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Leveraging diverse cell-death
related signature predicts the
prognosis and immunotherapy
response in renal clear
cell carcinoma

Zhengqi Wu1, Mingyue Jin2, Peng Xin1* and Hao Zhang1*

1Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China,
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Background: Modulation of programmed cell death in tumor cells alters the

tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and

the combination of its inducers and immune checkpoint inhibitors plays a

synergistic role in enhancing antitumor effects.

Methods: We downloaded the data of clear cell renal cell carcinoma samples

from The Cancer Genome Atlas and used a machine learning approach to build a

new programmed cell death index (PCDI) through 13 programmed cell death-

related genes. Based on PCDI, cl inical features, tumor immune

microenvironment, chemotherapy response and immunotherapy response

were systematically analyzed.

Results: PCDI consists of eight programmed cell death-related genes (TBX3, BID,

TCIRG1, IDUA, KDR, PYCARD, IFNG and LRRK2). PCDI is a reliable predictor of

survival in clear cell renal cell carcinoma patients and has been validated in

multiple external datasets. We found that the high PCDI group showed higher

levels of immune cell infiltration and better response to immunotherapy

compared to the low PCDI group, and PCDI can also be used for prognostic

prediction in a variety of cancers other than clear cell renal cell carcinoma. In

vitro experiments demonstrated that knockdown of IDUA inhibited the

proliferation and migration of clear cell renal cell carcinoma.

Conclusions: The PCDI identified in this study provides valuable insights into the

clinical management of clear cell renal cell carcinoma by accurately evaluating

the prognosis of patients with clear cell renal carcinoma and identifying the

patient population that would benefit from immunotherapy.
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Background

Clear cell renal cell carcinoma (ccRCC) is the main histologic

subtype of renal cell carcinoma and also a common urologic

malignancy (1). Despite substantial advances in immunotherapy

and targeted therapies for ccRCC, patients with advanced disease

still have high recurrence and mortality rates (2, 3). Therefore, there

is an urgent need to identify individualized biomarkers and tailor

targeted therapeutic strategies to optimize the outcome of ccRCC

patients in clinical first-line therapy.

Cell death occurs in two main ways, accidental cell death is an

uncontrollable biological process and programmed cell death

(PCD) is a highly complex death program.PCD includes

Apoptosis, Pyroptosis, Autophagy, Lysosome-dependent cell

death, Necroptosis, Ferroptosis, Cuproptosis, Disulfidptosis,

Entotic cell death, Parthanatos, Netotic cell death, Alkaliptosis

and Oxeiptosis (4). A growing number of studies have shown that

cell death is an important anticancer defense mechanism and

therapeutic target (5). However, few studies have considered

programmed cell death from the perspective of tumor

immunotherapy. Although programmed cell death in the context

of clear cell renal cell carcinoma has been extensively studied, the

role of programmed cell death in this cancer type remains unclear

(6). Therefore, there is a need to assess the prognostic importance of

programmed cell death in clear cell renal cell carcinoma based on

programmed cell death-associated genes and to predict which

subtypes of clear cell renal cell carcinoma patients respond better

to immunotherapy and chemotherapy.

Programmed cell death has been shown to exert an important

influence during malignant tumor development and metastasis, and

tumor cells need to overcome various forms of cell death in order to

survive and develop (7). However, a comprehensive summary of the

relationship between programmed cell death and ccRCC remains

unknown. In this study, we established a new metric, the

programmed cell death index (PCDI), by collecting genes during

programmed cell death and thus by machine-learning methods to

predict the prognosis of ccRCC patients and the effectiveness of

therapeutic interventions. We performed in vitro experimental

assays to evaluate the role of IDUA in ccRCC progression.
Materials and methods

Obtaining sequence data from patients
with clear cell renal cell carcinoma

We collected key regulatory genes for 13 programmed cell death

patterns as PCD-related genes from the GSEA gene set, KEGG,

Hallmark, and review articles, and the final gene list is the tandem

regulatory genes for 13 PCD patterns (4, 7–15). A final collection of

1217 PCD-related genes was included in the analysis (Table S1). We

downloaded transcriptome profiles, corresponding clinical

information and mutation data of ccRCC samples from The

Cancer Genome Atlas (TCGA-KIRC) (16) species. In addition,

we obtained DNA microcohort data and clinical characterization of
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ccRCC as a validation cohort from ICGC and GEO databases (ID:

GSE36895 and GSE53757).
Construction and validation of
programmed cell death index (PCDI) and
histological validation at the protein level

