1 degree of freedom 

and ' ' 'ESS y y b X y= −  with n-k-1 degree of freedom. 

 

2.3 Optimization technique 
 

Given 
2

0 ( )L k y t= −  as the quality loss function, one of the viable Optimization methods is the mean square 

error (MSE) loss function for the dual objective single response approach proposed by Lin and Tu [10] and 

defined as: 

 

2 2( ) ( ) ( )
y y

MSE y E L t = = − +                                                                                         (2.4) 

  

Where 
y

  and 
2

y
  are the estimated mean and variance, and t is the target value of the response for k0 = 1 and 

therefore to optimize, we minimize the expected loss function as the objective function. 

 

Min E(L)  

 

subject to  

 

xϵRk  

  

Where Rk is the imposed range. 

 

An extended multiple response optimization using loss function was introduced by Vining [23]. The expected 

loss function is giving by  

 

'( ) [ ] [ ] [ ]
r

r rr r y
E L y T C y T Trace C= − − +                                                                                (2.5) 

  

1, 2,....r =   is the number of response variables. 

 

Where 
'[ ] [ ]r rr ry T C y T− −  is the loss associated to any predicted value away from the target. 

 

[ ]
ry

Trace C  is the loss generated from the quality of the prediction. 

 

ry
  is the variance covariance matrix for the estimated responses. 

 

The prediction variance-covariance matrix for the estimated responses is; 

 
( ) ' 1 ( )( ' )

r

m m

y
x X X x− =    
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Where X  is the model matrix for the response, the vector 
( )mx  is a function of location in the design variables 

at which to predict the response, ( )m  reflect the model as does X . 

 

The loss of quality cost is determined by the cost coefficient 
1

C K
−

=  , where K  is a matrix with the 

diagonal elements reflecting the economic importance of each response and the off-diagonal element measuring 

the correlation of the responses. The estimated expected loss function is then; 

 

' ( ) ' 1 ( )( ) [ ] [ ] [ ( ' ) ]m m

r rr rE L y T C y T Trace Kx X X x−= − − +                                                     (2.6) 

  

The object of the optimization is to find the nominal values (optimal operating condition) which minimizes the 

expected loss function ( )E L . It can be solved through non-linear programming method in the following form 

using the genetic algorithm in R-software; 

 

( ( ))Min E L  

Subject to  
kx R   

 

Where 
kR  is the imposed range of factor x . 

 

2.4 Response surface measurement errors model 
 

When there are errors in setting the levels of control variables, the values of those variables become uncertain 

and can be considered random. If we denote the vector of the intended values for the control variables as x, the 

actual observed value denoted as x∗, may deviate from the intended value due to these errors such that  

 

x∗ = x + e                                                                                                                                            (2.7) 

 

Where e represents the vector of the measurement errors associated with the control variables. It is assumed that 

the measurement error system is unbiased, meaning that on the average, the measurement errors do not 

systematically overestimate or underestimate the true values. The covariance of the measurement error system is 

denoted as Σe, indicating the degree of variability or dispersion of the measurement errors [21]. Additionally, it 

is assumed that the measurement errors for each control variables are independent of each other, implying that 

the error in one variable does not influence the errors in other variables. i.e 

 

e~N(0, Σe)  

 

Where Σe = diag(σe1
2 , σe2

2 , … … … σep
2 ) 

 

From eqn 2.1 above, the response surface measurement error model becomes 

 
* * * *

, 0 1 2' ' 'e zy x z x C x x C z   = + + + + +                                                                            (2.8) 

  

So that the expectation of y taken over the distribution of random variables e and z,  is computed as follows; 

[21]. 

 

, 0 1 1( ) ' ( ) 'e z ery E y x tr C x C x = = + +  +                                               (2.9) 

  

From the above, the objective function (expected quality loss function) for the multiple responses given 

nominal-the-best quality characteristic, can be determined using Equation 2.6. 

So that 
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( ( ))Min E L                     

Subject to 

xϵRk  

  

3 Results and Discussion 
 

Second order response surface model is fitted for Maximum load and hardness at the initial error magnitude of 

zero. ( i. e σe
2 = 0) 

 

Such that 

  
2

max_ 1 3 1 3 1 2 3 2 1

2 2

2 3

0.36 0.025 0.0033 0.015 0.005 0.02 0.015 0.015 0.0267

0.0042 0.0058

loady x x z x x x z x x x z x

x x

= − − − + + − + +

+ −

(4.1) 

  

Equation 4.1, is a response surface model with 
2 0.5344R = , which means that about 53.44%  of the 

variability in the response is explained by the control variables. 

