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Abstract 

 
In this article, bandwagon distance is introduced and various parameters of bandwagon distance like 

bandwagon eccentricity, bandwagon eccentric vertex, bandwagon radius, bandwagon diameter, bandwagon 

center, bandwagon periphery are defined. Bounds on bandwagon radius and bandwagon diameter for                  

class of graphs are found. Bandwagon eccentric domination is defined along with bandwagon eccentric 

domination number 𝛾𝑏𝑒𝑑(𝐺). Necessary and sufficient condition for bandwagon eccentric dominating set is 

proved. Results related to exact values of bandwagon eccentric domination number of class of graphs is 

obtained. 

 

 
Keywords: Elected neighbour; bandwagon distance; bandwagon eccentricity; bandwagon eccentric 

domination. 
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1 Introduction  
 

The concept of distance in graph is very interesting. There are many different types of distances like geodesic, 

detour [1], steiner [2], D-distance [3], M-distance [4], eccentric, coupling [5], superior [6] etc. Some are metric 

and some are non-metric distance. ’Distance in graphs’ by F. Buckley and F. Harary [7] is a textbook               

where some distances in graphs are discussed. Ore and Berge [8,9] introduced domination in graphs,               

there is a vast literature available in the textbooks [10-14]. T.N. Janakiraman et al. [15] introduced eccentric 

domination in graphs. There are many dominating sets whose constraints are based on distance parameters 

[16,17,18].  

 

Bandwagon was the earliest modes of announcement used to communicate the orders, decisions,              

precautionary measures to people. A person used to announce the information in the streets. Later the                   

term and wagon effect was adapted by psychologists to name a trend where a person’s decisions                            

were always influenced by the trend. People blindly followed the herd. People did this because they                                     

felt the idea was tried and tested. Therefore it was safe to follow and chances of failure was                             

minimal.  

 

Inspired by this concept bandwagon distance is introduced in this paper. We also introduce elected neighbour, 

bandwagon eccentricity, bandwagon eccentric vertex, bandwagon radius, bandwagon diameter, bandwagon 

center, bandwagon periphery, bandwagon eccentric domination. Results related to bandwagon eccentric 

domination of different family of graphs are stated and proved. 

 

2 Preliminaries 
 

Definition 2.1. [19] A walk 𝑊 of a graph 𝐺 is a finite alternating sequence of vertices and edges, begining and 

ending with vertices such that, each edge is incident with the vertices preceding and following it. 

 

Definition 2.2. [19] The open neighborhood 𝑁(𝑢) of a vertex 𝑣 is the set of all vertices adjacent to 𝑣 in 𝐺. 

𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣} is called the closed neighborhood of 𝑣. 

 

Definition 2.3. [19] The vertex v is called isolated vertex if 𝑑𝑒𝑔(𝑣) = 0, the vertex 𝑢 is called endpoint or 

pendant vertex if 𝑑𝑒𝑔(𝑣) = 1. 

 

Definition 2.4. [20] The degree 𝑑𝑒𝑔(𝑣) of 𝑣 is the number of edges incident with 𝑣. 

 

Definition 2.5. [15] The eccentricity 𝑒(𝑣)  of 𝑣  is the distance to a vertex farthest from 𝑣 . Thus, 𝑒(𝑣) =
𝑚𝑎𝑥{𝑑(𝑢, 𝑣) ∶ 𝑢 ∈ 𝑉} . For a vertex  𝑣 , each vertex at a distance 𝑒(𝑣)  from 𝑣  is an eccentric vertex. The 

Eccentric set of a vertex v is defined as 𝐸(𝑣) = {𝑢 ∈ 𝑉(𝐺) ∶ 𝑑(𝑢, 𝑣) = 𝑒(𝑣)}. 

 

Definition 2.6. [21] The radius of 𝐺 is 𝑟𝑎𝑑(𝐺) = 𝑚𝑖𝑛{𝑒(𝑢) ∶ 𝑢 ∈ 𝑉(𝐺)} and the diameter of 𝐺 is 𝑑𝑖𝑎𝑚(𝐺) =
𝑚𝑎𝑥{𝑒(𝑢) ∶ 𝑢 ∈ 𝑉(𝐺)}. 

 

Definition 2.7. [15] 𝑣 is a central vertex if 𝑒(𝑣) = 𝑟𝑎𝑑(𝐺). The center 𝐶(𝐺) is the set of all central vertices. 𝑣 is 

a peripheral vertex if 𝑒(𝑣) = 𝑑𝑖𝑎𝑚(𝐺). The periphery 𝑃(𝐺) is the set of all peripheral vertices. If 𝑟𝑎𝑑(𝐺) =
𝑑𝑖𝑎𝑚(𝐺) then the graph is called self centered graph. 

 

Definition 2.8. [15] A set 𝐷 ⊆ 𝑉(𝐺)  is an eccentric dominating set if 𝐷  is a dominating set of 𝐺  and for 

every 𝑣 ∈ 𝑉 − 𝐷, there exists at least one eccentric vertex of 𝑣 in 𝐷. 

 

Definition 2.9. [22] A friendship graph 𝐹𝑛 can be constructed by joining ′𝑛′ 𝐶3 cycle graph with a common 

vertex. The ′𝑛′ in 𝐹𝑛 denotes the number of 𝐶3 cycles in 𝐹𝑛. There are 2𝑛 + 1 vertices and 3𝑛 edges in 𝐹𝑛 graph. 

The graph 𝐹1 is an exact copy of cycle 𝐶3. The friendship graph 𝐹2 is obtained by joining two 𝐶3 cycles with a 

common vertex. 
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3. Bandwagon Distance in Graphs 
 

In this section, we introduce bandwagon distance and discuss its parameters. Here only connected graphs are 

considered. 

 

Definition 3.1. A vertex 𝑢 is said to be an elected neighbour of 𝑣 if 𝑢 is adjacent to 𝑣 and has the maximum 

degree among all vertices adjacent to 𝑣. The walk between any two vertices where all the vertices are connected 

to at least one of its elected neighbour is called bandwagon walk. The shortest bandwagon walk between any 

two vertices 𝑣𝑖 and 𝑣𝑗 is known as bandwagon distance given by 𝐵𝑑(𝑣𝑖 , 𝑣𝑗). 

