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Abstract 
In this paper, a weighted maximum likelihood technique (WMLT) for the 
logistic regression model is presented. This method depended on a weight 
function that is continuously adaptable using Mahalanobis distances for 
predictor variables. Under the model, the asymptotic consistency of the sug-
gested estimator is demonstrated and properties of finite-sample are also in-
vestigated via simulation. In simulation studies and real data sets, it is ob-
served that the newly proposed technique demonstrated the greatest perfor-
mance among all estimators compared. 
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1. Introduction 

Logistic regression is a method used in statistics for modeling the relationship 
between a binary dependent variable and one or more explanatory variables. It is 
usually utilized in various fields. Often, the estimation method for parameters of 
a statistical model uses the maximum likelihood estimator by optimizing the li-
kelihood function. In logistic regression models, MLE is utilized to estimate the 
coefficients of the predictor variables that most effectively fit the data. Unfortu-
nately, this approach is not robust to unusual data findings. Several robust esti-
mators have been presented as an alternative to MLE to address this issue. The 
MLE in logistic regression was shown to be very sensitive to outlying data by [1], 
who also devised a diagnostic assessment of outlying observations; see also [2]. 
For binary regression, [3] studied several M-estimators, their estimations de-
pending on leverage down weight, a Mallows-type estimator. [4] created a robust 
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estimate for the logistic regression model based on a modified median estimator, 
and they also investigated a Wald-type test statistic. [5] created incredibly robust 
projection estimators for the GLM, but their calculation is quite difficult. [6] 
proposed a quasi-likelihood estimator by substituting the least absolute devia-
tion estimator (L1 norm) for the least squares estimator (L2 norm) in the defini-
tion of quasi-likelihood. [7] suggested resilient estimators and testing techniques 
for Poisson and binomial models depending on the idea of a quasi-likelihood es-
timator created by [8]. The breakdown of the MLE in the logistic model was in-
vestigated in [9], whereas [10] offered a method for the logistic regression mod-
el. [11] created a new robust technique for Poisson regression. [12] provided re-
liable estimators for generalized linear models; the fundamental concept is to 
change the response via a variance stabilizing transformation before using an es-
timation. [13] indicated that was a very consistent and reliable estimator. [14] 
provides a reliable and efficient approach for computing the M-estimator de-
scribed in [13]. [15] presented a quick technique for the generalized linear model 
based on breakdown points of the trimmed likelihood. Fisher-consistent esti-
mators are another kind of robust estimator, as introduced in [13]. [16] investi-
gated a resistant robust estimator and this estimation relied on the misclassifica-
tion model. [17] presented a new family of robust methods for logistic regres-
sion. [18] compared minimal distance approaches to more robust methods dis-
covered a unique weighted likelihood and used it in Poisson and binary regres-
sion. The ideally bounded scoring functions described by [19] for linear models 
were applied to the logistic model in [20]. 

All of these estimators possess significant disparities in their resistance to out-
liers and effectiveness within the framework of the model. In this paper, we have 
conducted a comprehensive investigation into the behavior of some of these es-
timators, both in terms of their asymptotic properties and their behavior in finite 
samples. Our findings indicate that the Mallows-type estimator proposed by [3] 
is very robust to outlier contamination but inefficient under the model, while 
Schweppe-type estimators proposed by [2] are very efficient under the model but 
show a poor outlier resistance. In this paper, we propose an estimator that can 
be as robust as Mallows-estimators under contamination but is much more effi-
cient under the model, this is achieved by an adaptive continuous weight. This 
continuous weighted maximum likelihood estimator is depend on the annoyance 
parameter estimator as a result of Kolmogorov-Smirnov statistics. The maxi-
mum likelihood estimators and a logistic regression model are covered in Sec-
tion 2. Robust Methods for Logistic Regression Model discussed in section 3. We 
propose a robust technique for logistic regression in section 4. Section 5 displays 
the findings of the Monte Carlo simulation research and real data analysis. Sec-
tion 6 contains the conclusions. 

2. Logistic Regression Model and ML Estimator 

The logistic regression model is a popular technique used to examine the rela-
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tionship between a categorical variable and one or more predictor variables. It is 
often used in binary classification issues when there are only two potential out-
comes for the dependent variable (e.g., true or false, yes or no, etc.). The logistic 
function is the foundation of the logistic regression model, which transforms a 
continuous input variable into a probability value between 0 and 1. Assume a 
random sample of observations ( ) ( )1 1, , , ,n nx y x y , where iX  represents a p 
predictor variables and ( )0,1iy ∈  is a binary variable and suppose the proba-
bility of positive response ( )1|i i ip y xµ = =  is associated with the covariates 
through the relation ( )g Xµ β= , such that ( )1g X β−  is known as the logit 
link function converts the covariate values in the range ( )0,1 .  

Using the logit link function The multiple logistic regression model may be 
created by: 

( ) ( ) ( )
( )

T
T

T

exp
1| , 1, , ,

1 exp
i

i i
i

x
p Y X x F x i n

x

β
β

β
= = = = =

+
         (1) 

where ( )11, , , pX x x=   are the predictor variables values and  

( )T
0 1, , , pβ β β β=   represents an unknown parameter vector. We may cha-

racterize the binary regression model as follows: 
T ,i ixη β=  

where iη  is a linear predictor that is sometimes referred to as a transformation 

function, where ln
1

i
i

i

µ
η

µ
 

=  − 
. The MLE is a method for parameter estimation  

of a statistical model by maximization of the likelihood function. The MLE as-
sumes that the data are generated by a specific probability distribution (in this 
case, the logistic distribution) and finds the parameter values that make it most 
likely for that distribution to have generated those data. The MLE is often used 
in logistic regression because it provides unbiased estimates of model parameters 
and has good statistical properties. Assume that the dependent variables iy  
have a Bernoulli distribution and we can derive the probability distribution for 
the ith observation as follows: 