We used univariate Cox regression to assess the association of

PCD-related genes with survival status in ccRCC patients, adjusting

the cutoff P-value to 0.001. candidate genes were further narrowed

down by Lasso and multivariate Cox regression methods to

construct the most suitable signatures.The programmed cell death

index (PCDI) was finally obtained for each patient by the following

formula: programmed Cell death index (PCDI) = Coef(Gene 1) ×

Expr(Gene 1) + Coef(Gene 2) × Expr(Gene 2) +…… + Coef(Gene

n) × Expr(Gene n). where Coef(Gene) represents the risk regression

coefficient of Gene and Expr(Gene) represents the expression of

Gene. Based on the median value of PCDI, we categorized ccRCC

patients into high and low PCDI groups. We further searched the

Human Protein Atlas database (https://www.proteinatlas.org/) (17)

to obtain YBX3, BID, TCIRG1, IDUA, KDR, PYCARD, IFNG, and

LRRK2 between clear cell renal cell carcinoma tissues and normal

kidney tissues at the protein level for Histological validation.
Unsupervised clustering of PCD-
related genes

Based on PCD-related genes, we implemented consensus

clustering using the R package “ConsensusClusterPlus” to identify

ccRCC subtypes (18).
Gene set enrichment analysis (GSEA)

We obtained reference genomes (Hallmark, c5go and c2kegg)

from the Molecular Signatures Database (MSigDB). Hallmark, c5go

and c2kegg analyses were performed using the R package

“clusterProfiler”. Screening conditions were |NES| > 1, NOM p-

value < 0.05.
Somatic mutation analysis

To determine the mutational load of ccRCC, we used the R

package “TCGAbiolinks” to obtain ccRCC mutation data (19). We

then used the “maftools” package to analyze the mutation data and

obtain the TMB for each patient. the results were visualized using

a waterfall Figure (20). Based on the median, TMB was categorized

into two groups, high TMB and low TMB, and the mutation

characteristics were compared between different risk groups. In

addition, KM curves were utilized to detect the relationship

between TMB, different risk classes of TMB and prognosis

of ccRCC.
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Immunomicroenvironment analysis

We used the R package “ESTIMATE” to perform tumor

microenvironmental analysis to calculate tumor purity,

ESTIMATE score, immune cell score and stroma score for each

sample (21). The proportion of 22 types of immune infiltrating cells

was calculated by the CIBERSORT algorithm (https://

cibersort.stanford.edu/) (22). The single sample gene set

enrichment analysis (ssGSEA) algorithm was used to quantify the

relative proportions of immune cells and immune function.
Drug response and
immunotherapy response

We derived IC50 by ProPhetic algorithm to assess drug

response to common chemotherapeutic treatments for ccRCC,

comparing drug sensitivity to the above chemotherapeutic

treatments in patients with high PCDI and low PCDI. We

downloaded the gene expression data of cancer cells to different

drugs at the Tumor Drug Sensitivity Multi-Organics (GDSC)

database (https://www.cancerrxgene.org/) (23) and calculated

IC50 values to assess patients’ responses to chemotherapeutic

drugs. The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm can be used to infer patient response to immunotherapy

(24). In addition we downloaded anti-PD-1 and anti-CTLA4 IPS

scoring data from ccRCC via the TCIA database (https://tcia.at/

home) (25) to assess patient response to immune checkpoint

inhibitors.The IMvigor210 study cohort evaluated the efficacy of

atezolizumab (a PD-L1 targeting antibody) in 210 patients with

locally advanced or metastatic uroepithelial cancer (26).The Liu

study cohort evaluated 121 patients with metastatic melanoma

treated with an anti-PD-1 inhibitor and the Kim study cohort of

patients with metastatic gastric cancer treated with pembrolizumab

(an anti-PD-1 inhibitor) (27). In addition, we collected genes that

have been currently reported to be positively associated with

immuno-efficacy and negatively associated with immuno-efficacy

and analyzed them in association with PCDI (28–30).
Bioinformatics analysis

Differential analysis of ccRCC and surrounding normal tissue

was performed using the R package “limma” with a cutoff value set

to log2 fold change (logFC) >1 and adjusted false discovery rate

(FDR) <0.001 (31). Heatmap visualization was performed using the

R package “pheatmap”. The R packages “rms” and “regplot” were

used for the plotting of column line graphs and calibration curves.

We calculated the tumor mutational load (TMB) of each patient

and compared it between the high-risk and low-risk groups, and

then applied the R package “Maftools” to explore the somatic

mutation information in ccRCC patients. Principal component

analysis (PCA) was performed using the “stats” package.
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Cell lines and cell culture

