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Abstract: Microgrids usually employ distributed energy resources such as wind turbines, solar
photovoltaic modules, etc. When multiple distributed generation resources with different features are
used in microgrids, managing these resources becomes an important problem. The generated power
of solar photovoltaic modules and wind turbines used in microgrids is constantly changing with
solar irradiation and wind speed. Due to this impermanent and uncertain nature of renewable energy
resources, generally, energy storage systems are employed in microgrid systems. To control the
distributed energy resources and energy storage units and sustain the supply and demand balance
within the microgrid and provide sustainable and reliable energy to the loads, energy management
systems are used. Many methods are used to realize and optimize energy management in microgrids.
This review article provides a comparative and critical analysis of the energy management systems
used in microgrids. The energy management system can be tailored for different purposes, which are
also discussed in detail. Additionally, various uncertainty measurement methods are summarized
to manage the variability and intermittency of renewable energy sources and load demand. Finally,
some thoughts about potential future directions and practical applications are given.

Keywords: microgrid; energy management system; renewable energy

1. Introduction

One of the most efficient ways to produce energy is through fossil fuels, which include
coal, oil, and natural gas. Recent scientific research demonstrates that these energy sources
have detrimental effects on human health and the environment in addition to their economic
effects [1–3]. Along with these effects, because of different reasons such as increasing
energy demand, increasing energy prices, energy source dependency, etc., scientists are
investigating alternate energy resources. Renewable energy resources and distributed
generation have historically been used to try to meet the needs of reducing the negative
effects of electrical energy production on the environment, meeting the ever-increasing
demand for electrical energy, and improving the quality, reliability, and stability of power
systems [4–6].

Increasing the capacity of electrical networks and extending transmission lines to
feed farther-off electrical loads raise the costs of producing electrical energy as well as
transmission–distribution losses due to the growing electricity demand [7]. Distributed
generation which mostly employs renewable resources like solar and wind power is a good
opportunity to solve these problems. Microgrids, which are small-size power grids, are
also proposed for the same purpose. A microgrid can employ conventional and renewable
distributed energy resources. Microgrids can supply energy to local-regional loads or the
main power grid with these resources. Therefore, nearby loads can receive electrical energy
from energy sources that are dispersed throughout a given area. They can also run in island
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mode (off-grid) or grid-connected (on-grid) mode. From these angles, microgrids provide
many advantages for the future of power grids [8]. Microgrids containing renewable energy
sources are used to reduce the annual electricity bill, energy purchased from the grid, and
greenhouse gas emissions in the conventional power system. Microgrids can be used
to increase the sustainability of electricity supply and minimize poverty in developing
countries [9].

The large inertia moments of large power generators are crucial in suppressing os-
cillations in voltage and frequency that occur in traditional power systems. Compared
to conventional generators, distributed generation units in microgrids are more unstable
due to system oscillations in voltage and frequency because they are connected to the
grid through power electronic converters [10]. To guarantee that microgrids run consis-
tently, effectively, and in compliance with standards, a control system must be developed.
Numerous problems, including voltage-frequency regulation, proper load sharing, syn-
chronization with the main grid, control of the power flow between the microgrid and the
main grid, and operating cost optimization, should be solved by this control system [11].
For the distributed energy resources that microgrids use as power sources to cooperate
effectively, energy management is crucial.

Efficient, safe, and intelligent use of distributed energy resources among microgrid
components is important for power quality and supply–demand balance in the system.
This can be achieved by using energy management systems in microgrids. Numerous
approaches, including multi-agent systems, model predictive control, artificial intelligence
techniques, meta-heuristic-based methods, stochastic and robust programming-based meth-
ods, and classical method-based approaches, are used in microgrid energy management
systems [12].

A new class of electricity sources that provides balanced electrical energy generated by
clean and environmentally friendly energy resources is microgrid power systems. Micro-
grids are also called multiple energy source systems or hybrid renewable energy systems.
Two of the cleanest methods of generating electrical energy are solar photovoltaic (PV)
systems and wind turbines, which are both widely used globally. Hybridization of various
energy sources aims to produce stable and sustainable electricity by providing maximum
electricity generation capacity at the lowest possible cost for areas served by conventional
electricity grids. Nevertheless, energy storage devices are required to guarantee energy sus-
tainability because renewable energy resources are sporadic and dependent on weather [13].
To regulate the power flow between sources, loads, energy storage systems, and the main
power grid with various characteristics within the microgrid, an energy management
strategy, as illustrated in Figure 1, is necessary.

Microgrids combine energy storage systems, renewable energy sources, and the grid
and can operate in island mode or grid-connected mode. Microgrids must have efficient
energy management in place to guarantee maximum energy efficiency. However, integrat-
ing renewable energy resources is made more difficult by the stochastic nature of wind
and solar energy [14]. Thus, among the difficulties in energy management and microgrid
optimization are arranging unpredictable operating conditions of distributed generation
and guaranteeing economical and adaptable operation with a variety of resources. The
microgrid’s energy management system carries out several tasks, including tracking, eval-
uating, and projecting power generation based on the features of distributed generation
systems, load consumption, energy market prices, and meteorological conditions. Energy
management systems can optimize the microgrid with the help of these features.

In the microgrid, if the power demand in the system is less than the power produced
by resources, the excess power is stored in energy storage devices. If the demanded power
is more than the produced power, the required power is met from energy storage devices,
and in case of a connection to the grid, it will be drawn from the grid or transferred to
the grid. To perform tasks such as determining the amount of power to be transferred,
an effective energy management system must be established between the production,
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consumption, and storage systems. Thus, controllers can work in coordination with the
demand from the load to achieve appropriate energy management [5].
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Figure 1. Energy management in microgrid units.