( ) ( )11 , 1,2, , ,ii yy
i i if y i nµ µ −= − =   

as well as each observation iy  takes the value 1 with probability iµ  or the 
value 0 with probability (1 iµ− ). The probability function is defined as follows 

( ) ( ) ( )11 2
1 1

ln ; , , , 1 ,ii
n n yy

n i i i
i i

y y y f yβ µ µ −

= =

= = −∏ ∏           (2) 

Then we compute the log-likelihood of the preceding formula: 

( ) ( ) ( )1 2
1 11

ln ; , , , ln ln ln 1 ,
1

n n n
i

n i i i
i ii i

y y y f y y µ
β µ

µ= ==

  
= = + −  −   

∑ ∑∏

 
where ( ) Tln 1i i i ixη µ µ β = − =   and ( ) 1T1 1 expi ixµ β

−
 − = +  . So, we can 

express the log-likelihood as: 
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( ) ( )

( )

T T

1 1

T T

1

ln ; ln ln 1 exp

ln 1 exp .

n n

i i i
i i

n

i
i

l Y y x x

XY x

β β β

β β

= =

=

 = − + 

 = − + 

∑ ∑

∑
            (3) 

In experimental design, we execute repeated observations at each level of in-
dependent variables (x). Let iη  be the trials number at each predictor level and 

iy  be the number of 1’s observed at the ith observations with 1 2, , , mn n n n=  . 
Therefore, we may express the log-likelihood as: 

( ) ( )T T

1
ln ; ln 1 exp ,

m

i i
i

l Y XY n xβ β β
=

 = − + ∑              (4) 

nevertheless, it is possible to maximize the likelihood function by differentiating 
it with respect to β : 

( ) T

T
T

1

ln ,
e ,

1 e
i

i

m
xi

ixi

l Y nX Y Xβ

β

β
β =

∂  
= −  ∂ + 

∑
 

where, ( ) ( )T T T
e 1 e 1 1 ei i ix x x

i
β β µ−+ = + = , we have 

( ) Tln ;
,

m

i i i
i

Y
X Y n X

β
µ

β
∂

= −
∂ ∑

 
where i in µ  denotes the average of the binomial variable, the preceding formula 
may be written in matrix form as ( )TX Y µ− , where 

1

2 .

m

µ
µ

µ

µ

 
 
 =
 
 
 



 
Hence, the MLE is normally computed by resolving the scoring equation: 

( )T 0.X Y µ− =                         (5) 

Since Equation (5) is a nonlinear function of beta, the iteratively weighted 
least squares (IWLS) technique may be used to find a solution. 

3. Robust Methods for Logistic Regression Model 

In logistic regression models, robust estimators are statistical methods for esti-
mating parameters that are less sensitive to outliers and influential observations. 
These techniques are designed to provide reliable estimates of the regression 
coefficients even when the data contain extreme values or other anomalies that 
can distort the results. There are several robust estimators that can be used in lo-
gistic regression. [13] suggested robust estimators via the management of devia-
tions to get theoretically unbiased estimators; however, an extra bias-correction 
component must be introduced, which makes the calculation of their estimator 
very complex and the estimator itself not straightforward. [2] developed Mal-
lows-type estimators by separately manipulating the variables and residuals in 
the estimation equation. In the instance of logistic regression, they were catego-
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rized as solutions of 

( ) ( ) ( )( )( )T T

1

ˆ ˆˆ; , 0,
n

i b i i i i i
i

w x y x c x b xη π π β π β
=

− − =∑           (6) 

where η̂  represents the annoyance parameters (location and scatter estimate of 
covariates), and bΦ  is often considered as Huber’s function  

( ) ( ) ( )b t b t bπ = − ∨ ∧ , ( ),c t b  is the bias-correction function expressed as 

( ) ( ) ( )
( ) ( ) ( ) ( )

/ 1 if 0, 1
( , ) 1 1 / if 0,

0 otherwise

b t t t b t
c t b t b t t t b t

π π π π
π π π π

 − − < < −
= − − − > <

  

the weights ( )ˆ;iw x η  often depend only on continuous variables. Suppose we 
write ( )T T,t

i i ix u z= , where p q
iu R −∈  are qualitative variables and q

iz R∈  are 
the continuous variables, thereafter, the weights usually take the form  
( ) ( ) ( )( )T 1ˆˆ ˆ ˆ;i i iw x w z z tη µ µ−= − Σ − , with 1 1:w R R+ +→  a function that does 

not increase, µ̂  is the robust estimator of the location of the iz , Σ̂  is the robust 
estimator of scatter of the iz  and t is the threshold value (usually ,1qt αχ −=  for 
some ( )0,1α = ). The initial robust estimator of location and scale for predictor 
variables µ̂  and Σ̂  can be calculated utilizing the minimum covariance de-
terminant methods. MCD was one of the first multivariate location and scatter 
estimators that were both affine equivariant and relatively robust. It discovers 
the ( )2h n>  observations ix  whose matrix of traditional covariance 

( )( )T1
i i

i
v x t x t

h
= − −∑

 
has the smallest possible determinant, where t x=  the average of those h 
points. As observed, the residual weight bφ  and covariate weight w are inde-
pendent; moreover, it will decrease the effectiveness of the resultant estimators 
due to the fact that the estimation equation will downweight well-fitted observa-
tions with extreme variables. [21] robustly presented a family of resilient adap-
tive weighted maximum likelihood techniques for logistic regression models. 
These adaptive weights are dependent on adaptive cut-off thresholds to regulate 
observations with extreme covariables. They demonstrated that estimators based 
on adaptive thresholds are more efficient than estimators based on non-adaptive 
thresholds for clean models and have equivalent resilience for polluted models. 