 

Definition 3.2. The bandwagon eccentricity 𝐵𝑒(𝑣) of a vertex 𝑣 is the bandwagon distance to a vertex farthest 

from 𝑣. Thus, 𝐵𝑒(𝑒) = 𝑚𝑎𝑥{𝐵𝑑(𝑢, 𝑣) ∶ 𝑣, 𝑢 ∈ 𝑉}. For a vertex 𝑣, each vertex at a distance 𝐵𝑒(𝑣) from 𝑣 is a 

bandwagon eccentric vertex. The bandwagon eccentric set of a vertex 𝑣 is defined by 𝐵𝐸(𝑣) = {𝑢 ∈ 𝑉(𝐺) ∶
𝑑(𝑢, 𝑣) = 𝐵𝑒(𝑒)}. 

 

Definition 3.3. The bandwagon radius 𝐵𝑟𝑎𝑑(𝐺) is the minimum bandwagon eccentricity of the vertices. The 

bandwagon diameter 𝐵𝑑𝑖𝑎𝑚(𝐺) is the maximum bandwagon eccentricity. 𝑣 is a bandwagon central vertex if 

𝐵𝑒(𝑣) = 𝐵𝑟𝑎𝑑(𝐺) . The bandwagon center 𝐵𝐶(𝐺)  is the set of all bandwagon central vertices. 𝑣  is a 

bandwagon peripheral vertex if 𝐵𝑒(𝑣) = 𝐵𝑑𝑖𝑎𝑚(𝐺) . The bandwagon periphery 𝐵𝑃(𝐺) is the set of all 

bandwagon peripheral vertices. A graph 𝐺 is said to be bandwagon self-centered if and only if 𝐵𝑟𝑎𝑑(𝐺) =
𝐵𝑑𝑖𝑎𝑚(𝐺). 

 

Example 3.1. Consider the graph 𝐺 given in Fig. 1. 

 

 
 

Fig. 1. Graph 𝑮 

 

Table 1. Bandwagon eccentric vertex 𝑩𝑬(𝒗) 

 

Vertex 𝒗 ∈ 𝑽(𝑮) Bandwagon eccentricity 𝑩𝒆(𝒗) Bandwagon eccentric vertex 𝑩𝑬(𝒗) 

𝑣1 6 {𝑣7} 

𝑣2 4 {𝑣1, 𝑣6, 𝑣7, 𝑣8} 

𝑣3 5 {𝑣1, 𝑣7} 

𝑣4 4 {𝑣1, 𝑣7} 

𝑣5 3 {𝑣1, 𝑣2, 𝑣6, 𝑣7, 𝑣8} 

𝑣6 4 {𝑣1, 𝑣2, 𝑣7, 𝑣8} 

𝑣7 6 {𝑣1} 

𝑣8 4 {𝑣1, 𝑣2, 𝑣6, 𝑣7} 

 

𝐵𝑟𝑎𝑑(𝐺) = 3, 𝐵𝑑𝑖𝑎𝑚(𝐺) = 6, 𝐵𝐶(𝐺) = {𝑣5} and 𝐵𝑃(𝐺) = {𝑣1, 𝑣7}. 

 

The bandwagon distance between 𝑣1  and 𝑣4 , (𝐵𝑑(𝑣1, 𝑣4))  is 4 . A bandwagon distance path is 

𝑣1– 𝑣3– 𝑣4– 𝑣5– 𝑣4 , since the elected neighbour of 𝑣4  is 𝑣5 . By the Definition-3.1, every vertex has to be 

connected to its elected neighbour. 
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Similarly the bandwagon distance between 𝑣1 and 𝑣3, (𝐵𝑑(𝑣1, 𝑣3)) is 5. The bandwagon distance path is 𝑣1 −
𝑣3 − 𝑣4 − 𝑣5 − 𝑣4 − 𝑣3, since the elected neighbour of 𝑣3 is 𝑣4 and the elected neighbour of 𝑣4 is 𝑣5. 

 

Remark 3.1. For a graph 𝐾1, 𝐵𝑑(𝐾1) = 0. 

 

Theorem 3.1. For any connected graph 𝐺, where order of 𝐺 is greater than or equal to 2. The following are true. 

1. 𝐵𝑑(𝑣, 𝑣)  ≠  0. 

2. 𝐵𝑑(𝑢, 𝑣) = 𝐵𝑑(𝑣, 𝑢). 

3. 𝐵𝑑(𝑢, 𝑣) ≤ 𝐵𝑑(𝑢, 𝑤) + 𝐵𝑑(𝑤, 𝑣). 

 

Proof: 

 

1. Every bandwagon vertex has an elected neighbour on a bandwagon walk. Therefore the minimum 

possible bandwagon distance is 2. Therefore 𝐵𝑑(𝑣, 𝑣) > 0. 

2. Since every vertex on the bandwagon walk has an elected neighbour and it is the shortest bandwagon 

distance between (𝑢, 𝑣)  and vice versa, the bandwagon distance remains symmetric. Therefore 

𝐵𝑑(𝑢, 𝑣) = 𝐵𝑑(𝑣, 𝑢). 

3. Let (𝑢, 𝑣) be a bandwagon distance then 𝐵𝑑(𝑢, 𝑣) = 𝐵𝑑(𝑣, 𝑢) it is symmetric. 

 

Case(i): There exist a vertex 𝑤 on the same walk between 𝐵𝑑(𝑢, 𝑣). Then 𝐵𝑑(𝑢, 𝑣) ≤ 𝐵𝑑(𝑢, 𝑤) + 𝐵𝑑(𝑤, 𝑣). 

Case(ii): 𝑤 does not lie on the shortest 𝐵𝑑(𝑢, 𝑣) walk. Since 𝐵𝑑(𝑢, 𝑣) is shortest distance. The proof is obvious 

and 𝐵𝑑(𝑢, 𝑣) < 𝐵𝑑(𝑢, 𝑤) + 𝐵𝑑(𝑤, 𝑣). 