For energy-efficient operation, energy management systems are crucial in the util-
ity, industrial, commercial, and residential sectors. Energy management systems aim to
minimize greenhouse gas emissions, optimize distributed energy resource planning, and
reduce energy consumption. Monitoring and data analysis are made easier for energy
management systems by their integration with a human-to-machine interface (HMI) and
supervisory, control, and data acquisition (SCADA) system. It includes the weather forecast,
load demand, power output from generation resources, and the current price of energy.
The energy management systems make use of this data to maximize system performance at
the distribution, transmission, and generating ends. Most microgrid energy management
systems examined in the literature have centralized supervisory control architecture. How-
ever, because distributed energy resources are becoming more and more integrated into the
power system, the centralized architecture is confronted with challenges related to high
computational time, limited system scalability, and high instability in the event of failures.
For this reason, a decentralized supervisory control architecture has gained more attention
from researchers recently. The requirement for a constant two-way communication link
between microgrid components and their synchronization, however, raises the cost of the
system. Furthermore, it is necessary to optimize the cost of these communication systems’
upgrades [15].

Energy management in microgrids is very important in real-world applications in
utilities, industrial, commercial, and residential sectors for efficient energy operation. By
using these energy management systems in daily life, they aim to optimize distributed
generation resource planning, reduce energy consumption, and minimize greenhouse gas
emissions. These systems aim to operate the microgrid at maximum efficiency by mon-
itoring the power output of generation resources, weather forecasts, load demand, and
real-time energy prices. The cost of deployment and data rate are the main factors influenc-
ing the choice of communication technologies for microgrids in remote, residential, and
rural areas. WiFi, Bluetooth, Z-wave, and Zigbee are used as communication technologies
in such microgrids. Passive optical networks, 3G, and 4G technologies are also used in
microgrids used in public services. These communication technologies are used by routers
at distributed energy resource and load ends to communicate with the local controller and
microgrid central controller. Arduinos and Rasberry PI are two examples of inexpensive
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embedded systems that can be used to implement local controllers. These technologies
are designed to collect information from smart meters and monitoring sensors and carry
out local control operations to protect consumer privacy. Data from SCADA, HMI, and
local controllers are used by the microgrid central controller to drive energy management
operations. The primary criteria used to choose the best solution approaches for these
energy management operations are computational time complexity and convergence to the
optimal solution based on merits [16].

The constant change of wind speed and solar irradiation values in renewable energy
sources used in microgrids negatively affects system security and increases energy costs.
The stochastic behavior of renewable energies, especially wind and solar, increases the
need to find the optimum operation of the microgrid. The optimal operation of a typical
microgrid aims to simultaneously minimize operating costs and accompanying emission
pollutants over the daily planning horizon. By managing these energy resources in micro-
grids, it is aimed to increase the reliability and stability of the system while maintaining the
balance between supply and demand [17].

This article provides an overview of microgrid energy management systems, outlining
both their benefits and drawbacks. To control the unpredictability and erratic nature
of renewable energy resources and load demand, a summary of different uncertainty
measurement techniques is provided. A literature review and an investigation of the
application of energy management techniques with varying goals in microgrids are also
provided. Lastly, some thoughts about potential future directions and practical applications
are given.

2. Energy Management Systems in Microgrids

A new energy structure called a microgrid combines energy storage systems, renew-
able and other energy resources, loads, and the power grid. Microgrids must have efficient
energy management in place to guarantee maximum energy efficiency. However, inte-
grating renewable energy resources has made it more difficult because of the stochastic
nature of these resources. Thus, ensuring economical and flexible operation with a range of
resources and arranging unpredictable operating conditions of distributed generation are
among the challenges in energy management and microgrid optimization. An energy man-
agement system is essential for making the best use of these distributed energy resources in
a microgrid in a way that is coordinated, safe, smart, and dependable. A microgrid’s energy
management system can monitor, analyze, and forecast power generation from distributed
generation systems, load consumption, energy market prices, and meteorological factors,
among other things. Energy management systems can optimize the microgrid with the
help of these features [18].

In a microgrid, energy management systems are control software that allocates power
output among distributed generation units and finds the most cost-effective way to feed
the load. This is done by taking into account safety, reliability, and power quality. In
general, a microgrid energy management system needs to coordinate various distributed
generation sources, each with its constraints, to provide energy in a sustainable, reliable,
environmentally friendly, and cost-effective manner. Energy management systems receive
multiple inputs and then act on the available information to achieve the goals set by
the microgrid owner. Figure 2 provides an illustrative overview of a microgrid energy
management system.

Energy management is facilitated using energy storage systems in microgrids. Energy
management enables the realization of scenarios such as storing excess power in energy
storage devices if the power demanded by the system is less than the power produced by
renewable energy resources, and meeting the required power from energy storage devices
if the power demanded exceeds the power produced by renewable energy resources. Be-
tween the production, consumption, and storage system and the control of battery charging
and discharge, an effective energy management system is needed. Controllers can thus
collaborate with the load’s demand to achieve appropriate energy management. Different
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approaches applied to energy management systems in microgrids are shown in Figure 3.
Classical method-based energy management systems, energy management systems based
on meta-heuristic approaches, energy management systems based on artificial intelligence
methods, energy management systems based on stochastic (variable) and powerful pro-
gramming approaches, energy management systems based on model predictive control,
and multi-agent energy management systems are used in energy management system
applications in microgrids [16].
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2.1. Classical Method-Based Energy Management Systems

The classical methods used in microgrid energy management are based on linear
and non-linear programming techniques. Microgrid energy management systems employ
centralized controller control architecture and linear or non-linear programming techniques,
with an emphasis on microgrid energy resource optimization [19].