The lack of dependence between the weights assigned to covariates and the 
weights assigned to deviances in Equation (6) is the underlying cause for the 
generally lower efficiency of Mallows-type estimators compared to Schweppe-
type estimators. This occurs due to the downweighting of observations with 
extreme covariates, even if they exhibit good fit. It is evident that enhancing 
the efficiency of Mallows-type estimators can be achieved by reducing the 
thresholding proportions, although this may compromise the robustness of the 
estimator. In order to simultaneously achieve both high efficiency and high 
robustness, it becomes necessary to employ adaptive thresholds, as detailed in 
the next section. 

https://doi.org/10.4236/ojs.2023.136041


I. A. Idriss et al. 
 

 

DOI: 10.4236/ojs.2023.136041 808 Open Journal of Statistics 
 

4. Weighted Maximum Likelihood Technique (WMLT) 

In this section, we build a novel class of continuous weighted maximum likelih-
ood estimators based on the annoyance parameter estimator as a function of the 
Kolmogorov-Smirnov statistics. We’ll refer to these estimators as WMLT 
(weighted maximum likelihood technique). First build two estimators ( )0µ̂  and 

( )0Σ̂  that are the initial estimates of location and scatter of the predictor va-
riables iz s′ , thereafter, calculate the Mahalanobis distances squared of iz s′  that  

is characterized by ( )( ) ( )( ) ( )( )T 10 0 02 ˆˆ ˆi im z zµ µ
−

= − Σ − . Furthermore, the empir-

ical distribution function of 2
im  may be expressed as: 

( ) ( )2

1

1 ,
n

n i
i

F t I m t
n =

= ≤∑
 

when iz s′  have a normal distribution, nF  converge to 2
q

F
χ

 ( 2
qχ  distribution 

function). Then we can estimate the outliers proportion in covariates by [21] 

( ) ( ) ( ){ } ( )( )1 2 2
2 0

2
1

1sup max ,
q q

q
n n it F i i

iF t F t F m
nχ

δ χ χ
α −≥ − ≥+ +

− = − = − 
   

where {}. +
 represents the positive part, δ  measures the length of the tail 

( 0.25δ = ) is an acceptable option, and ( ){ }2
2 1min : 1

q
o ii i m F

χ
δ−= ≥ − . When 

( ) ( )2
q

nF t F t
χ

−  is large for a large t, it indicates that the sample contains out-

liers. Hence, an adaptive threshold may be described as 

( ) [ ]( )
1 21 .

nn n n n nt F m αα−
−= − =

 

[21] proposed the adaptive threshold estimators. Specifically, they developed 
an estimator of the Mallows-type estimator with weights ( ) ( )2ˆ;i i nw x w m tη =  
which are basically weighted maximum likelihood estimators. The proposed 
weight function may be defined as 

( ) ( )2; ,i n n iw x m mα α=
 

we assume m is a completely non-increasing continuous mapping from +  to 
( )0,1  such that ( )0 1m = , ( ){ }0supx xm x> < ∞ , and the first derivative is 
bounded with ( ) ( )1 0 0m = . Determine an objective function 

( ) ( ) ( ) ( ), , , , , , 0,1 ,px y w x x y x yβ η η βψ φ β= ∈ ∈           (7) 

where ( ), ,η α µ= Σ  is the location, scale, and goodness of fit of the explanatory 
variables respectively, an adaptive weight function  

( ) ( ) ( )( )T 1w x m z zη α µ µ−= − Σ −  and ( ) ( )( )T,x y y x xβφ β= − , with aµ ∈ , 

Σ  is q q×  real matrix and ( )T T T,x u z= . Finally, we define our adaptive es-

timator ˆ
nβ  of β  as the solution to the estimating equation 

( )
1

ˆ, , 0,
n

i i
i

x yβψ η
=

=∑
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where η̂  is a consistent estimator of ( ), ,η α µ= Σ . 
If iz  are normally distributed, then nt = ∞  and the reweighted estimators 

are asymptotically equivalent to the sample mean and the sample covariance 
matrix, and therefore fully efficient. This efficient carries over to the adaptive 
Mallows-type estimators, as shown in the next subsection. 

4.1. Asymptotic of Proposed Method 

The estimating equation (6) can be written as ( )1
ˆ ˆ, ; ; 0n

i ii x y β η
=
Ψ =∑ , with 

( ) ( ) ( ) ( )( )T T, ; ; ; ,bx y w x y F x c x b xβ η η ψ β βΨ = − − . Under appropriate regu-

larity conditions, the classical asymptotic of M-estimators hold, see [22]. Let 0β  
be the model parameter and 0E  denote expectation under the model; define 

( ) ( ){ }0 0 0, ; ;M E x yβ β η= Ψ , with 0 ˆlimpη η= . If ( )
0

0 0C DM
β β

β
=

= , where 

D denote the differential and ( ) ( ){ }T
0 0 0 0 0 0, ; ; , ; ;A E x y x yβ η β η= Ψ Ψ , then 

( ) ( )1 1
0 0 0 0

ˆ 0, .pn N C A Cβ β − −− →
 

This result is valid for non-adaptive and adaptive weights alike, as long as η̂  
converges to 0η  in probability. For the weighted maximum likelihood estima-
tor given by ( )b u uψ = , 0A  and 0C  have simple expressions 

( ) ( ){ }T T
0 0 0; ,C E w x F x xxη β′= −                  (8) 

( ) ( ) ( )( ){ }2 T T T
0 0 0 0; 1 .A E w x F x F x xxη β β= −             (9) 

Using the asymptotic normality of β̂  it is possible to construct confidence 
ellipsoids for 0β . First, we estimate the matrices (9) and (6) with 

( ) ( )T T

1

1ˆ ˆˆ; ,
n

i i i
i

C w x F x x x
n

η β
=

′= − ∑
 

( ) ( ) ( )( )T T T

1

1ˆ ˆ ˆ ˆ; 1 .
n

i i i i i
i

A w x F x F x x x
n

β β β
=

= −∑
 

Then the estimated asymptotic variance of ( )0
ˆn β β−  is 1 1ˆ ˆ ˆV̂ C AC− −= . The 

asymptotic confidence ellipsoid of level ( )1 α−  for 0β  is given  

( ) ( ) ( ){ }T 1 2
0 ,1

ˆ ˆˆ:p
pR n V αξ β β β β β β χ−

−= ∈ − − ≤ . This can be generalized to li-

near transformations of 0β . 

