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Abstract: Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-
borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in
humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of
diseases in humans and is mainly found in African countries. This study aimed to genetically
identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain
was reactivated and subjected to whole genome sequencing using an Illumina-based approach.
Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic
analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830
from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed
the Senegal strain’s clustering with BATV. This study corrects the misclassification, confirming the
presence of BATV in West Africa. This research represents the first evidence of BATV circulation in
West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective
sequencing is crucial for reevaluating strains and identifying potential public health threats among
neglected viruses.
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1. Introduction

Bataï virus (BATV) is an emerging mosquito-borne virus that belongs to the genus
Orthobunyavirus and the family Peribunyaviridae [1]. The virus was firstly isolated from
Culex mosquitoes in Malaysia in 1955 [2] and since then has been detected in various
regions of Asia and Europe, where it was also known as Calovo virus [3]. In Africa, one
strain was isolated in 1967 in Uganda [4,5]. BATV has been found in several mosquito
species and can infect humans and ruminants, causing fever, headache, joint pain, and
neurological symptoms in the former [4,6].

The BATV genome consists of a tri-segmented, negative-sense, single-stranded RNA
typical for Bunyaviruses. The S segment encodes the nucleocapsid (N) and the non-structural
(NSs) proteins, the M segment encodes the virion surface glycoproteins (Gn, Gc) and non-
structural proteins (NSm), and the L segment encodes for the replicase/transcriptase L
protein [7].
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Ilesha virus (ILEV) is another mosquito-borne virus belonging to the genus Orthobun-
yavirus [8]. ILEV was first isolated in 1961 from a 9-year-old girl who presented with fever
and rash in Ilesha, a town in Western Nigeria [9]. Since then, it has been detected in several
African countries and was detected in Anopheles gambiae [10,11]. ILEV can cause mild to se-
vere disease in humans, ranging from febrile illness with exanthema to meningoencephalitis
and hemorrhagic fever [11,12].

Here, we report on the genomic identification and characterization of a BATV strain in
Senegal, previously classified as ILEV, using classical virological methods.

2. Materials and Methods
2.1. The Virus

This work was carried out as part of the characterization of Peribunyaviridae strains
from the biobank of the WHO Collaborating Center for arboviruses and hemorrhagic
fever viruses in the Institut Pasteur de Dakar (IPD). ArD 9870, a ILEV strain obtained
from a mosquito, Cellia gambiae s. I., collected on 9 October 1969 in Bandia, Senegal, and
subsequently isolated on 17 June 1970 before storage in a freeze-dried form in the IPD
biobank, was reactivated with 500 µL of 0.2% Bovine Serum Albumin (BSA) in PBS (1×).

2.2. Sequencing

First, RNA extraction was performed using the QIAamp viral RNA mini-kit (Qiagen,
Hilden, Germany) following the manufacturer’s recommendations. Whole genome se-
quencing (WGS) was undertaken using a Illumina-based unbiased approach as previously
described [13]. Briefly, a first step of host ribosomal RNA enzymatic depletion was carried
out using specific probes and Oligo-dT as well as RNase H (New England Biolabs, Hitchin,
UK). Depleted RNA was used as a template for first-stranded cDNA synthesis using the
SuperScript IV Reverse Transcriptase kit (Invitrogen, Thermo Fisher, Waltham, MA, USA),
followed by double-stranded cDNA synthesis with the Klenow exo-DNA polymerase (NEB,
Hitchin, UK). Sequencing libraries were produced using the Nextera XT DNA Library
Preparation kit (Illumina, San Diego, CA, USA) following the manufacturer’s recommen-
dations. Genome assembly was carried out using the open-source metagenomics CZ-ID
platform (http://czid.org, accessed on 15 March 2023) [14], with the defaults threshold
filters applied for the reads of Quality Check, base-calling, and consensus generation. The
sequencing metrics are summarized in Table 1.

Table 1. Sequencing metrics summary.