The rule-based and dynamic programming-based microgrid energy management
techniques are among the classical methods. These techniques mostly concentrate on
trading energy with the main grid and optimizing energy resources. Models of energy
management based on a central rule are being developed for the microgrid operating in
both the islanded and grid-connected modes. In terms of the microgrid system’s voltage
and frequency stability, a seamless transition between these two modes is guaranteed [20].

In research on microgrid control, where a controller manages voltage and frequency,
dynamic modeling is necessary to evaluate how control algorithms affect the performance
of individual microgrid components. Additionally, a dynamic model is useful in demon-
strating regulatory compliance with specific standards, such as Institute of Electrical and
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Electronics Engineer (IEEE) Standard 1547or local grid code. Software packages are typi-
cally used in dynamic modeling to either select pre-made component models or generate
unique models from a diverse range of software packages.

2.2. Meta-Heuristic Approach-Based Energy Management Systems

To solve difficult nondifferentiable optimization problems, heuristics and meta-heuristics
are applied in a variety of engineering domains, including communications, power systems,
microgrid energy management systems, transportation, and power systems. Genetic algo-
rithms and particle swarm optimization (PSO) techniques are two common metaheuristic
approaches used in the development of microgrid energy management systems due to their
parallel computing capabilities. Apart from the widely recognized PSO and genetic algo-
rithm approaches for energy management systems, there exist novel approaches like Gray
Wolf Optimization (GWO). Energy management in microgrids makes use of techniques like
Ant Colony Optimization (ACO) [21], Bacterial Foraging Optimization (BFO) [22], Artificial
Immune System (AIS) [23], Particle Swarm Optimization (PSO) [24], Genetic Algorithm
(GA) [25], Artificial Bee Colony (ABC) [26], and Gray Wolf Optimization [27].

Various algorithms, such as GA and PSO, must be evaluated for computational com-
plexity, scalability, and accuracy in real-world microgrid scenarios. As a result of this
evaluation, problems are modeled with various dimensions in real-world optimization
scenarios. The purpose of this is to estimate the scalability and adaptability of the proposed
algorithm to unexpected changes.

2.3. Stochastic and Powerful Programming Approaches-Based Energy Management Systems

Energy management systems based on stochastic (variable) and powerful program-
ming approaches use estimated values of electricity price, solar irradiation, wind speed,
and load power. As a result, the overall operating cost, including the cost of energy trading
with the grid and the operating cost, is minimized. This energy management approach
is considered to deal with uncertainty by estimating variable parameters in the system
through programming techniques. A controller is also used in the system to reduce fluctua-
tions in the bus voltage and control the battery current. Stochastic programming models
are being developed to optimize microgrid energy management that takes into account
uncertainties such as wind speed, solar irradiation, and load demand in renewable energy
resources [28–30].

Optimal operation of the microgrid and optimization of investment costs can also
be achieved through energy management and variable programming methods. Scenario
creation methods are used for microgrid scenarios and the probabilities of these scenarios
occurring, and problems caused by disruptions or malfunctions in the main grid or mi-
crogrid. The goal is to reduce the anticipated running costs as much as possible. These
costs include load shedding and the running costs of renewable energy resources like solar,
wind, and battery systems.

2.4. Model Predictive Control-Based Energy Management Systems

Model predictive control-based energy management systems aim to predict the mi-
crogrid’s controllable load to implement an effective energy management strategy. The
system performs better in terms of fewer power outages, a lower maximum demand, and
an improved load factor because of its predictive control capability [31]. Energy trading
with the main grid, optimizing the use of renewable energy resources, battery and electrical
vehicle management, and other measures to guarantee system stability and profitability
are all part of the microgrid’s economic operation.

Optimal control schemes in the microgrid are learned from data, making them stand
out as model-independent or data-driven calculations. By using learning-based techniques,
and having an open system model, it is possible to reduce resistance, increase the scalability
of the energy management system, and reduce costs. To release accurate models and
permissions for a microgrid, model-based energy management systems depend on domain
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expertise. This means that while this method produces high improvement rates, it is neither
scalable nor transferable. However, improvements in microgrids might force a redesign
that results in noticeably higher maintenance costs [32,33].

2.5. Artificial Intelligence Methods-Based Energy Management Systems

In the microgrid, situations that affect power quality such as controller gains, frequency
deviation, sudden drops in current, and voltage deviation occur. The difficulty in adjusting
many parameters in these complex systems can be overcome with artificial intelligence
techniques such as fuzzy logic, artificial neural networks, machine learning, deep learning,
and game theory [34]. The fundamental thing about fuzzy logic is that, unlike classical
logic systems, it aims to model uncertain modes of reasoning that play a notable role in
people’s rational decision-making in an environment of uncertainty and ambiguity. This
ability refers to performing energy management with the ability to derive an approximate
answer to a question that is uncertain, incomplete, or not completely reliable [35].

To accurately ensure the reliability of artificial intelligence systems used in energy
management systems in microgrids, real-world scenarios and real failure modes need
to be studied. The quality and variability of data used in artificial intelligence methods
directly affect the performance and reliability of energy management systems. As a result,
gathering data is necessary to demonstrate the dependability of artificial intelligence, and
statistics are crucial in guiding the selection of relevant data. Following the acquisition
of artificial intelligence reliability data, reliability predictions, statistical modeling, and
analysis offer an overview of anticipated reliability in upcoming scenarios. Additionally,
reliability tests and demonstrations can be used to pinpoint the root causes of reliability
problems, allowing artificial intelligence system designers to make improvements that will
increase reliability. Although it can be difficult, identifying the reasons behind artificial
intelligence reliability failures offers opportunities for statistical reliability research.