 

1 2 3 1 2 1 3 1

2 2 2

2 3 2 3 1 2 3

66.5667 0.5333 0.1417 0.4 0.1583 0.875 0.175 0.4

0.35 0.6 0.525 0.1375 0.15 1.3375

hardnessy x x x z x x x x x z

x x x z x z x x x

= − − + + + + +

− − + + + +
(4.2) 

 

Equation 4.2, is the second order response surface model for the Hardness. The model gives 
2 0.5692R = , 

which means that about 56.92%  of the variability in the response is explained by the control variables. 

 

The optimization carried out consider the two quality characteristics simultaneously so that as one quality 

characteristic stay on or near the target, the other also remain on or closer to the target. 

 

The mean of the maximum load and hardness are thus; 

 
2 2 2

1 max_ 1 3 1 3 2 3 1 2 3( ) 0.36 0.025 0.0033 0.005 0.015 0.0267 0.0042 0.0058z loady E y x x x x x x x x x= = − − + − + + −     (4.3)  

 
2

2 1 2 3 1 2 1 3 2 3 1

2 2

2 3

( ) 66.5667 0.5333 0.1417 0.4 0.875 0.175 0.35 0.1375

0.15 1.3375

z hardnessy E y x x x x x x x x x x

x x

= = − − + + + − +

+ +

      (4.4)  

 

Using Equation 2.10, with 

 

1 0.35T KN=  and 2 67.5T shoreA= , 
1

C K
−

=   for 
1 0.0018

0.0018 1
K

− 
=  

− 
  

 

1 1542.1693 2.3136

2.3136 1.4437

−  
 =  

 
,  

1 1542.1651 2.311

0.4623 1.4396
C K

−  
=  =  

− 
 

 

From where we  

  

( ( ))Min E L  

Subject to the constraints  

1 2 31 , , 1x x x−    

 

From the above, we have that the expected quality loss is 11.1712 for the target-the-best quality characteristics 

using the multi-response optimization. The optimal operating conditions of the control variables obtained are 
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1 0.9871x = − , 2 0.9511x = , and 3 0.9930x = −  while the average responses at the optimal levels are 

max_
0.4311loady =  and 67.8304Hardnessy =  It is observed that the estimated values of each response are 

within the customer tolerance gap. 

 

Table 3, show the coefficient of determination for each model of maximum load and hardness as error variances 

changes and it is observed that as error variance increases from zero for maximum load, the adequacy of the 

model in terms of coefficient of determination was diminishing while in the case of hardness, the adequacy of 

the model in terms of coefficient of determination was growing higher. 

 

Table 4, displays the optimal values of the control variables and the estimated responses for maximum load and 

hardness. It can be observed that the responses for both quality characteristics as error magnitudes changes, fall 

within the specification. However, as the error variance increase for maximum load, the estimated responses at 

the optimal values also farther away from the target while for the hardness, the increase in error variance, results 

to the responses at the optimal values drawing closer to the target. For the expected quality loss, as the variances 

of error deviates from initial status of zero, the loss in the system/process grow bigger. [3]. 

 

Fig. 1 show that as errors infects the levels of the control variables, the R-square values diminishes. When error 

in the levels of control variables was zero, the R-square was 53.44% and dropped to 52.6% at the error of 0.06. 

it is observed that the R-square value keep dropping up to the error variance of 0.1 with a value of 52.31%. 

 

Conversely, Fig. 2 display the values of R-square increasing as measurement errors in the levels of the control 

variables increases. Initially, with the error of zero, R-square was 56.92% and increases to 59.29% as error 

variance increases to 0.06. and continuously up to the error of 0.1, where the R-square value was 60.74%. 