 

Remark 3.2. 

 

1. From the Theorem-3.1, bandwagon distance is not a metric. 

2. Consider path graph with vertices 𝑉(𝑃𝑛)  =  {𝑣1, 𝑣2, . . . , 𝑣𝑛} , where 𝑣1  and 𝑣𝑛  are pendant vertices, 

hence 𝑑𝑒𝑔(𝑣1) = 𝑑𝑒𝑔(𝑣𝑛) = 1  and 𝑑𝑒𝑔(𝑣2) = 𝑑𝑒𝑔(𝑣3) = · · · = 𝑑𝑒𝑔(𝑣𝑛−1) = 2 . Therefore 

𝐵𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) = 1, if 𝑢, 𝑣 ∈ 𝐸(𝑢, 𝑣) ∈ 𝑃𝑛 and 𝑢, 𝑣 not a pendant vertices. 

3. For any star graph 𝑆𝑛  ∀ 𝑛 ≥  3, where 𝑢, 𝑣 ∈  𝑉(𝑆𝑛)  

 

𝐵𝑑(𝑢, 𝑣) = {
1, 𝑖𝑓 𝑢, 𝑣 ∈ 𝐸(𝑢, 𝑣) ∈ 𝑆𝑛 ,

2, 𝑖𝑓 𝑢, 𝑣 ∉ 𝐸(𝑢, 𝑣) ∈ 𝑆𝑛 .
 

 

4. If 𝐺 is a complete, cycle, crown and cocktail party graphs, then 𝐵𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) ∀ 𝑢, 𝑣 ∈ 𝐺 since 

they are regular graphs. 

 

Observation 3.1. For any star graph 𝑆𝑛 ∀ 𝑛 ≥  3, 𝑣1 is the central vertex and all other vertices are pendant 

vertices then 

 

1. 𝐵𝐸(𝑣1) = 𝑉(𝑆𝑛) − {𝑣1} and 𝐵𝐸(𝑣𝑖) = 𝑉(𝑆𝑛) − {𝑣1, 𝑣𝑖} where 2 ≤  𝑖 ≤  𝑛. 

2. |𝐵𝐸(𝑣1)| = 𝑛 − 1 and |𝐵𝐸(𝑣𝑖)| = 𝑛 − 2. 

 

Theorem 3.2. For any star graph 𝑆𝑛 ∀ 𝑛 ≥  3, then 

 

i. 𝐵𝑟𝑎𝑑(𝑆𝑛) = 1 and |𝐵𝐶(𝑆𝑛)| = 1. 

ii. 𝐵𝑑𝑖𝑎𝑚(𝑆𝑛) = 2 and |𝐵𝑃(𝑆𝑛)| = 𝑛 −  1. 

 

Proof: (i): Every star graph 𝑆𝑛 ∀ 𝑛 ≥  3 contains a central vertex 𝑣1 and all other (𝑛 − 1) vertices are pendant 

vertices. Then 𝑑𝑒𝑔(𝑣2) = 𝑑𝑒𝑔(𝑣3) = · · · = 𝑑𝑒𝑔(𝑣𝑛) = 1. Now the bandwagon distance between the central 

vertex 𝑣1 and pendant vertex 𝑣𝑖  ∀ 2 ≤  𝑖 ≤  𝑛 is given by 𝐵𝑑(𝑣1, 𝑣𝑖) = 1, since all the pendant vertices has 

same degree. The bandwagon distance between any two pairs of pendant vertices is given by 𝐵𝑑(𝑣𝑖 , 𝑣𝑗) =

2 ∀ 𝑖, 𝑗, and 2 ≤  𝑖 <  𝑗 ≤  𝑛, since every pendant vertex is adjacent to the central vertex 𝑣1  which has the 

maximum degree. Therefore the central vertex 𝑣1 becomes a vertex with a unique bandwagon eccentric value. 

Hence 𝐵𝑟𝑎𝑑(𝑆𝑛) = 1 and |𝐵𝐶(𝑆𝑛)| = 1. 
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(ii): By (i) |𝐵𝐶(𝑆𝑛)| = 1, since 𝑣1 being the unique vertex with the least bandwagon eccentric value and all the 

other remaining pendant vertices 𝑣𝑖 ∈ 𝑉(𝑆𝑛) − {𝑣1}∀𝑖 and 2 ≤  𝑖 ≤  𝑛 have the same bandwagon eccentricity 

𝐵𝑒(𝑣𝑖) = 2. Therefore 𝐵𝑑𝑖𝑎𝑚(𝑆𝑛) = 2 and |𝐵𝑃(𝑆𝑛)| = 𝑛 − 1. Hence, the set of all pendant vertices of 𝑆𝑛 

form the bandwagon periphery of 𝑆𝑛. 

 

Observation 3.2. For any path graph 𝑃𝑛 ∀ 𝑛 ≥  3, 

 

1. The bandwagon center 𝐵𝐶(𝑃𝑛) has unique vertex ie, |𝐵𝐶(𝑃𝑛)| = 1 if ′𝑛′ is odd. 

2. 𝐵𝐶(𝑃𝑛) contains a pair of bandwagon central vertices ie, |𝐵𝐶(𝑃𝑛)| = 2 if ′𝑛′ is even. 

3. The bandwagon periphery 𝐵𝑃(𝑃𝑛) has pendant vertices ie, |𝐵𝑃(𝑃𝑛)| = 2. 

 

Theorem 3.3. For any path graph 𝑃𝑛, 

 

𝐵𝑟𝑎𝑑(𝑃𝑛)  = {

𝑛 − 1

2
, 𝑖𝑓 ′𝑛′ 𝑖𝑠 𝑜𝑑𝑑, 𝑛 ≥ 3,

𝑛

2
, 𝑖𝑓 ′𝑛′ 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑛 ≥ 6.

 

 

Proof: Case(i): If 𝑛 is odd, from the Observation-3.2-(1), any odd path 𝑃𝑛 contains a unique vertex that forms 

the bandwagon center. Then the pendant vertices 𝑣1 and 𝑣𝑛 form the bandwagon eccentric vertices of the unique 

vertex 𝑣𝑖 , which is also the bandwagon center. The bandwagon distance 𝐵𝑑(𝑣1, 𝑣𝑖) = 𝐵𝑑(𝑣𝑖, 𝑣𝑛) =
𝑛−1

2
 . 