2.6. Multi-Agent System-Based Energy Management Systems

Multi-agent systems are comprised of agents that collaborate to solve problems that
an individual agent finds difficult or ineffective to solve on its own. These agents use their
skills and knowledge to work together in a coordinated manner to solve these problems.
Multi-agent systems consisting of many agents are applied to microgrids as an energy
management strategy [36]. The agent is the fundamental component of an agent-based
energy management system. It can be a real or virtual entity. Virtual agents are software
algorithms that coordinate system components, whereas physical agents in applications
are micro-resources and controllable loads. An agent possesses the capacity to act within
the system and alter it through its actions. Depending on how big it is, a microgrid may
have a lot of agents.

Multi-agent systems can be understood as an assembly of intelligent and self-governing
entities, referred to as agents, which essentially develop within a perceivable and manipula-
ble environment. Other than the agent itself, this environment can be regarded as anything.
Depending on how they are set up, these agents can be somewhat autonomous due to
their intelligence. Multi-agent systems in energy management applications are made up
of different agents interacting in a particular setting. Agents can perceive changes in their
surroundings and use reasoning to determine the best course of action. In the field of
Electrical and Electronics Engineering, multi-agent systems find application in diverse
problem areas, including but not limited to diagnostics, distributed control, modeling and
simulation, protection, and maintenance planning [37].

Compared to traditional analytical control techniques, multi-agent systems offer many
benefits [38,39]. In today’s grid, the classical control techniques used in SCADA systems
are not entirely functional [40]. Nonetheless, the control system needs to function well as
a large-scale and flawed system in a smart grid with thousands of controllable devices.
In multi-agent systems, agents see the world locally and possess a restricted amount of
knowledge. Although agents only need to know about their immediate neighbors, more
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agents need to communicate with each other to work more functionally and cooperate
with other agents [41]. In this way, more advantages are provided by choosing multi-agent
systems for microgrid energy management. However, if the amount and costs of data to be
transmitted in the system are desired, the communication of agents can be limited to the
microgrid they belong to and their neighboring agents.

3. Energy Management Systems Applications in Microgrids

Microgrids contribute to low carbon emissions by increasing the diversity in energy
production as well as the efficiency in energy consumption. In these systems, important
issues such as energy management, adjustment of energy supply according to demand,
efficient use of energy, and protection of power quality are addressed. Therefore, effective
energy management in microgrids is extremely important for the reliability, sustainability,
and economy of the system.

Energy management goals and practices in a microgrid depend on the user’s prefer-
ences. Targets are influenced by factors such as geographic location, installed equipment,
types of loads to be supplied, grid energy tariff structures, government regulations, and
energy storage and generation options on the microgrid. Due to the modular and highly
customizable nature of a microgrid, each microgrid has a unique set of goals. In general,
the main purpose of a microgrid is to reduce operating costs by maximizing the savings of
a microgrid through renewable energy and minimizing generation costs. As presented in
Figure 4, microgrid energy management applications are carried out with targets such as
environment, capital and operating costs, and energy storage costs.
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Ref. [42] designed a centralized control system for energy management in an intercon-
nected microgrid based on the concept of flexibility for the end users. It was possible to
attain an ideal economic dispatch by employing quadratic programming. This grid was
integrated with a photovoltaic system. A modified IEEE 33-node grid was used to test
the algorithm.

A mixed-mode microgrid energy management system with power sharing, continuous
run, and on/off base was proposed by [43]. The power-sharing mode allows for power
trading with the main grid, but the fuel cell must always operate in continuous run mode.
Both modes are solved using linear programming, an optimization technique. In contrast,
a mixed-integer linear programming solution approach is used to solve the on/off mode,
maximizing the microgrid’s performance concerning the fuel cell, energy storage system,
and the on/off connection status of the main grid. The microgrid’s operational requirements
are taken into consideration when determining the size of the energy storage system.
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By using a solar desalination system, an energy management system for a hybrid
AC/DC microgrid in a remote community was investigated [44]. The proposed optimiza-
tion algorithm uses mixed-integer non-linear programming as the foundation for its goal
function, which minimizes daily operating costs.

A proposal for a mixed-integer nonlinear energy management model of an isolated
three-phase unbalanced microgrid can be found in [45]. The designed system reduces fuel
consumption, system costs, and reactive power penalty costs. Energy storage systems,
transmission lines, and transformer mathematical models were developed. Two successive
stages of a mixed-integer nonlinear-based unit commitment model and optimal power flow
model form the developed model.

Ref. [46] studied how to parametrize the uncertainty of solar and wind energy gen-
eration in a microgrid using mixed-integer linear programming to manage energy in the
microgrid. Two levels of optimization are accomplished. The selection of the parametriza-
tion scheme comes first, followed by operational decisions that take market price variation
and storage system disposition into account.

A multi-timescale-based energy management system was presented by [47]. Two
factors are taken into account in the optimization problem: dynamic compensation in real
time and daily static programming. The optimal load flows in a mixed-integer quadratic
programming method are used to solve this, and data on solar irradiation and wind speed
and direction are used to forecast the batteries’ load state.