Segment L Segment M Segment S

Mapped Reads 23,210 17,746 1667
GC Content 33.9% 36.4% 40.6%

SNPs 241 148 14
%id 96.5% 96.6% 98.5%

Informative
Nucleotides 6870 4338 927

% Genome Called 100% 98.5% 98.1%
Missing Bases 0 63 16

Ambiguous Bases 0 0 0
Reference length 6870 4404 945
Coverage Depth 403.9× 477.5× 191.7×

Coverage Breadth 100% 99.9% 100%

Reference Sequence

JX846603.1-Bataï
virus strain

UgMP-6830 segment
L, complete sequence

DQ436460.1-Bataï
virus strain

UgMP-6830 segment
M polyprotein gene,

complete cds

JX846601.1-Bataï
virus strain

UgMP-6830 segment
S, complete sequence

http://czid.org
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2.3. Genetics Analyses and Phylogeny

The genomic segments (S, M, and L) were subjected to BLAST analysis against the Gen-
Bank database to identify the closest matching sequences. Furthermore, genetic distances
were calculated using Mega software v10.1.8 [15] to evaluate the evolutionary relationships
between the study strains and related sequences.

Phylogenetic analysis was carried out to elucidate the evolutionary relationships
and clade formations. The sequences were aligned and curated using Bioedit version
7.2.6 [16]. Maximum Likelihood (ML) phylogenetic trees were constructed using Iqtree
version 1.6.12 [17]. The robustness of tree topology was accessed with 1000 replicates and
bootstrap values greater than 70% are shown on the branches of the consensus trees. The
resulting trees were visualized using Figtree version 1.4.4 [18].

3. Results
3.1. Blast

BLAST analysis was performed on the genome of each segment obtained; closer
nucleotide identities (98.28%, 96.59%, and 96.49% for the S, M, and L segments, respectively)
were observed with the bataï strain UgMP-6830. However, the M segment grouped with
the Ngari virus (NGAV) (strain Dakar D28542/4e (98.68% identity)).

3.2. Genetic Distance

The genetic distance between Ar D 9870 and the strain UgMP-6830 was evaluated,
as well as some BATV, NGAV, and Bunyamwera (BUNV) strains. The sequences added
were downloaded from Genbank (Supplementary Table S1), except for the “ArB218 Cen-
tral African Republic 1968”, “ArMsam263 Kenya 1963”, “ArN31 Kenya 1974”, “ArY380
Cameroon 1971” and “ArYM52 Cameroon 1966” strains, which came from the IPD data
bank. The analysis (Table 2) shows that, for all the M and L segments, the difference in the
level of amino acids between the strain ArD 9870 from Senegal and strain UgMP-6830 was
very low and even indicated a 100% homology for the S segment. It was, however, noted
that, while the S and L segments of strain ArD 98 are more closely related to BATV, the M
segment is more closely related to NGAV.

Table 2. Genetic distance between groups. The number of amino acid differences per sequence
from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are
shown above the diagonal in blue. In italics: the closest group to Ar D 9870; in bold: the second
closest group.

AR D 9870 Bataï UgMP-6830 Bunv Ngari

S segment
AR D 9870 1.375 0.000 3.887 3.797

BATAÏ 3.167 1.375 3.833 3.759
UGMP-6830 0.000 3.167 3.887 3.797

BUNV 16.909 17.348 16.909 0.599
NGARI 16.267 16.767 16.267 1.170

M segment
AR D 9870 8.539 5.073 16.775 4.313

BATAÏ 125.667 8.151 16.128 8.384
UGMP-6830 25.000 117.667 16.734 5.471

BUNV 484.909 486.159 485.273 16.751
NGARI 30.733 131.533 42.467 492.103

L segment
AR D 9870 11.491 7.586 20.035 20.040

BATAÏ 221.000 11.907 19.265 19.324
UGMP-6830 59.000 233.250 19.934 19.856

BUNV 609.636 611.689 610.727 6.607
NGARI 608.667 614.711 608.333 91.867
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In addition, a genetic distance analysis was carried out between the BATV strains
found in Africa, the strains found in Europe, and the strains found in Asia (Table 3). This
shows that strains from Africa (AR D 9870 and UGMP-6830) were closer to the strains
found in Asia.