Hence 𝐵𝑟𝑎𝑑(𝑃𝑛) =
𝑛−1

2
, if 𝑛 is odd and 𝑛 ≥  3. 

 

Case(ii): If 𝑛 is even, from the Observation 3.2 (2), there is a pair of intermediate adjacent vertices which forms 

the bandwagon center of 𝑃𝑛 . Let 𝑣𝑖  and 𝑣𝑗  be the intermediate adjacent vertices of the path 𝐵𝑟𝑎𝑑(𝑃𝑛) =

{𝑣𝑖 , 𝑣𝑖+1}, 𝑖 = ⌊
𝑛

2
⌋ and 𝐵𝑒(𝑣𝑖) = 𝐵𝑒(𝑣𝑖+1). The bandwagon eccentric vertices of 𝑣𝑖 and 𝑣𝑗, where 𝑖 <  𝑗 are 𝑣𝑛 

and 𝑣1 respectively. The bandwagon distance between the central vertices and the pendant vertices will be same. 

Hence 𝐵𝑑(𝑣𝑖 , 𝑣𝑛) = 𝐵𝑑(𝑣𝑗 , 𝑣𝑛) =
𝑛

2
. Therefore 𝐵𝑟𝑎𝑑(𝑃𝑛) =

𝑛

2
, if 𝑛 is even, 𝑛 ≥  6. 

 

Theorem 3.4. For any path graph 𝑃𝑛 ∀ 𝑛 ≥  3, the bandwagon diameter is 𝐵𝑑𝑖𝑎𝑚(𝑃𝑛) = 𝑛 −  1. 

 

Proof: Consider the path graph 𝑃𝑛 where 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. The maximum bandwagon distance between 

any two vertices can be found between the pendant vertices ie, 𝐵𝐷(𝑣1, 𝑣𝑛) = 𝑛 − 1. Since there is no other 

alternative path between the pendant vertices, hence 𝐵𝑒(𝑣1) = 𝐵𝑒(𝑣𝑛) = 𝑛 − 1, 𝐵𝐸(𝑣1) = {𝑣𝑛} and 𝐵𝐸(𝑣𝑛) =
{𝑣1}. Therefore 𝐵𝑑𝑖𝑎𝑚(𝑃𝑛) = 𝑛 − 1, 𝐵𝑃(𝑃𝑛) = {𝑣1, 𝑣𝑛} and |𝐵𝑃(𝑃𝑛)| = 2. 

 

Observation 3.3. For any cycle graph 𝐶𝑛 ∀ 𝑛 ≥  3, 

 

1. |𝐵𝐸(𝑣𝑖)| = 1, if 𝑛 is even and ∀ 1 ≤  𝑖 ≤  𝑛. 

2. |𝐵𝐸(𝑣𝑖)| = 2, if 𝑛 is odd and ∀ 1 ≤  𝑖 ≤  𝑛. 

3. 𝐵𝑟𝑎𝑑(𝐶𝑛) = 𝐵𝑑𝑖𝑎𝑚(𝐶𝑛) ie, it is a bandwagon self-centered graph. 

 

Theorem 3.5. For any cycle graph 𝐶𝑛 ∀ 𝑛 ≥  3, 

 

𝐵𝑟𝑎𝑑(𝐶𝑛) = {

(𝑛 − 1)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑛 ≥ 3,

𝑛

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑛 ≥ 4.

 

 

Proof: Case(i): Let 𝐶𝑛  be a cycle graph where ′𝑛′ is odd. Even cycle graph is a 2-regular graph, then the 

bandwagon distance between any two vertices is same as its geodesic distance. For every vertex 𝑣𝑖 ∈

𝑉(𝐶𝑛) ∀ 𝑖 and 1 ≤  𝑖 ≤  𝑛 the farthest vertex lies at a distance of 
𝑛−1

2
 from it. Hence 𝑒(𝑣𝑖) =

𝑛−1

2
 . Therefore 

the bandwagon radius is given by 𝐵𝑟𝑎𝑑(𝐶𝑛) =
𝑛−1

2
. 
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Case(ii): For an even cycle 𝐶𝑛, where 𝑣𝑖 ∈ 𝑉(𝐶𝑛) ∀ 𝑖, 1 ≤  𝑖 ≤  𝑛 the vertex farthest from 𝑣𝑖 lies at a distance 

of 
𝑛

2
 from it ie, 𝐵𝑒(𝑣𝑖) =

𝑛

2
. Therefore the bandwagon radius of 𝐶𝑛 is given by 𝐵𝑟𝑎𝑑(𝐶𝑛) =

𝑛

2
. Hence for an even 

cycle which is also self-centered, 𝐵𝑟𝑎𝑑(𝐶𝑛) =  𝐵𝑑𝑖𝑎𝑚(𝐶𝑛) =
𝑛

2
. 

 

Observation 3.4. 

 

1. The wheel graph 𝑊4 is bandwagon self-centered graph, ie, 𝐵𝑟𝑎𝑑(𝑊4) = 𝐵𝑑𝑖𝑎𝑚(𝑊4) = 1. Since 𝑊4 is 

a regular graph 𝐵𝑑(𝑢, 𝑣) = 1, ∀ 𝑢, 𝑣 ∈ 𝑉(𝑊4). 

2. For any wheel graph 𝑊𝑛 ∀ 𝑛 ≥  5, consider the vertex set 𝑉(𝑊𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, 

where 𝑣1 is the central vertex then 

 

𝐵𝑑(𝑢, 𝑣) = {
1, 𝑒𝑖𝑡ℎ𝑒𝑟 𝑢 𝑜𝑟 𝑣 𝑖𝑠 𝑎 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥,

2,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

3. For any wheel graph 𝑊𝑛 ∀ 𝑛 ≥  5, consider the vertex set 𝑉(𝑊𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, 

where 𝑣1 is the central vertex then 

 

𝐵𝐸(𝑣1) = 𝑉(𝑊𝑛) − {𝑣1} and 𝐵𝐸(𝑣𝑖) = 𝑉(𝑊𝑛) − {𝑣1, 𝑣𝑖} where 2 ≤  𝑣𝑖  ≤  𝑛. 

|𝐵𝐸(𝑣1)| = 𝑛 − 1 and |𝐵𝐸(𝑢)| = 𝑛 − 2. 