Ref. [48] studied distributed energy management for networked microgrids embedded
in modern distribution systems using mixed-integer linear programming. An alternating
direction method of the multiplier-based distributed framework was developed for the
scheduling of networked microgrids embedded in contemporary distribution systems
by iteratively adjusting nodal price signals, taking into account the diverse ownership of
microgrids, distributed energy resources that interface directly with utilities, and responsive
loads. A contemporary distribution system made up of numerous networked microgrids,
dispersed energy resources that communicate directly with utilities, and responsive loads
is used to validate the suggested approach using numerical simulation results.

A summary of classical method-based energy management systems applications in
microgrids is given in Table 1.

In Ref. [49], a two-layer energy management system was showcased for distant mi-
crogrids. An innovative scheduling algorithm that takes battery lifetime into account was
put forth, and it should lower microgrid operating costs. The technique was based on goal
programming, which gives varying weights to the cost of using batteries and fuel. Findings
indicated that extending the battery life could lower the microgrid’s overall operating costs
despite an increase in fuel consumption. Over relatively large variations in battery costs
for this case study, a wide range of weights proved effective in lowering the operational
cost. Despite the analysis being restricted to lead-acid batteries, the technique is sufficiently
universal to be applied to other kinds of batteries.

To minimize the expenses associated with managing distributed energy resources, [50]
proposed the use of memory-based genetic algorithms to optimize power management
in grid-connected microgrids. The proposed method outperforms genetic algorithms and
particle swarm optimization with a constriction factor and an inertia factor.

A study on microgrid optimization using the particle swarm algorithm, which can
run an isolated or connected microgrid, was presented by [51]. The suggested method
takes into account the variations in the microgrid’s load demands and renewable resource
supply, and it provides suitable advance (24 h) forecasts to mitigate these variations.

Ref. [52] suggested a system subject to demand, wind energy, electric vehicle costs,
and electricity prices. In the optimization procedure of this investigation, the gray wolf
algorithm is employed. The microgrid system’s timing and operation are optimized
utilizing this enhanced algorithm. Reduced general operating costs are a result of the
system. Efficient management of the grid’s integration of energy storage technologies,
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demand response programs, renewable energy sources, and other emerging technologies
results in this cost reduction.

Table 1. Classical method-based energy management systems applications.

Ref. Proposed Method Energy Management Application

[42] Quadratic programming Quadratic programming was used to achieve the
best possible economic distribution.

[43] Linear programming

The problem is resolved by applying a mixed-integer
linear programming solution technique, which

optimizes the microgrid’s performance concerning
the fuel cell’s on/off connection, energy storage

system, and main grid conditions.

[44] Non-linear programming

Mixed-integer nonlinear programming forms the
basis of the objective function of the suggested
optimization algorithm, which minimizes daily

operating costs.

[45] Mixed-integer nonlinear
programming

Designed with mixed-integer non-linear base unit
commitment and optimal power flow models, the

system reduces fuel consumption, system expenses,
and reactive power penalty costs.

[46] Mixed-integer linear
programming

Optimizes the system with operational decisions
that take into account market price variation and

storage system layout.

[47] Mixed-integer quadratic
programming

Optimum load flow was achieved by considering
real-time dynamic balancing and daily

static scheduling.

[48] Mixed-integer linear
programming

It is aimed at distributed energy management for
modern distribution systems embedded in

networked microgrids. By iteratively adjusting the
node price signals, the alternative direction method

of the multiplier-based distributed framework
is developed.

Ref. [53] presented an adaptive modified particle swarm algorithm approach based
on the hybridization of chaotic particle swarm algorithm and fuzzy self-adaptive particle
swarm algorithm to optimize the multi-objective energy management system model of a
grid-connected microgrid. The objective is to lower the operating costs and emissions of
microgrids. The developed algorithm outperforms fuzzy self-adaptive and chaotic particle
swarm algorithms.

A novel approach to optimizing an interconnected microgrid was introduced by [54].
It combines a fuzzy logic expert system with a meta-heuristic grey wolf optimization.
With this approach, the costs of the power plants as well as the emissions from fossil fuel
sources are kept to a minimum. By taking into account the batteries’ optimal capacity and
minimizing the use of fossil fuels, this strategy lowers microgrid costs.

In a stand-alone microgrid, ref. [55] introduced a genetic algorithm-based technique
for determining the best location for renewable energy generation and batteries. The sug-
gested multi-objectives include energy disposal and a decrease in life cycle and operational
expenses. To optimize the microgrid, the optimization takes into account variations in wind
and solar irradiation and extracts data from a load profile.

A summary of meta-heuristic approach-based energy management systems applica-
tions in microgrids is given in Table 2.
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Table 2. Meta-heuristic approach-based energy management systems applications.

Ref. Proposed Method Energy Management Application

[49] Genetic algorithms

Genetic algorithms were used to provide energy
supply options through the use of diesel generators

and demonstrated reduced operating costs of
the microgrid.

[50] Genetic algorithms Power management is implemented to reduce the
operating costs of distributed energy resources.

[51] Particle swarm algorithm

It takes into account changes in the microgrid’s load
demands and renewable resource supply and

provides appropriate advance (24 h) forecasts to
mitigate these changes.

[52] Grey wolf optimization
The algorithm is used to optimize the timing and
operation of the microgrid system. Thanks to the

system, general operating costs are reduced.

[53] Fuzzy self-adaptive particle
swarm algorithm

The algorithm, developed to reduce microgrid
operating costs, realizes the multi-purpose energy

management system of a grid-connected microgrid.

[54] Grey wolf optimization

With a new approach to optimizing an
interconnected microgrid, both the costs of the

power plants and emissions from fossil fuel sources
were kept to a minimum.