4.2. Asymptotic Properties of WMLT 

This subsection focuses on the asymptotic features of the suggested estimator 
ˆ

nβ  described in the preceding section. We will show that the estimator is asymp-
totically consistent based on some general assumptions about the moments of pre-
dictor variables. Suppose that 0β , 0µ  and 0Σ  are the actual values of β , µ  
and Σ  respectively, and the independent sample ( ) ( )1 1, , , ,n nx y x y  follows 
the logistic model ( )1i iP y µ= = , 1, ,i n=  . We define functions 
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( ) ( )
1

1 ˆ, ,
n

n n i i
i

x y
nβ βψ β ψ η

=

= Ψ = ∑
 

and 

( ) ,0 ,P Pψβ φββΨ = =  
where ,0βψ  is the calculated by Equation (7) with η  replaced with  

( )0 0 00, ,η µ= Σ  and p indicates the joint probability distribution of the (x,y)’s. 
Theorem 4.2 establishes that ˆ

nβ  is consistent, which makes use of the conclu-
sions of Lemma 1, 2, and 3 mentioned below. To prove the Lemmas and the 
Theorems, the following assumptions must be made: 

B1: 0ˆ pµ µ→  and 0
ˆ pΣ → Σ . 

B2: ( )TE xx  is nonsingular. 

B3: ( )0

4
GE x < ∞ . 

B4: The ( )m x  is a continuous weight function and has a first derivative that 
is bounded, ( )0 1m =  and ( )1 0 0m = . 

B1 is met for the vast majority of well-known initial robust estimators, such as 
the Minimum Covariance Determinant used in the simulation experiments. In 
the following lemmas and theorem, the asymptotic characteristics are assumed 
to be as n →∞ . The proof for Lemma 1 is given in [21]. 

Lemma 1. In case B1 is holds, then ( )0 1n pα = . 
Lemma 2. In case B2 is holds, then ( ) 0nβΨ →  implies 0 0nβ β− →  for 

any sequence { }nβ ∈Θ . 
Proof of Lemma 2. Consider the following 

( ) ( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )

T

T T T
0 0

T T T
0 0

,0
n nn n

n

n

P P P y x x

P y x x x x

P x x P x x x

β θβ ψ φ β

β β β

β β β

Ψ = = = −

= − + −

= + −
 

If ( ) 0nβΨ → , then ( ) 0nβΨ → . Since ( )( )T 0nP y x xβ− = , we may see 
from the equality above that ( ) ( )( )T T

0 0nP x x xβ β− → . Note 

( ) ( )( ) ( ) ( )( )( )
( )( )

1T T T T
0 0

T
0

1 ,
4

n n

n

P x x x P c x x x

P x x

β β β β

β β

− = −

≤ −
 

where ( )T T
0 , nc x xβ β∈  and ( )h µ′  is the initial derivation for logistic link, 

( )
( )

( )2

e 0,
1

1
e

4
x

x
h µ′ = ∈

=
. We also have ( )T

1 2, , , pX x x x=  ,  

( )T
0 1 2, , ,n d d d dpβ β β β β β− = =  . 

( )( )
1 1

2 2T
0

1 1
0.

i i

p p
i i

n di di
i i

p i p i

x x x x
x x x x

P x x P P

x x x x

β β β β
= =

      
      
      − = = →      
                  

∑ ∑
 
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Since ( ) ( )T TP xx E xx=  is nonsingular, we have 0 1 0β β− → , is shown by 
the fact that 0 0nβ β− → . 

Lemma 3. Suppose that B3 and B4 are true. Then the class  
{ }, 0: ,η βψ β η η δ∈Θ − <  is P-Glivenko-Cantelli for some 0δ > , where 

( )0 0 00, ,η µ= Σ . 
Proof of Lemma 3. To demonstrate that a class   of vector-valued functions 
( ): , px yψ →   to be Glivenko-Cantelli, we must display each of the coordinate 

classes ( ): ,i x yϕ →   with ( )T1, , pψ ψ ψ=   ranging over ( )1,2, ,i p=   
is Glivenko-Cantelli. 

The class  
( ) ( ){ }0: , , , , , [0,1], , , ,q q

γψ γ β η β α µ α µ β η η δ+= = = Σ ∈ ∈ Σ∈ ∈Θ − <    
is a set of measurable functions that are indexed by a bounded subset in 

q q q×Γ ⊂ Θ× × ×   , and qS+  represents a collection of positive semidefinite 
matrices described in q q× . This is because Σ  is basically a variance-covariance 
matrix of continuous predictor variables, hence it is positive semidefinite and 
symmetric. For the norm, we use  

( )
1

2 22 2
0 0 0nη η α µ µ β β− = + − + Σ −Σ + − , with .  indicates the Eucli-

dean norm of vectors ,µ β  and for matrix Σ , .  represents the induced 

norm in general. For two values ( ),i i iγ β η= , ( )1,2i =  of γ , we have 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 2 2

1 1 1 1 1 2 2 2

1 1 1 2 1 2 2 2

, ,

, ,

, , , , ,

, , , , .

i i

i i

i i i i

i i i i

x y x y

w x x y w x x y

w x x y w x x y w x y x y w x x y

w x x y w x x y w x x y w x x y

γ γ

η β η β

η β η β η β η β

η β η β η β η β

ψ ψ

φ φ

φ φ φ φ

φ φ φ φ

−

= −

= − + −

≤ − + −

 (10) 