 

Theorem 3.6. For any wheel graph 𝑊𝑛 ∀ 𝑛 ≥  5, then 

 

i. 𝐵𝑟𝑎𝑑(𝑊𝑛) = 1 and |𝐵𝐶(𝑊𝑛)| = 1. 

ii. 𝐵𝑑𝑖𝑎𝑚(𝑊𝑛) = 2 and |𝐵𝑃(𝑊𝑛)| = 𝑛 − 1. 

 

Proof: Let 𝑊𝑛 be the wheel graph where 𝑉(𝑊𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. 

 

(i) Let 𝑣1  be the vertex adjacent to all other vertices of a graph. Therefore 𝑑𝑒𝑔(𝑣1) = 𝑛 − 1 and the 

degree of all other vertices of a wheel graph has a degree 3 ie, 𝑑𝑒𝑔(𝑣𝑖) = 3 where 𝑣𝑖 ∈ 𝑉(𝑊𝑛) −
{𝑣1} ∀ 2 ≤  𝑖 ≤  𝑛. Since every vertex of 𝑉(𝑊𝑛) − {𝑣1} is incident on the vertex 𝑣1, the bandwagon 

distance is 𝐵𝑑(𝑣1, 𝑣𝑖) = 1, 𝐵𝑒(𝑣1) = 1, 𝐵𝐸(𝑣1) = 𝑉(𝑊𝑛) − {𝑣1}  and |𝐵𝐸(𝑣1)| = 𝑛 − 1 . Therefore 

𝐵𝑟𝑎𝑑(𝑊𝑛) = 1 and |𝐵𝐶(𝑊𝑛)| = 1. 

 

(ii) Now consider any two vertices 𝑣𝑖 and 𝑣𝑗 other than 𝑣1 ie, 2 ≤ 𝑖 < 𝑗 ≤ 𝑛 then the shortest bandwagon 

distance between them will be of path 𝑣𝑖  –  𝑣1 –  𝑣𝑗 , since 𝑣1 has the maximum degree among all the 

vertices, hence 𝐵𝑑(𝑣𝑖 , 𝑣𝑗) = 2 . Therefore 𝐵𝑒(𝑣𝑖) = 2 ∀ 𝑖 ≠ 1, 𝐵𝐸(𝑣𝑖) = 𝑉(𝑊𝑛) − {𝑣1, 𝑣𝑖}  and 

|𝐵𝐸(𝑣𝑖)| = 𝑛 − 2. Hence 𝐵𝑑𝑖𝑎𝑚(𝑊𝑛) = 2. 

 

Observation 3.5. For friendship graphs 𝐹𝑛 where 𝑛 ≥  5, 

 

1. |𝐵𝑟𝑎𝑑(𝐺)| = 1. 

2. |𝐵𝑑𝑖𝑎𝑚(𝐺)| = 𝑛 − 1. 

3. Let 𝑑𝑒𝑔(𝑣𝑖) = 𝛥(𝐺) , then 𝐵𝐸(𝑢) = 𝑉(𝐺) − {𝑣𝑖 , 𝑢}  where 𝑢 ∈ 𝑉(𝐺) . |𝐵𝐸(𝑣𝑖)| = 𝑛 − 1  and 

|𝐵𝐸(𝑢)| = 𝑛 − 5. 

 

Theorem 3.7. For any friendship graphs 𝐹𝑛, then 𝐵𝑟𝑎𝑑(𝐺) = 1 and 𝐵𝑑𝑖𝑎𝑚(𝐺) = 2. 

 

Proof: Let 𝑣1 ∈ 𝑉(𝐹𝑛)  be the common vertex of 𝐹𝑛  which joins every cycle 𝐶3  by a common point, then 

𝑑𝑒𝑔(𝑣1) = 2𝑛 . Since 𝑣1  is adjacent to every other vertex 𝑣𝑖 ∈ 𝑉(𝐹𝑛) − {𝑣1}, ∀ 2 ≤  𝑖 ≤ (2𝑛 +
 1), 𝐵𝑑(𝑣1, 𝑣𝑖) = 1, 𝐵𝑒(𝑣1) = 1, 𝐵𝐸(𝑣1) = 𝑉(𝐹𝑛) − {𝑣1}  and |𝐵𝐸(𝑣1)| = 𝑛 −  1 . Therefore 𝐵𝑟𝑎𝑑(𝐹𝑛) = 1 . 

Let 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐹𝑛) − {𝑣1}, since 𝑣1 has the maximum degree and is adjacent to all other vertices, the bandwagon 

path between any two vertices should pass through the vertex 𝑣1  ie, 𝑣𝑖  –  𝑣1 –  𝑣𝑗  , 𝐵𝑑(𝑣𝑖 , 𝑣𝑗) = 2  since 

𝑑𝑒𝑔(𝑣𝑖) = 2 ∀ 𝑖 ≠ 1. 𝐵𝑒(𝑣𝑖) = 2, 𝐵𝐸(𝑣𝑖) = 𝑉(𝐹𝑛) − {𝑣1, 𝑣𝑖}  and |𝐵𝐸(𝑣𝑖)| = 𝑛 − 2 . Therefore 𝐵𝑑𝑖𝑎𝑚(𝐹𝑛) =
2. 
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4 Bandwagon Eccentric Domination 
 

Definition 4.1. A dominating set 𝐷 ⊆ 𝑉(𝐺) is a bandwagon eccentric dominating set (BED-set) if for every 

vertex 𝑣 ∈ 𝑉 − 𝐷, there exists at least one bandwagon eccentric vertex of 𝑣 in 𝐷. A BED-set 𝐷  is called a 

minimal BED-set if no proper subset of 𝐷 is a BED-set. The BED-number 𝛾𝑏𝑒𝑑(𝐺) of a graph 𝐺 is the minimum 

cardinality among the minimal BED-sets of 𝐺. The upper BED-number 𝛤𝑏𝑒𝑑(𝐺) of a graph 𝐺 is the maximum 

cardinality among the minimal BED-sets of 𝐺. 