[55] Genetic algorithms

It takes into account changes in wind and radiation
sources and extracts data from a load profile to

optimize the microgrid to save energy and reduce
operating expenses.

An energy management model for a microgrid that takes into account supply and
demand uncertainty is presented [56]. The study also takes into account uncertainties in
solar and wind energy production and energy demand. The Nuclear Energy Research
Center in Taiwan tested it on a real grid with stochastic programming. In the first stage,
battery capacity was optimized. In the second, an ideal microgrid operating strategy
was evaluated.

A multi-objective stochastic technique was employed by the author to present a
hybrid microgrid optimization system in [57]. The objective function of this study was
applied at various microgrid stages to minimize system losses and lower the operating
costs of renewable resources. The feeding systems’ overall operating costs and losses were
weighted and used to formulate the problem. Mixed-integer linear programming was
utilized to solve the problem, and the IEEE 37 node distribution system was used to test
the proposed approach.

A hybrid grid-connected community microgrid architecture is also advised for agricul-
tural purposes [58]. To reduce the cost of the irrigation system, pumped storage unit, and
energy trading costs with the main grid, the author suggested a stochastic coordination
framework. The wholesale electricity price and the uncertainties associated with wind
power are modeled using the point estimated method.

An optimization technique for a two-stage interconnected grid was presented by [59].
The first stage uses a conventional generator, and the second stage uses hourly marketing
to ensure that the conventional and distributed generation is dispatched economically. This
combination enables the Lyapunov optimization method to be used to manage uncertainty
in renewable generation.

In Ref. [60], a novel approach to energy management for a thermal and electrical
multi-energy microgrid is proposed. Industrial, commercial, and residential agencies
optimize their energy trading strategies at the bottom level, while energy planning and
pricing strategies are optimized at the top level. For computational tractability, an analo-
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gous single-level mixed integer linear program reformulation is then derived. The day-
ahead and intraday energy market strategies are coordinated using an adaptive stochastic
optimization approach.

A summary of stochastic and powerful programming-based energy management
systems applications in microgrids is given in Table 3.

Table 3. Stochastic and powerful programming-based energy management systems applications.

Ref. Proposed Method Energy Management Application

[56] Stochastic programming

Considering the uncertainties in solar and wind
energy production and energy demand, an energy
management model for a microgrid that takes into

account supply and demand uncertainty
is presented.

[57] Multi-objective stochastic
The objective function applied at various stages of

the microgrid reduces the operating costs of
renewable resources by minimizing system losses.

[58] Stochastic
coordination framework

An application was developed to reduce the system
cost, pumped storage unit, and energy trading costs
with the main grid, and wholesale electricity price

and wind energy uncertainties were modeled using
the estimation method.

[59] Lyapunov
optimization method

Using hourly marketing techniques, it was possible
to dispatch conventional and distributed generation
economically while also managing the uncertainty

associated with renewable generation.

[60] Stochastic optimization

In a multi-energy microgrid, the strategies
developed in the day-ahead and intraday energy

markets are coordinated using an adaptive
stochastic optimization approach.

A model predictive control approach was introduced by [61] to manage a mixed-
generation microgrid that combines distributed and renewable sources. The goal of the model
is to lower the expenses and limitations associated with energy demand and generation.

Ref. [62] introduced an energy management system based on a control algorithm to
manage distributed generation, energy storage systems, and microgrids made up of supply
grids and various loads. TCP/IP-based control and communication was introduced as a
solution to the transition problem between solar system generation and storage systems.

In Ref. [63], an application to operate a hybrid system with solar energy and battery
storage was presented. Batteries were used to store grid power during off-peak hours and
provide power to customers during peak demand hours.

Ref. [64] used model predictive control to maximize the daily performance of the
diesel–wind–PV hybrid system. A method was defined that combines the system with
forecast data on temperature, wind speed, solar irradiance, and daily load.

Microgrids are now a viable option for integrating distributed generation to provide
remote communities with energy, so it is critical to control and manage them well. The three
control levels of a DC microgrid operating in isolated mode are designed and simulated
in [65]. A model predictive control-based energy management system with real-time
measurement feedback is also suggested. This system ensures power flow distribution and
optimal energy dispatch at the lowest possible cost while prolonging the life of the energy
storage system. Disturbances generated in the lower control levels can be responded to
by the energy management system. The effectiveness of the microgrid is examined and
contrasted under two conditions: one in which it has no energy management system and
the other in which it has one in response to variations in irradiation and electricity demand.
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Analyzing the power and operating costs provided by each production unit allows to
evaluate whether the battery’s state of charge and power balance are maintained.

A summary of model predictive control-based energy management systems applica-
tions in microgrids is given in Table 4.

Table 4. Model predictive control-based energy management systems applications.

Ref. Proposed Method Energy Management Application

[61] Model predictive
energy management

By managing the microgrid, it is aimed at reducing
expenses and limitations related to energy demand

and production.

[62] TCP/IP-based control
and communication

It provides communication between photovoltaic
system generation and storage systems to solve the

energy management problem.

[63] Model-based
energy management

In a hybrid system, an energy management system
that provides supply/demand balance was

implemented with an energy storage system.

[64] Model-based
energy management

The application was developed to maximize the
daily performance of distributed generation.

[65] Model predictive
energy management

This system ensures power flow distribution and
optimum energy distribution at the lowest possible
cost while extending the life of the energy storage
system. Analyzing the power provided by each

production unit, the operating cost and the charge
state of the battery allows the evaluation of the

fulfillment of the power balance.