But 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )
1 1 1 2

1

T T T T
1 2 1 2

T T
0 2 1 0 2 1

, ,

,

i i

i i i

i i

w x x y w x x y

w x y x x y x x x x x

K x x x K x c

η β η β

η

φ φ

β β β β

β β β β

−

= − − − ≤ −

≤ − ≤ −

    (11) 

where 0K  represents the upper limit of the first derivation of the link function 
( )h µ′ . 
Making use of the Mean Value Theorem, for each 1x  and 2x , there exists 
( )1 2,c x x∈  such that 

( ) ( ) ( )1 2 1 2 0 1 2 .x x h c x x K x xµ µ ′− = − < −
 

In addition, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 2 2 2 1 2

1 1 1 1 2 2 1 2 2 2 2 2

1 1 1 1 2 2 1 2 2 2 2 2

T
2

T
, , , , , , , , 2

, , , , , , , ,

, ,

,

i
i

i

i

w x x y w x x y w x w x y x x

w x w x w x w x y x x

w x w x w x w x x

η β η β η η

α µ α µ α µ α µ

α µ α µ α µ α µ

φ φ β

βΣ Σ Σ Σ

Σ Σ Σ Σ

− = − −

= − + − −

≤ − + −
(12) 
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then, we get 

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )

1 2 2 2 2 2, , , ,

T T1 1
1 2 2 2 2 2 2 2

T 1
1 2 1 2 2 2 ,

w x w x

m Z Z m Z Z

K Z Z

α µ α µ

α µ µ α µ µ

α α µ µ

Σ Σ

− −

−

−

= − Σ − − − Σ −

≤ − − Σ −

    (13) 

and 

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 2 2, , , ,

T T1 1
1 1 1 1 1 2 2 2

T T1 1
1 1 1 1 1 2 2 2

T T1 1
1 1 1 1 1 2 1

T T1 1
1 1 2 1 2 2 2 .

w x w x

m Z Z m Z Z

K Z Z Z Z

K Z Z Z Z

K Z Z Z Z

α µ α µ

α µ µ α µ µ

α µ µ µ µ

µ µ µ µ

µ µ µ µ

Σ Σ

− −

− −

− −

− −

−

= − Σ − − − Σ −

≤ − Σ − − − Σ −

≤ − Σ − − − Σ −

+ − Σ − − − Σ −

    (14) 

Given that Σ  is a positive semidefinite matrix, as well 1−Σ . Indicate what 
the eigenvalues of 1

2
−Σ  are as 1 2 0pλ λ λ≥ ≥ ≥ ≥ . Consequently, 1

2
−Σ  has a 

set of orthogonal eigenvectors, say 1, , qp p , s.t. 1
2 i i ip pλ−Σ = . There exists an 

orthogonal matrix in matrix format Q s.t. 
1 1 T 1

2 2 .Q Q Q Q− − −Σ = Σ = Λ  
Then we get 

( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( )

T T1 1
1 2 1 2 2 2

2 2T T
1 2

1 1

T T
1 2 2 1

1

2
1 2 2 1

1

2

2

q q

i i i i
i i

q

i i i
i

q

i i
i

Z Z Z

p p Z

p Z p

p Z

µ µ µ µ

λ µ λ µ

λ µ µ µ µ

λ µ µ µ µ

− −

= =

=

=

− Σ − − − Σ −

= − − −

= − − −

≤ − − −

∑ ∑

∑

∑
 

( )

2
1 2 1 1 2

1

21
2 2 1 1 2

1

1
2 2 1 1 2

2

2

2 ,

q

i
i

q

i
i

Z p

Z p

Z

λ µ µ µ µ

ρ µ µ µ µ

µ µ µ µ

=

−

=

−

≤ − − −

= Σ − − −

≤ Σ − − −

∑

∑                (15) 

where ( )1
2ρ −Σ  is the spectral radius of 1

2
−Σ  and ( )A Aρ ≤  applicable to any 

induced norm. Similarly 1 1
2 1
− −Σ −Σ  is also symmetric, thus indicate the eigen-

values of 1 1
2 1
− −Σ −Σ  as * *

1 , , qp p  s.t. ( )1 1 * * *
2 1 i i ip pλ− −Σ −Σ = . There exists an 

orthogonal matrix in matrix format *Q  s.t. 

( ) ( ) ( ) ( )1 T* 1 1 * * 1 1 * *
2 1 2 1 .Q Q Q Q

− − − − −Σ − Σ = Σ − Σ = Λ
 

Next, we have 
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( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

T T1 1
1 2 1 1 1 1

T 1 1
1 2 1 1

TT * * *
1 1

TT T* * *
1 1

Z Z Z Z

Z Z

Z Q Q Z

Q Z Q Z

µ µ µ µ

µ µ

µ µ

µ µ

− −

− −

− Σ − − − Σ −

= − Σ − Σ −

= − Λ −

   = − Λ −        

( ) ( )( )
( ) ( )( )

( ) ( )

2T*
1

1

2T* *
11, , 1

221 1 *
2 1 1

1
2 1 1

1 2 1

max

.

q

i i
i

q

i ii q i
q

i
i

p Z

p Z

Z p

Z

λ µ

λ µ

ρ µ

µ

=

= =

− −

=

− −

= −

≤ −

≤ Σ −Σ −

≤ − Σ −Σ

∑

∑

∑

                      (16) 

[23] presented a simple and popular M-estimator that minimizes a “bounded” 
version of the sum of residuals. The estimating equation is 

( )
1

ˆ
ˆ 0

n i
M i

i

r
x

θ
θ ψ

σ=

 
 = =
 
 

∑                     (17) 

Then, using (12), (13), (14), (15) and (17) we get 

( ) ( ) ( ) ( )

( ) ( )
1 2 2 2

T 1
1 2 1 2 2 2

1
1 2 2 1 1 2

2 1 1
1 1 2 1

, ,

2

.

i

i

i

i

w x x y w x x y

K Z Z x

K Z x

K Z x

η β η βφ φ

α α µ µ

µ µ µ µ

µ

−

−

− −

−

< − − Σ −

+ Σ − − −

+ − Σ −Σ

              (18) 