 

Example 4.1. Consider the claw graph given in Fig. 2. 

 

 
 

Fi. 2. Claw graph 

 

Here the dominating set is {𝑣3} , therefore 𝛾(𝐺) = 1  but it is not a BED-set. The BED-sets are 

{𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4}, therefore 𝛾𝑏𝑒𝑑(𝐺) = 2. The upper BED-set is {𝑣1, 𝑣2, 𝑣4}, therefore 𝛤𝑏𝑒𝑑(𝐺) = 3. 

 

Theorem 4.1. A bandwagon eccentric dominating set 𝐷 is a minimal bandwagon eccentric dominating set if and 

only if for each vertex 𝑢 ∈ 𝐷, one of the following is true. 

 

1. 𝑢 is an isolated vertex of 𝐷 or 𝑢 has no bandwagon eccentric vertex in 𝐷. 

2. There exists some 𝑢 ∈ 𝑉– 𝐷 such that 𝑁(𝑢) ∩ 𝐷 = 𝑢. 

 

Proof: Assume that 𝐷 is a minimal bandwagon eccentric dominating set of 𝐺. Then for every vertex 𝑢 ∈ 𝐷, 

𝐷– {𝑢} is not a bandwagon eccentric dominating set. That is there exists some vertex 𝑣 in (𝑉– 𝐷) ∪ {𝑢} which is 

not dominated by any vertex in 𝐷– {𝑢}  or there exists 𝑣  in (𝑉 – 𝐷) ∪ {𝑢}  such that 𝑣  has no bandwagon 

eccentric vertex in 𝐷– {𝑢}. 

 

Case (i): Suppose 𝑢 = 𝑣, then 𝑢 is an isolate of 𝐷 or 𝑢 has no bandwagon eccentric vertex in 𝐷. 

Case (ii): Suppose 𝑣 ∈ 𝑉– 𝐷, 

 

(a) If 𝑣 is not dominated by 𝐷– {𝑢}, but is dominated by some vertex in 𝐷, then 𝑣 is adjacent to only 𝑢 in 𝐷, that 

is 𝑁(𝑣) ∩ 𝐷 = {𝑢}. 

(b) Suppose 𝑣 has no bandwagon eccentric vertex in 𝐷– {𝑢} but 𝑣 has a bandwagon eccentric vertex in 𝐷. Then 

𝑢 is the only bandwagon eccentric vertex of 𝑣 in 𝐷. That is 𝐸(𝑣) ∩ 𝐷 = {𝑢}. 

 

Conversely, suppose that 𝐷 is a bandwagon eccentric dominating set and for each 𝑢 ∈ 𝐷 one of the conditions 

holds, we show that 𝐷 is a minimal bandwagon eccentric dominating set. 
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Suppose that 𝐷 is not a minimal bandwagon eccentric dominating set, that is, there exists a vertex 𝑢 ∈ 𝐷 such 

that 𝐷– {𝑢} is a bandwagon eccentric dominating set. Hence, 𝑢 is adjacent to at least one vertex 𝑣 in 𝐷– {𝑢} and 

𝑢 has a bandwagon eccentric point in 𝐷– {𝑢}. Therefore, condition-(i) does not hold. 

 

Also, if 𝐷– {𝑢} is a bandwagon eccentric dominating set, every element 𝑥 in 𝑉 − 𝐷 is adjacent to at least one 

vertex in 𝐷– {𝑢} and 𝑥 has a bandwagon eccentric vertex in 𝐷– {𝑢}. Hence, condition-(ii) does not hold. 

This is a contradiction to our assumption that for each 𝑢 ∈ 𝐷, one of the conditions holds. This proves the 

theorem. 

 

Theorem 4.2. For star graph 𝑆𝑛, where 𝑛 ≥ 3, 𝛾𝑏𝑒𝑑(𝑆𝑛) = 2. 

 

Proof: Consider 𝑉(𝑆𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, let 𝑣1  be the central vertex and all the other vertices are pendant 

vertices, 𝑑𝑒𝑔(𝑣1) = 𝑛 − 1 and 𝑑𝑒𝑔(𝑣𝑖) = 1, ∀ 𝑖 , 2 ≤ 𝑖 ≤ 𝑛. Consider a set 𝐷 = {𝑣1} is the only dominating set 

of cardinality one, but it does not satisfy bandwagon eccentricity, 𝐵𝑒(𝑣1) = 1, 𝐵𝐸(𝑣1) = 𝑉(𝑆𝑛) −
{𝑣1}, 𝐵𝑒(𝑣𝑖) = 2, ∀ 𝑖 , 2 ≤ 𝑖 ≤ 𝑛, 𝐵𝐸(𝑣𝑖) = 𝑉(𝑆𝑛) − {𝑣1, 𝑣𝑖} and |𝐵𝐸(𝑣𝑖)| = 𝑛 − 2. Since every pendant vertex 

is a bandwagon eccentric vertex of each other. A set 𝐷′ = {𝑣1, 𝑣𝑖}, 𝑖 ≠ 1  forms a bandwagon eccentric 

dominating set, since for every 𝑣𝑗 ∈ 𝑉(𝑆𝑛) − 𝐷′  there exists a vertex 𝑣𝑖 ∈ 𝐷′  such that 𝐵𝐸(𝑣𝑗) = 𝑣𝑖  and 𝑣1 

dominates all the vertices. Therefore the set 𝐷′ becomes the BED set and hence 𝛾𝑏𝑒𝑑(𝑆𝑛) = 2, ∀ 𝑛 ≥ 3. 

 

Theorem 4.3. For wheel graph 𝑊𝑛, where 𝑛 ≥ 5, 𝛾𝑏𝑒𝑑(𝑊𝑛) = 2. 