A two-stage AI-based energy management in an isolated microgrid is proposed in [66]
to find the optimal day-ahead distribution. With the efficient management of microgrid
power sources, including diesel generators, battery energy storage systems, and intermittent
renewable energy resources, the deployment aims to minimize expected operating costs,
reactive power costs, spinning reserve, and load-shedding. To model the uncertainties in
the output power of renewable energy resources to be used in the formulation of stochastic
programming, generative adversarial networks were utilized to generate scenarios based
on data.

Ref. [67] used models with two different recurrent neural network architectures (RNN),
long short-term memory (LSTM) and gated recurrent unit (GRU) to predict wind speed
and solar irradiance at a designated location for the establishment of microgrids. The
models improved the prediction accuracy of the models. While data on extreme weather
events such as wind were taken into account to increase the data, it was trained using
meteorological data obtained from meteorological stations and energy management was
carried out in the system.

Fuzzy logic controllers are used to streamline system control, especially in micro-
grids that have several different operating modes and components. Because fuzzy logic
controllers do not require complex mathematical modeling or rely on the nonlinearity
of the microgrid’s parts, the system specifically favors them. This leads to the creation
of an all-encompassing energy management system based on simple linguistic concepts.
Ref. [68] describes a fuzzy logic control-based energy management technique for electric
cars and hybrid energy storage systems that use fuel cells, batteries, and supercapacitors.
This study was carried out on a test microgrid. For optimal control of the energy storage
system in a residential microgrid, Ref. [69] proposes an energy management system based
on fuzzy logic. Research on the design of energy management systems ought to consider
low complexity, encompassing both input and rule numbers [70].

An energy management system for a connected microgrid utilizing fuzzy logic based
on the Mamdani algorithm was introduced by [71]. Making decisions regarding the
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management of the energy flow in the microgrid model—which is made up of energy
storage components and renewable energy sources—is the primary goal. A scheme that
combines genetic algorithms and fuzzy logic was used to realize the optimization.

A challenge for microgrid energy management systems is managing uncertainty. This
issue was resolved by using oversized batteries, which is not the best solution. Load
and renewable energy resources, like wind turbines and PV modules, can be predicted
using techniques like combining multiple artificial neural networks with other techniques
to manage uncertainties in the energy management system. Research has attempted to
reduce production costs, improve the utilization of distributed energy sources, and reduce
emissions by employing various kinds of artificial neural networks in studies based on
energy management systems [72].

Online energy management systems have an advantage over offline ones because they
can manage uncertainties by looking at real-time data, which is particularly useful given
the intermittent nature of renewable energy resources and the highly stochastic nature of
market prices and loads. Every distributed energy source and customer can now benefit
from the application of an energy and load management model based on reinforcement
learning [73].

A program based on incentive-based demand response was proposed by Nnamdi
and Xiaohua [74] for the operations of grid-connected microgrids. The grid-connected
operational mode of a microgrid was examined using the game theory-based demand re-
sponse program. The findings indicate that when the grid operator’s distributed generation
benefit is maximized at the price of minimizing fuel/transaction costs, lower costs could be
obtained in the microgrid.

In Ref. [75], a new deep learning-based prediction model for microgrid operation is
proposed, considering renewable energy resources, load, and day-ahead price uncertainties.
To overcome demand-side uncertainties, a program was developed to provide participants
with optimal incentive rate strategies, as different customers have different attitudes toward
paid incentives. In this program, reasonable incentive rates are determined according to
customers’ bid/offer data by using ranking points to determine the clustering structure.

A summary of artificial intelligence methods-based energy management systems
applications in microgrids is given in Table 5.

In Ref. [76], energy management during a grid outage in microgrids—each with two
photovoltaic and wind generators in addition to local load—was examined. To lower
generation costs brought on by the randomness of the load and the intermittent nature of
the solar capacity, a multi-agent-based energy management system based on the differential
evolution algorithm in the Java Tool Development Framework (JADE) was employed. The
best solution was selected by considering critical loads, and this system also took grid price
fluctuations into account.

Energy management systems are also designed for microgrids containing homes and
buildings [77]. Distributed generation management and coordination of demand response
are part of the energy management system optimization process. The main purpose of
the cost function is to meet the customer’s energy and heat demands while reducing
operating expenses. The Hypertext (HTPP) communication protocol forms the basis of the
communication platform of agents.

For DC microgrids, energy management systems using artificial intelligence-based
algorithms and multi-agent systems to ensure supply-demand balance and power quality
in the system can be used [78]. Additionally, a fully decentralized control approach based
on multi-agent systems can also be applied. In Ref. [78], a microgrid design including
photovoltaic modules, a wind turbine, a lithium-ion battery energy storage system, crit-
ical and non-critical DC loads, and a grid is proposed, and energy management of this
microgrid system is obtained by using a multi-agent-based control structure. Distributed
generation agents, battery agents, load agents, and grid agents are further components
of the multi-agent system. These agents communicate with one another, share data (like
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power, voltage, current, and charge level) between the units, and complete the tasks that
have been delegated to them in the multi-agent system.

Table 5. Artificial intelligence methods-based energy management systems applications.

Ref. Proposed Method Energy Management Application

[66] Generative
adversarial network

It aims at managing uncertainties in the output
power of renewable energy sources with a

data-driven, artificial intelligence-based energy
management strategy for isolated microgrids.

[67] Deep learning

Models with two different recurrent neural network
architectures (RNN), long short-term memory

(LSTM) and gated recurrent unit (GRU) were used to
predict wind speed and solar irradiance.

[68] Fuzzy logic controllers
An application has been developed for energy

management in microgrids with multiple
operating modes.