Since 2 1 2 1 2 1 2 1, ,α α µ µ β β γ γ− − − < − , from (11), (10) and (16) now, 
we can provide a bound for ψ : 

( ) ( )

( ) ( )

( ) ( )(
)

( )

1 2

T 1
0 2 1 1 2 1 2 2 2

21 1 1
1 2 2 1 2 1 1 2 1

T 1
0 1 2 2 2

21
1 2 1 2 1 1 2 1

2 1

, ,

1 2

2

,

i

i i

i i

i i

i i

i

x y x y

K x x K Z Z x

K Z x K Z x

K x x K Z Z x

K Z x K Z x

L x

γ γψ ψ

β β α α µ µ

µ µ µ µ µ

µ µ

µ µ µ γ γ

γ γ

−

− − −

−

−

−

< − + − − Σ −

+ Σ − + − − + − Σ − Σ

≤ + − Σ −

+ Σ − − + − −

= −  
for every 1 2,γ γ . We have constructed a Lipschitz criterion for each , 1, ,i i pψ =  , 
so for ψ  we have ( ) ( ) ( )

1 2 2 1, ,x y x y L xγ γψ ψ γ γ− < − , every 1 2,γ γ , 
where 

( ) ( ) ( )T 1
0 1 2 2 2

21
1 2 1 2 1 12 .i

L x K x x K Z Z x

K Z x K Z x

µ µ

µ µ µ

−

−

= + − Σ −

+ Σ − − + −
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Now investigate the bracketing entropy in relative to the ( )rL P -norm 

( )
1

.r r
i Pr Pψ ψ=

 
Use brackets of the type ,L Lγ γψ ε ψ ε − +   for γ  spanning over a suffi-

cient chosen subset of Γ  and these brackets have ( ) 2r prL P size Lε− . If γ  
ranges over a grid of mesh width ε  over Γ  then the brackets  

,L Lγ γψ ε ψ ε − +   range over  . Based on the Lipschitz condition we get 

1 2 1 2 1, if ,L Lγ γ γψ ε ψ ψ ε γ γ ε− ≤ ≤ + − ≤  

Hence, many brackets are required as in radial balls 
2
ε  to cover Γ , alterna-

tively we require less than ( )2 2pdiam ε +Γ  cubes with size ε  to cover parame-

ter space Γ . If r
iP L < ∞ , then a constant J exists, depends only on Γ  and P, 

in such a way that the bracketing numbers fulfill 

( )( )[] , , , every 0 .
p

R
diamN L P J diamε ε
ε
Γ ≤ < < Γ 

 


 

Given that all ψ ∈  are continuous functions, they can be measured. If B3 
is fulfilled, then P L < ∞ , and as a result, class   is P-Glivenko-Cantelli from 
the Theorem (19.4) (Glivenko-Cantelli) in [24]. 

If B1, B2, B3 and B4 are hold, then estimators ˆ
nβ  are used as the solving to 

the equation ( )ˆ 0nβΨ =  converges to 0β  in probability. 
Proof of Theorem 1. denote 

( ) ( ),0 ,,P P P P Wβ β β η β ηβ ψ φ β η ψ φΨ = = Ψ = =  

( ) ( ) ( ) ˆ, ,
1 1

1 1ˆ, , .
n n

n n
i in nβ η β ηβ β η ψ β η ψ
= =

Ψ = Ψ = Ψ =∑ ∑
 

Note that ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ
n n n n n nβ β β βΨ = Ψ −Ψ +Ψ . Then we can establish that 

( ) ( ) ( )sup 0 1n pβ β β∈Θ Ψ −Ψ = , then ( ) ( )ˆ 0 1n pβΨ =  since  

( ) ( )ˆ 0 1n n pβΨ = . Thus, based upon Lemma 2, we have ( )0
ˆ 0 1n pβ β− = . To 

show ( ) ( ) ( )sup 0 1n pβ β β∈Θ Ψ −Ψ = , we consider it as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3

ˆsup ,

ˆsup , , , , , ,0

,

n

n n

J J J

β

β

β η β

β η β η β η β η β η β
∈Θ

∈Θ

Ψ −Ψ

= Ψ +Ψ +Ψ −Ψ +Ψ −Ψ

≤ + +  

where 

( ) ( )1 ˆsup , ,n nJ
β

β η β η
∈Θ

= Ψ −Ψ
 

( ) ( )2 sup , ,nJ
β

β η β η
∈Θ

= Ψ −Ψ
 

( ) ( )3 sup , ,0 .J
β

β η β
∈Θ

= Ψ −Ψ
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Lemma 3 informs us that   is P-Glivenko-Cantelli class, so 2 0J → . For 

1J , 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

ˆ1
1

ˆ
1

ˆ
1

1sup ,

1 sup ,

1 sup , .

n

i i i i
i

n

i i i i
i
n

i i i i
i

J x y w x w x
n

x y w x w x
n

w x w x x y
n

β η η
β

β η η
β

η η β
β

φ

φ

φ

∈Θ =

∈Θ=

∈Θ=

= −

≤ −

= −

∑

∑

∑
 

Using (16), we get 

( ) ( ) ( ) ( )T 1
ˆ 1

1
1

2 1 1
1

ˆ

ˆ ˆ2

ˆˆ .

i iw x w x K Z Z

K Z

K Z

η η α α µ µ

µ µ µ µ

µ

−

−

− −

− < − − Σ −

+ Σ − − −

+ − Σ −Σ

          (19) 

Since ( ) ( )ˆˆ ˆ ˆ, , 0 1pη η α α µ µ− = − − Σ −Σ = , we have ( )ˆ 0 1pα α− = ,  

( )ˆ 0 1pµ µ− =  and ( )ˆ 0 1pΣ −Σ = . Also, ( )1 1 1ˆ ˆ ˆ− − −Σ −Σ = Σ Σ −Σ Σ , as a result  

( )1 1ˆ 0 1p
− −Σ −Σ = . Therefore, (19) follows that ( ) ( )ˆ 0 1i pw Xη = . Because B2  

and B3 are fulfilled, we also have ( ) 2
sup ,x yβ βφ∈Θ < ∞ , then we get 1 0pJ → . 