 

Proof: Consider 𝑉(𝑊𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, let 𝑣1  be the central vertex ie, 𝑑𝑒𝑔(𝑣1) = 𝑛 − 1 and 𝑑𝑒𝑔(𝑣𝑖) = 3 

where 𝑣𝑖 ≠ 𝑣1  is any other vertex of wheel graph. Suppose a set 𝐷 = {𝑣1}  be the only dominating set of 

cardinality one, but it is not a bandwagon eccentric dominating set, since it does not satisfy the bandwagon 

eccentricity condition ie, 𝐵𝑒(𝑣1) = 1, 𝐵𝐸(𝑣1) = 𝑉(𝑊𝑛) − {𝑣1}, 𝐵𝑒(𝑣𝑖) = 2, 𝐵𝐸(𝑣𝑖) = 𝑉(𝑊𝑛) − {𝑣1, 𝑣𝑖}  and 

|𝐵𝐸(𝑣𝑖)| = 𝑛 − 2. Since every vertex of degree three is a bandwagon eccentric vertex of each other. A set 𝐷′ =
{𝑣1, 𝑣𝑖}, 𝑖 ≠ 1 forms a bandwagon eccentric dominating set, since for every vertex 𝑣𝑗 ∈ 𝑉(𝑊𝑛) − 𝐷′ there exists 

a vertex 𝑣𝑖 ∈ 𝐷′ such that 𝐵𝐸(𝑣𝑗) = 𝑣𝑖  and 𝑣1  dominates all the vertices in the graph. Therefore the set 𝐷′ 

becomes the BED set, hence 𝛾𝑏𝑒𝑑(𝑊𝑛) = 2, ∀ 𝑛 ≥ 5. 

Note: 𝛾𝑏𝑒𝑑(𝑊4) = 1. 

 

Theorem 4.4. For Friendship graph 𝐹𝑛, where 𝑛 ≥ 5 and 𝑛 is odd, 𝛾𝑏𝑒𝑑(𝐹𝑛) = 2. 

 

Proof: Consider 𝑉(𝐹𝑛) = {𝑣1, 𝑣2, . . . , 𝑣2𝑛+1} be the vertex set of a friendship graph containing ′𝑛′ number of 𝐶3 

cycle graphs. Let 𝑣1 be the central vertex or common vertex of every cycle 𝐶3 ie, 𝑑𝑒𝑔(𝑣1) = 2𝑛 and 𝑑𝑒𝑔(𝑣𝑖) =
2, 𝑖 = 2, 3, . . . , (2𝑛 +  1) . 𝐵𝑒(𝑣1) = 1, 𝐵𝐸(𝑣1) = 𝑉(𝐹𝑛) − {𝑣1}, |𝐵𝐸(𝑣1)| = (2𝑛 + 1) − 1 = 2𝑛, 𝐵𝑒(𝑣𝑖) =
2, 𝐵𝐸(𝑣𝑖) = 𝑉(𝐹𝑛) − {𝑣1, 𝑣𝑖}  and |𝐵𝐸(𝑣𝑖)| = (2𝑛 + 1) − 2 = (2𝑛 − 1) . Consider a set 𝐷 = 𝑣1  is the only 

dominating set with cardinality one, but it is not a bandwagon eccentric dominating set, since every vertex of 

degree two is a bandwagon eccentric vertex of each other. A set 𝐷′ = {𝑣1, 𝑣𝑖}, 𝑖 = 2, 3, . . . , (2𝑛 + 1), 𝑖 ≠ 1, 

forms a bandwagon eccentric dominating set, since for every vertex 𝑣𝑗 ∈ 𝑉(𝐹𝑛) − 𝐷′ there exists a vertex 𝑣𝑖 ∈

𝐷′ such that 𝐵𝐸(𝑣𝑗) = 𝑣𝑖 and 𝑣1 dominates all the vertices in the graph. Therefore the set 𝐷′ becomes the BED 

set and hence 𝛾𝑏𝑒𝑑(𝐹𝑛) = 2, ∀ 𝑛 = 5, 7, 9,  
 

Theorem 4.5. For cycle graph 𝐶𝑛, where 𝑛 ≥ 4 and 𝑛 is even, 𝛾𝑏𝑒𝑑(𝐶𝑛) = 𝑛/2. 

 

Proof: Every cycle graphs of ever number of vertices is a self-centered graph ie, 𝐵𝑟𝑎𝑑(𝐶𝑛) = 𝐵𝑑𝑖𝑎𝑚(𝐶𝑛), the 

bandwagon eccentricity of every vertex is same. Then for any vertex 𝑣𝑖 ∈ 𝑉(𝐶𝑛), the diagonally opposite vertex 

will be the bandwagon eccentric vertex of 𝑣𝑖 . Let 𝐷  be the minimum dominating set containing |𝐷| = ⌈
𝑛

3
⌉ 

vertices, but it is not a bandwagon eccentric dominating set. Therefore consider 𝐷 with (
𝑛

3
) vertices, here 𝐷 

must not contain two vertices that are diagonally opposite to each other, since the diagonally opposite vertices 

are the bandwagon eccentric vertices to each other. Consider a set 𝐷 such that the bandwagon distance between 

the vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝐷 is either 1, 2 or 3 ie, 𝐵𝑑(𝑣𝑖 , 𝑣𝑗) = 1, 2 or 3, these vertices forms a bandwagon eccentric 

dominating set. Since for every vertex 𝑣𝑘 ∈ 𝑉(𝐶𝑛) − 𝐷 there exists 𝐵𝐸(𝑣𝑘) = 𝑣𝑖 ∈ 𝐷. Therefore 𝛾𝑏𝑒𝑑(𝐶𝑛) =

(
𝑛

2
) , ∀ 𝑛 ≥ 4, 𝑛 is even. 
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Theorem 4.6. For cycle graph 𝐶𝑛, where 𝑛 ≥ 3 and 𝑛 is odd, 𝑘 ∈ ℤ+ 

𝛾𝑏𝑒𝑑(𝐶𝑛) = {
⌈
𝑛

3
⌉ , 𝑖𝑓 𝑛 = 3𝑘 𝑜𝑟 𝑛 = 3𝑘 + 1,

⌈
𝑛

3
⌉ + 1, 𝑖𝑓 𝑛 = 3𝑘 + 2.