 

Table 3. Coefficient of determination (
2R ) for maximum load and hardness at various magnitude of 

measurement errors 

 

 Coefficient of determination (R square) 

Error variance 
max_ loady  

Hardnessy  

0 53.44% 56.92% 

0.06 52.6% 59.29% 

0.07 52.51% 59.67% 

0.08 52.44% 60.03% 

0.09 52.37% 60.39% 

0.1 52.31% 60.74% 

 

Table 4. Optimal operating conditions and responses with the expected quality loss 

 

 Optimal operating  Condition Expected 

quality loss max_ loady  
Hardnessy  

Error variance 
1x  2x  3x     

0 -0.9871 0.9511 -0.9930 11.1712 0.4311 67.8303 

0.06 -0.9837 0.9536 -0.9930 13.7592 0.4421 67.7848 

0.07 -0.9859 0.9236 -0.9930 13.9622 0.4430 67.7824 

0.08 -0.9855 0.9805 -0.9930 15.5752 0.4482 67.7386 

0.09 -0.9842 0.9677 -0.9930 15.3555 0.4482 67.7230 

0.1 -0.9895 0.9301 -0.9666 15.6384 0.4485 67.6505 
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Fig. 1. graph of R-square values against error variances for the maximum load 

 

 
 

Fig. 2. Graph of R-square against error variances for hardness 

 

Fig. 3 show average values of maximum load at the optimal values of the control variables for different 

magnitudes of errors. For zero error, the response was 0.4311kN and continue to raise up to 0.4485kN with 0.1 

error variance in the levels of the control variables. 

 

The Fig. 4, is a graph of responses for hardness at the optimal operating condition across various variances of 

error. It shows that as error increases, the average response values drop downward from what was earlier 

obtained. i.e from 67.8303Shore A. on an error magnitude of zero, to 67.6505Shore A. on an error magnitude of 

0.1 

 

3.1 Discussion  
 

Overall, five different ranges of measurement errors were used and second order response surface models are 

fitted across these error variances for each of Maximum load and Hardness. The coefficients of determination 

contained in Table 4, were respectively measured, indicating the amount of variability explained by the control 

variables (pressure, time, and mold temperature). It is observed therein that as magnitudes of measurement 

errors changes from the initial state of zero for each of the response surface model, the coefficient of 

determination (R-square) values for the maximum load deflates while for the hardness, the values continue to 

inflates. 
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Similarly, from the result of multi-response optimization, optimal operating condition of the control variables 

were obtained all across the magnitudes of errors considered. The estimated responses for maximum load and 

hardness (3) were also computed as given in Table 4 and were such that all values fall within the tolerance limit. 

Though, the values for the maximum load were gradually moving away from the target value and that of 

hardness were drawing towards the target value, it is noticed however, that as error expands, both values will 

fall outside the tolerance limit at the either ends on the long run. 

 

In respect of the expected quality loss at the optimal condition of the control variables across error variances, the 

respective values of the expected quality loss are displayed in Table 4. It is observed that as magnitudes of 

measurement errors changes from the initial state, the loss continue to deviates and increasing higher indicating 

that impact of error is playing on the system. Figs. 1 to 5 graphically presents the information on Tables 3 and 4 

respectively. Comparatively, as with the case of Wu et al. [21], where single quality characteristic was studied, 

the case of multi-response optimization of the two responses in this research, presents that the impacts of 

measurement errors in the levels of the control variables, in terms of the coefficient of determinations is not 

moving towards same direction for all the response. Both the coefficients of determination and the expected 

quality loss is however, established to deviates from what was obtained when the magnitude of measurement 

errors was zero. 

 

 
 

Fig. 3. A graph of responses at the optimal condition against error variances for maximum load 

 

 
 

Fig. 4. A graph of responses at the optimal condition against error variances for hardness 
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Fig. 5. A graph of expected quality loss against error variances 

 

The Fig. 5 is a graph showing the expected quality loss at each variance of error. At the error of zero, the 

expected quality loss was 11.1712. it continues to increase across error magnitudes, and was 15.6384 when the 

error was 0.1. 

 

4 Conclusion 
 

The main interest of this research is to study the influence of measurement errors in the levels of the control 

variables on robust parameter design for a system/process that contains multiple responses, using response 

surface modeling and optimization. Based on the result obtained from the analysis, it can be concluded that the 

presence of errors in the levels of the control variables impacts on robust parameter design for multi-response as 

it underestimates and overestimates performance in terms of the coefficient of determination all together. The 

estimated responses (3) of the two quality characteristics at the optimal operating condition of the control 

variables, are also observed to be moving towards the limits in opposing directions as error in control variables 

increases. Lastly, the expected quality loss as error variances infects the control variables, raises higher and the 

higher the loss of quality, the greater the implication to the system. 

 

It therefore, must be taken into cognizance, to avoid poor estimation and predictions [5]. 
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