Table 3. Genetic distance between groups. The number of amino acid differences per sequence from
averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown
above the diagonal in blue. In italics: the group closer to Bataï Africa.

Bataï_Africa Bataï_Asia Bataï_Europe

S segment
Bataï_Africa 1.030 2.001
Bataï_Asia 1.250 2.285

Bataï_Europe 4.143 5.393
M segment

Bataï_Africa 8.587 11.173
Bataï_Asia 103.375 10.986

Bataï_Europe 144.214 148.679
L segment

Bataï_Africa 11.046 14.762
Bataï_Asia 173.750 14.726

Bataï_Europe 275.571 290.536

3.3. Phylogeny

A phylogenic analysis was performed using the same dataset for genetic distance
analysis with the addition of ILEV sequences downloaded from Genbank.

A total of 43 sequences were used for the phylogenic analysis of the S, M, and L
segments. A sequence of Kairi virus was used as an outgroup (Supplementary Table S1).
All three phylogenetic trees had four distinct clades, BUNV, BATV, ILEV, and NGAV. The
strain Ar D 9870 clustered with BATV sequences for the S and L segments (Figures 1 and 3),
and with NGAV for the M segment (Figure 2).
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that previously classified as the Ilesha strain.
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that previously classified as the Ilesha strain.
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Figure 3. S segment phylogenetic tree of Bunyamwera, Bataï, Ilesha, and Ngari viruses. The Kairi
virus, col-ored in orange, was used as an outgroup, and the sequence Ar D 9870, colored in red, was
that previously classified as the Ilesha strain.
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4. Discussion

This work was carried out as part of the characterization of Peribunyaviridae strains
from the biobank of the WHO Collaborating Center for arboviruses and hemorrhagic fever
viruses in the Institut Pasteur de Dakar (IPD).

The blast analysis suggested that the Ar D 9870 strain was closer to the UgMP-6830
strain, a BATV strain isolated in Uganda in 1967 [5]. This result was confirm by the genetic
distance analysis showing a very low difference at the level of amino acid and even a 100%
homology with the S segment; this result is confirmed by Briese et al. [5]. However, the
results show a close relation between the M segment of Ngari and the Ar D 9870 strain. That
suggests a reassortment between Bataï and Ngari which results in the formation of new
strains. This result was also found by Briese et al. [5] when they analyzed the UgMP-6830
strain, even if they classified it as Bataï. The M segment may play a major role in the
virus cycle, affecting the interaction with the vector and also with the host [19,20]. Thus
a reassortment might play a role in the virulence of the virus [21]. Genetic distance also
shows a relation between African and Asian Strains and this same result was found by
Mansfield et al. [6].

A phylogenic analyses was also performed during the study. As a member of the same
serogroup, strains of BATV, NGAV, BUNV, and ILEV were used. The results confirmed the
previous analysis [10] and suggested that Ar D 9870 and UgMP-6830 from Uganda could be
contemporaneous BATV strains with simultaneous circulation in West and East Africa. This
proves the important lack of information that has always existed regarding the real burden
of the Bataï virus and highlights the necessity of further studying the seroprevalence among
the population and prevalence among vectors.

5. Conclusions

To the best of our knowledge, this work describes the first report of BATV circulation
in West Africa. Indeed, phenotypic-based virological characterization methods, such as
the complement fixation test, have limitations regarding strains belonging to the same
serogroup with no specific antibody reactions [16,17]. WGS allowed to reclassify a strain
isolated in Senegal in 1969 as BATV, which was mistakenly identified as ILEV using
the complement fixation test. Retrospective sequencing will be relevant for both BATV
and ILEV strains, but also for other neglected viruses collected and previously classified
using non-molecular taxonomic approaches in order to refine classification and enable the
identification of potential pathogens of public health concern.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v16020261/s1, Table S1: Accession number of strains downloaded
on Genbank.
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