 

 

Proof: Case(i): For any cycle graphs with odd number of vertices and for every vertex 𝑣𝑘 ∈ 𝑉(𝐶𝑛) has two 

bandwagon eccentric vertices 𝑣𝑖 , 𝑣𝑗  such that 𝐵𝐸(𝑣𝑘) = {𝑣𝑖 , 𝑣𝑗}. The eccentric vertices 𝑣𝑖 , 𝑣𝑗  will always be 

adjacent to 𝑣𝑘 ie, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝐶𝑛). The vertices 𝑣𝑖 and 𝑣𝑗 are placed at a distance of (
𝑛−1

2
) from 𝑣𝑘. Since every 

vertex dominates its adjacent vertices, ⌈
𝑛

3
⌉  set of vertices form, a dominating set of the cycle graph. The 

dominating set 𝐷 forms the bandwagon eccentric dominating set, since for every vertex 𝑣𝑘 ∈ 𝑉(𝐶𝑛) − 𝐷 there 

exists at least one vertex 𝑣𝑖 ∈ 𝐷 such that 𝐵𝐸(𝑣𝑘) = 𝑣𝑖. Therefore 𝛾𝑏𝑒𝑑(𝐶𝑛) = ⌈
𝑛

3
⌉, if 𝑛 = 3𝑘 or 𝑛 = 3𝑘 + 1. 

Case(ii): For cycle graphs with odd number of vertices, if 𝑛 = 3𝑘 + 2 then the cycle graphs are of the form 

𝐶5, 𝐶11, 𝐶17, . ..  Similar to case(i), every vertex 𝑣𝑘 ∈ 𝑉(𝐶𝑛)  has two bandwagon eccentric vertices 𝑣𝑖  and 

𝑣𝑗 , 𝐵𝐸(𝑣𝑘) = {𝑣𝑖 , 𝑣𝑗} such that 𝑣𝑖  and 𝑣𝑗 are adjacent to 𝑣𝑘 , (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝐶𝑛). Bandwagon eccentric vertices 𝑣𝑖 

and 𝑣𝑗 are placed at a distance of (
𝑛−1

2
) from 𝑣𝑘. Since every vertex dominates its adjacent vertices, when 𝑛 =

3𝑘 + 2 then 𝑛 = 5, 11, 17, . . . , 3𝑘 + 2. Therefore the cardinality of the bandwagon eccentric dominating set of a 

cycle graphs of the form 𝐶3𝑘+2 is ⌈
𝑛

3
⌉ + 1. Hence 𝛾𝑏𝑒𝑑(𝐶𝑛) = ⌈

𝑛

3
⌉ + 1, if 𝑛 = 3𝑘 + 2. 

 

Theorem 4.7. For path graph 𝑃𝑛, where 𝑛 ≥ 2, 

 

𝛾𝑏𝑒𝑑(𝑃𝑛)  = {
(

𝑛 + 1

3
) + 1, 𝑖𝑓 𝑛 = 3𝑘 + 2, 𝑘 = 2,3, …

⌈
𝑛 + 1

3
⌉ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Proof: Case(i): For 𝑛 = 3𝑘 + 2, ∀ 𝑘 =  2, 3, . .. , the path graphs are of the form 𝑃8, 𝑃11, 𝑃14, . . . , 𝑃3𝑘+2. Let 𝐷 be 

a minimum dominating set of 𝑃3𝑘+2, ∀ 𝑘 = 2, 3, . .. then 𝛾(𝑃3𝑘+2) = (
𝑛+1

3
), but 𝐷 is not a bandwagon eccentric 

dominating set. Since the dominating set 𝐷 does not contain both the pendant vertices. To satisfy the condition 

of having a bandwagon eccentric vertex, the dominating set should contain both the pendant vertices of the path 

graph. Therefore the set 𝐷 contains (
𝑛+1

3
) + 1 vertices, hence for every vertex 𝑣𝑗 ∈ 𝑉(𝑃𝑛) − 𝐷 there exists at 

least one vertex 𝑣𝑖 ∈ 𝐷 such that 𝐵𝐸(𝑣𝑗) = 𝑣𝑖. Therefore 𝛾𝑏𝑒𝑑(𝑃3𝑘+2) = (
𝑛+1

3
) + 1, ∀ 𝑘 = 2, 3, . .. 

 

Case(ii): The path graphs are of the form 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃9, 𝑃10, 𝑃12, . .. The pendant vertices of the path 

form the bandwagon eccentric vertices ie, if 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, here 𝑣1 and 𝑣𝑛  are the pendant vertices 

then for any vertex 𝑣𝑖 ∈ 𝑉(𝑃𝑛), 𝑣1 or 𝑣𝑛 ∈ 𝐵𝐸(𝑣𝑖). Since the minimum number of vertices required to dominate 

a path graph is (
𝑛+1

3
) vertices, for certain path graphs this case gives fractional value, therefore the cardinality of 

the set 𝐷 is given by ⌈
𝑛+1

3
⌉ and for every vertex 𝑣𝑗 ∈ 𝑉(𝑃𝑛) − 𝐷 there exists at least one vertex 𝑣𝑖 ∈ 𝐷 such that 

𝐵𝐸(𝑣𝑗) = 𝑣𝑖 which satisfies the condition of having bandwagon eccentricity vertex. Hence 𝛾𝑏𝑒𝑑(𝑃𝑛) = ⌈
𝑛+1

3
⌉.  

 

5 Conclusion 
 

In this article the concept of bandwagon distance is introduced and various parameters of bandwagon distance 

like bandwagon eccentricity, bandwagon eccentric vertex, bandwagon radius, bandwagon diameter, bandwagon 

center, bandwagon periphery are defined. Bounds on bandwagon radius and bandwagon diameter for class of 

graphs are found. Bandwagon eccentric domination is defined along with bandwagon eccentric domination 

number 𝛾𝑏𝑒𝑑(𝐺). Results related to exact values of bandwagon eccentric domination number of class of graphs 

is obtained. 
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