For 3J  

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

3

1 1 22
2 2

1 12 2
2 2

sup ,

sup ,

sup ,

sup , ,

J P x y w x w x

P x y w x w x

P x y P w x w x

P w x w x P x y

β η η
β

β η η
β

β η η
β

η η β
β

φ

φ

φ

φ

∈Θ

∈Θ

∈Θ

∈Θ

= −

≤ −

≤ −

= −
 

and the Cauchy-Schwarz inequality was employed in the final inequality. We al-
ready know 

( ) ( ) ( ) ( )( )0

T 11 0.w x w x m Z Zη η η µ µ−− = − − Σ − →
 

Then ( ) ( )ˆ 0 1 0 1p mη = =  and ( ) ( )
0

2
ˆw x w xη η−  is bounded by 1, using the 

dominated convergence theorem we get 

( ) ( )
0

1 2
2lim 0.

n
P w x w xη η→∞

− →
 

We also have 

( ) ( ) 22 2Tsup , sup .P x y P y x x P xβ
β β

φ β
∈Θ ∈Θ

= − ≤
 

and from assumption B3, we obtain ( ) 2
sup ,P x yβ βφ∈Θ < ∞ . It then follows 

that 3 0J → . 
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5. Assess Robustness of the Estimators 

To evaluate the robustness of the methods, two methods have been employed. The 
first includes simulated models for contrasting the novel technique with the tradi-
tional MLE, Mallows-type estimator (Mallows) and (CUBI). In the second, we 
used the actual leukemia data set and The Erythrocyte Sedimentation Rate Data. 

5.1. Simulation study 

A Monte Carlo simulation analysis was performed for this subsection to assess 
the efficiency and robustness of the suggested estimator ˆ

nβ . For the initial ro-
bust estimators of the scatter and location Σ̂  and µ̂  utilized the minimum 
covariance determinant (MCD). We calculated the following estimators for 
comparison: MLE, conditionally unbiased bounded influence (CUBI) of [2], and 
the Mallows-type estimator (Mallows) of [3]. In the simulation, the following 
weight function ( )m x  was applied: 

( ) ( )( )61 1 ,m x a x b= − − +
 

where 0.8a =  and 0.2b = . 
Three models are involved in the simulation study: a clean logistic regression 

model, a contaminated model with a 10% contamination rate, and a contami-
nated model with a 20% contamination rate. First, clean model, the standard 
normal distribution was used to generate two predictor variables, ( )1 ~ 0,1x N  
and ( )2 ~ 0,1x N . Three sample sizes were used: ( 100,300,500n = ) and 2p = . 
We generate the response variable according to the Bernoulli distribution with a 
parameter equal to ( ) ( )( )0 1 1 2 2 0 1 1 2 2exp 1 expi x x x xπ β β β β β β= + + + + + . The 
values of the true parameters β  are taken ( )0,1.6,1.2  for three models. 
Second, the percentage of contamination in data equal 10%, and their predicted 
variables are generated from a normal distribution with ( 0µ = ) and ( 1σ = ). 
Third, the percentage of contamination in data equals 20% in a similar manner 
to the above. 

The performance of these estimators is evaluated using Bias and mean 
squared error for various models. Nevertheless, the estimator with the smallest 
Bias and MSE is the best. Each scenario simulation included over 1000 repeti-
tions. Consequently, for each parameter, the following are the calculations for 
bias and mean squared error: 

1000

1

1Bias ,
1000 i

i
β β

=

= −∑
 

and 

2

1

1 ˆMSE .
1000

n

i
i

β β
=

= −∑
 

5.2. Numerical Results 

The numerical results, displayed in this paper, are based on simulation studies, 
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and two real data applications. This numerical result is expected to evaluate, the 
performance of a proposed model. Table 1 shows the bias and mean squared 
errors of the four estimation techniques for the clean model. The findings show 
that the bias and MSE of the MLE, Mallows, and CUBIF estimators are relatively 
similar, while the WMLT estimator performs worse than the other estimators. 
When the sample size increases, the bias and mean squared errors are observed 
to decrease. As shown in Table 2, under 10% of the data were contaminated, so 
the new robust approach WMLT has the greatest overall performance among all 
comparable estimators for varied sample sizes. Table 3 demonstrates that when 
20% of the data are contaminated, our proposed technique (WMLT) outper-
forms other estimators in terms of bias and mean squared errors. Due to the 
sensitivity of anomalies, conventional maximum likelihood estimates perform 
inadequately in the contaminated model. In conclusion, the proposed method 
outperforms all other methods compared with contaminated data. Furthermore, 
the new estimator performs reasonably well with clear data. 

 
Table 1. Bias and mean squared errors of estimators for clean model. 

Methods 
n = 100 n = 300 n = 500 

Bias MSE Bias MSE Bias MSE 

MLE 0.340 0.279 0.170 0.071 0.129 0.040 

Mallows 0.335 0.276 0.179 0.074 0.131 0.041 

CUBIF 0.340 0.279 0.170 0.070 0.129 0.040 

WMLT 0.967 2.543 0.850 1.091 0.808 0.563 

 
Table 2. Bias and (MSE) of estimators for second model (10% of data are contaminated). 

Methods 
n = 100 n = 300 n = 500 

Bias MSE Bias MSE Bias MSE 

MLE 1.565 4.457 1.321 2.806 1.282 2.590 

Mallows 1.538 4.400 1.323 2.819 1.280 2.578 

CUBIF 1.551 4.435 1.312 2.772 1.275 2.562 

WMLT 0.330 0.386 0.252 0.174 0.214 0.071 

 
Table 3. Bias and (MSE) of estimators for second model (20% of data are contaminated). 