[69] Fuzzy logic controllers

For the best possible control of the energy storage
system in a residential microgrid, a fuzzy logic
controller-based energy management system

is suggested.

[72] Artificial neural networks
Energy management system-based studies aim to

reduce production costs, increase the use of
distributed energy resources, and reduce emissions.

[73] Reinforcement learning It manages uncertainties by looking at real-time data
with online energy management systems.

[74] Game theory
Fuel/transaction costs are minimized, and the grid

operator’s distributed generation benefit is
maximized at its price.

[75] Deep learning

To overcome demand-side uncertainties, a program
was developed to provide participants with optimal
incentive rate strategies, as different customers have

different attitudes toward paid incentives.

Energy management systems based on multi-agent systems can also optimize energy
from renewable resources by employing Maximum Power Point Tracking (MPPT) algo-
rithms. An artificial neural network controller can be used to control the energy storage
system in addition to the multi-agent system-based energy management system. This
maximizes the charge and discharge of batteries [79]. The goal of the study is to balance
the power within the microgrid. This study offers a flexible control to achieve this balance.
MATLAB/Simulink is used to model all components of the designed microgrid. JADE is
used to create agents for multi-agent systems on the system and design the communication
and information sharing between the generated agents. The program, called MACSIMJX,
facilitates the relationship and communication between JADE and MATLAB in this design.
This ensures that the agents designed in JADE and the microgrid designed in MATLAB
cooperate.

In Ref. [80], an energy management system based on multiple agents is used. This
system takes into account various load models and energy from distributed energy re-
sources. They proposed a cutting-edge method that inspires customers to participate.
Using JADE programming, this proposal was validated on interconnected grids. The
management system provides customers with an attractive benefit-cost ratio and reduces
peak consumption.

Ref. [81] introduced a multi-agent hybrid energy management system that combines
the best features of decentralized and centralized approaches to optimize the economic
operation of the microgrid. A novel simulation platform for energy management systems
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was developed and implemented in the C++ programming language, based on the client-
server architecture.

In Ref. [82], an intelligent and sustainable energy management system for a microgrid
based on a multi-agent system is examined. The system is designed to address issues
brought on by the intermittent availability of renewable energy resources. Furthermore,
the system optimizes the utilization of available AC and/or DC renewable energy sources
by leveraging load flexibility and the complementarity of renewable resources. An evalua-
tion of this proposed multi-agent framework is conducted through a co-simulation for a
microgrid linked to the main grid, utilizing the MATLAB and JADE platforms.

A summary of multi-agent energy management systems applications in microgrids is
given in Table 6.

Table 6. Multi-agent system-based energy management systems.

Ref. Proposed Method Energy Management Application

[76]
Multi-agent management with

differential evolution
algorithm

Production costs were decreased by using a
multi-agent management system based on JADE’s

differential evolution algorithm.

[77] Multi-agent-based energy
management

By applying energy management system
optimization between distributed generation

management and coordination of demand response,
it aimed at reducing operating expenses.

[78] Multi-agent with MATLAB
Multi-agent systems are used in the designed DC

microgrid to guarantee power quality and
supply-demand balance.

[79] Multi-agent with JADE

It is based on optimizing the energy obtained from
renewable sources using MPPT algorithms. JADE

was used to design communication and information
shared between the created agents.

[80] Multi-agent with JADE

Taking into account various load models and energy
from distributed energy resources, the application
provides customers with an attractive benefit-cost

ratio and reduces peak consumption.

[81] Multi-agent and based on the
client-server architecture

The microgrid’s economic performance was
enhanced by developing a client-server

architecture-based simulation platform for energy
management systems.

[82] Multi-agent with MATLAB
and JADE

The application, which maximizes load flexibility
and the use of renewable resources, was developed

using MATLAB and JADE platforms.

4. Conclusions

In this article, a review of energy management systems and energy management
system applications in developed microgrids is presented. A comprehensive and critical
analysis of energy management strategies and solution approaches has been carried out.
Optimizing system reliability, energy planning, and operation in microgrids that can
operate both on the island and on the grid is the main goal of the energy management
system for sustainable development. Therefore, a microgrid energy management system is
a multi-purpose issue that addresses financial, environmental, and technical concerns.

Although there are many methods to perform energy management in microgrids,
artificial intelligence technologies have become popular recently and have great potential
in the future. Artificial intelligence technologies hold great promise for transforming
microgrid operations and facilitating the broad integration of renewable energy resources.
In addition to enabling real-time decision-making and better resource utilization, the
application of machine learning, deep learning, and other artificial intelligence algorithms
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can enhance predictive analytics, optimization, control, and monitoring of microgrids.
Although artificial intelligence technologies have many advantages, they also present
many difficulties, including interpretability, privacy, and data quality. To facilitate the
broad adoption of artificial intelligence technologies in microgrids, future research and
development should address these issues and provide fresh strategies and solutions.

Energy management techniques are chosen for the best possible operation of micro-
grids due to their applicability and traceability. The types of purposes of microgrid energy
management systems depend on various factors, such as the way they operate, decentral-
ized or centralized operation, economic considerations, and the variable and intermittent
nature of renewable energy sources. They also take into account the environmental im-
pact of traditional generators, battery health, distributed generation integration, system
reliability and losses, and customer privacy. A comprehensive approach is still needed
to manage customer privacy concerns and ensure a secure and reliable communication
system, especially in decentralized operations. Additionally, the reliability analysis of
microgrid systems for remote and island applications should be studied comprehensively.
These potential areas need to be comprehensively addressed to ensure that microgrids
operate as energy-efficiently as possible.
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