Methods 
n = 100 n = 300 n = 500 

Bias MSE Bias MSE Bias MSE 

MLE 2.522 3.168 1.392 3.011 1.339 2.857 

Mallows 1.739 3.118 1.377 2.809 1.329 2.137 

CUBIF 2.250 3.885 1.383 3.145 1.328 2.809 

WMLT 0.242 0.104 0.222 0.077 0.069 0.050 
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5.3. Leukemia Data 

This study uses data from [25] which includes information from 33 people who 
died from acute myeloid leukemia. Each patient was measured for three va-
riables: AG, WBC, and time. The response variable represents the survival time 
in weeks of the patient; it was converted into a binary variable with (Y = 1) indi-
cating patients whose survival time exceeded 52 weeks and (Y = 0) indicating 
those who did not. WBC represents the white blood cell concentration of the pa-
tient. Whereas AG (present = 1, absent = 0) measured the presence or absence of 
a morphologic characteristic of white blood cells. The observation number 17 
appears to be atypical. Using AG and WBC as predictor variables and binary 
survival time y as the response variable, a logistic regression model was con-
structed. The estimators analyzed here are weighted maximum likelihood tech-
nique (WMLT), MLE, MLE17 (MLE17 is the maximum likelihood estimator for 
clean data when observation 17 is excluded.), Mallows (estimator of the Mallows 
type), and CUBIF (conditionally unbiased bounded-influence function estimator). 

Table 4 demonstrates that the MLE is extremely sensitive to influential ob-
servations. Furthermore, eliminating observation 17 lowered the impact of WBC 
to near nil. For the leukemia data, the new estimator (WMLT) demonstrated the 
greatest performance among all other estimators. However, Mallow’s estimators 
are reasonably close to the MLE17. 

5.4. The Erythrocyte Sedimentation Rate Data 

The Erythrocyte Sedimentation Rate (ESR) data. In this data, the primary objec-
tive was to determine if the levels of two plasma proteins (Fibrinogen and 
γ.Globulin) were responsible for the increase in ESR in healthy individuals. The 
research was conducted by the Institute of Medical Research in Kuala Lumpur, 
Malaysia, on 32 patients, and the original data was collected by [26]. The re-
sponse of zero indicates a healthy person, whereas the response of one indicates 
an unwell person. Here, the continuous variables (FIB and γ.GLO) are compared 
to the binary response (ESR). In the original ESR data, [27] identified two out-
liers (cases 13 and 29) in X-space. Cases 14 and 15 are influential observations. 
Therefore, removing instances 14 and 15 would result in cases with no overlap.  

 
Table 4. The estimated parameters and standard errors for the leukemia data. 

Intercept 
WBC AG 

Est. S.E. Est. S.E. Est. S.E. 

MLE −1.3073 0.8145 0.3717 0.0186 2.2617 0.9522 

MLE37 0.2119 1.0830 −0.0002 0.0001 2.5580 1.2341 

Mallows 0.1602 1.0697 −0.2245 0.0129 2.5252 1.2159 

CUBIF −1.4503 1.8504 −0.0527 0.0337 0.2202 0.9756 

WMLT −0.404 0.285 −1.710 0.052 1.302 0.341 
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Case 13 was modified so that ( ) ( )1 2, , 3,6,37y x x =  in order to execute uncon-
taminated data analysis. From the uncontaminated data, the ESR data were con-
taminated where the occurrences (Y = 1) and non-occurrences (Y = 0) were re-
placed with each other for cases 14 and 15, and this might only leave one out of 
the three overlapping cases for the ESR data. 

Under contaminated ESR data, β0 and se(β0) of all estimators are impacted by 
outliers as compared to the other parameters (see Table 5). The results shown in 
Table 5 also indicate that the MLE is primarily influenced by outliers. Following 
the modification of the tainted data, only one overlapping observation, case 13, 
remains. This is the reason why the coefficients and standard errors of the 
WMLT that downweights this observation are so large. Even though the WMLT 
has the smallest χ2 value, the WMLT estimator should also be taken into consid-
eration. The results shown in Table 5 indicate that the WMLT is a suitable esti-
mator for the ESR data because its estimates are relatively closer to the MLE for 
uncontaminated data. 

6. Conclusions 

In this paper, we develop a new robust technique for logistic regression, also 
known as the weighted maximum likelihood technique (WMLT). The asymp-
totic consistency of the proposed estimator was demonstrated. 

In order to evaluate the robustness of a new technique, we conducted simula-
tion experiments using a variety of scenarios and data sets. Classical maximum 
likelihood estimates show the lack of robustness in the presence of outliers. Our 
simulation study for the clean model illustrated that the MLE, Mallows, and 
CUBIF estimators perform similarly, while the new weighted technique per-
forms less effectively than the other estimators. The simulation study also shows 
that the WMLT technique outperforms other estimators when dealing with con-
taminated data and demonstrates the greatest performance among all estimators 
compared to various scenarios and real data sets. The proposed method 
(WMLT) can be applied to other generalized linear models (GLMs) and is ex-
pected to be superior to existing methods in practical applications. The findings  

 
Table 5. Estimated coefficients, standard errors, and χ2 for ESR. 

 MLEun MLE MALLOWS CUBIF WMLL 

Int. β0 12.263 19.882 20.449 20.579 19.435 

se(β0) 5.839 9.417 9.809 10.031 9.371 

FIB β1 1.830 2.597 2.648 3.053 2.357 

se(β1) 1.062 1.543 1.611 1.681 1.787 

γ.GLO β2 0.153 0.278 0286 0.256 0.253 

se(β2) 0.116 0.165 0.170 0.170 0.123 

χ2 42.237 27.050 26.628 26.047 25.274 
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of this chapter provide researchers and practitioners with a new approach to de-
veloping robust estimators for logistic regression and potentially other genera-
lized linear models (GLMs). 
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