ACHN and 786−O cells were purchased from The Cell Bank of

Type Culture Collection of The Chinese Academy of Sciences

(Shanghai, China) and were cultured in accordance with the cell

culture manual of the manufacturer. Passage time was less than 6

months and mycoplasma were eliminated according to the test

report. ACHN cells were cultured in MEM medium (HyClone,

Logan, UT, USA) and 786-O cells were cultured in RPMI-1640

medium (HyClone, Logan, UT, USA), the culture media contained

10% fetal bovine serum (FBS, HyClone) according to cell culture

manual. All RCC cells were cultured in a humidified atmosphere of

5% CO2 at 37°C. When the cell fusion rate was 90%, the cells were

digested with 1-ml trypsin for 5 minutes, then adding 1 ml of

medium into the solution for neutralization. Collected by

centrifugation, the cells were resuspended with culture media

and passaged.
Small interfering RNA (siRNA) transfections

ACHN and 786-O cell lines were cultured in 6-well plates for

the transfection of the siRNA. When the cells confluence rate was

60%, the transfection complexes with IDUA siRNA (JTS scientific,

Wuhan, China) were added into the culture solution by means of

Lipofectamine™3000 (Invitrogen, USA) on the basis of the

procedure in the instruction manual. The siRNA sequences were

as follows (5′-3′): siIDUA-1# (sense ACUUUGAGGACAAGC

AGCAGGUGUU and anti-sense AACACCUGCUGCUUGU

CCUCAAAGU), siIDUA-2# (sense CAGCAGGUGUUUGA

GUGGAAGGACU and anti-sense AGUCCUUCCACU

CAAACACCUGCUG).
Western blotting (WB)

Total cell lysates were extracted by adding the RIPA solution

(RIPA: PMSF, 100:1; P0013B; Beyotime Institute of Biotechnology)

containing protease and phosphatase inhibitors. The concentration

of total cell protein was assessed with Enhanced BCA Protein Assay

Kit (cat. no. P0010; Beyotime Institute of Biotechnology).

Denatured protein (40 mg/lane) realized the protein separation on

a 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis

(140 V, 50 minutes) gel, then target protein was transferred to the

polyvinylidene fluoride membrane (350 mA, 90 minutes) by

transfer. The membrane was soaked in a sealed container using

5% fat-free milk at 37°C for 1 hour to realize the protein blockade.

The membrane was incubated overnight with the primary antibody

in 5% fat-free milk at 4°C. The information of the primary

antibodies in the WB were as follows: anti-IDUA (1:1000, 55158-

1-AP, Proteintech) and anti-GAPDH (1:5000, 10494-1-AP,

Proteintech). The membrane was washed three times (5 minutes

each) using tris-buffered saline tween-20, then the membrane was
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incubated with the corresponding secondary antibody at 37°C for 1

hour. EasySee Western Blot kit (Beijing Transgen Biotech, Beijing,

China) was used for detection following the experimental operation

manual of manufacturer. Density measurements were carried out

using ImageJ software (National Institute of Health, Bethesda, MD,

USA), and the density of target protein bands were normalized

with GAPDH.
Cell viability assay

Cell viability was measured by colorimetric assay by means of Cell

Counting Kit-8 (CCK-8) (Bimake, USA). 3 × 103 cells were seeded in

each well of 96-well plates. After 24 hours of transfection, CCK-8

working solution was added to the solution and incubated at 37°C for 1

hour. The absorbance of culture solution was measured at 450 nm using

a plate reader (Model 680; Bio-Rad Laboratories) at 24, 48 and 72 h.
5−Ethynyl−2’−deoxyuridine (EdU) assay

ACHN and 786-O cells were transfected with IDUA siRNAs in

24-well plates for 48 h, with EdU (BeyoClick™, EDU-555, China)

added to the medium (1:1000) to assess the cell proliferation. Cells

were incubated for 2 hours at 37°C, after labeling, the culture

medium was removed, and 1-ml fixative solution (4%

paraformaldehyde) was added for fix cells at room temperature

for 20 minutes. Cells were incubated at room temperature for 15

minutes with 1-ml permeate (0.3% Triton X-100) and the cells were

treated with click reaction buffer at 37°C for 30 min, after which

Hoechst solution was added for 15 min at room temperature. A

fluorescence microscope (Olympus Corporation, Japan) was used to

obtain the images to show the cell proliferation.
Transwell assay

600 mL medium (10% FBS) was added to the bottom of the well,

which is the lower chamber. 1 × 105 cells were suspended in 200 mL
serum-free medium and the suspension were seeded into the upper

chamber (Corning, NY, USA). Then the chambers were placed into

the 24-well plates. Cells were incubated at 37°C and 5% CO2 for 24

hours. After removing the remaining cells in the upper chamber

using the swab, 4% paraformaldehyde was used to fix the cells for 10

minutes, and crystal violet stain was added for staining lasting for 10

minutes at room temperature. Cell migration was observed by

means of optical microscopy, and ImageJ software lent itself to

calculate the migration efficiency.
Wound-healing assay

When the confluence rate of cells grew to 100% in the 6-well

plates, a scratch was made in the center by means of the tip of the 1

mL pipette. Then cells were cultured with serum-free medium at

37˚C for 48 h. Cell images were gained with an microscope (EVOS
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XL system; AMEX12000; Thermo Fisher Scientific, Inc.). ImageJ

software were applied to calculate the wound area.
Statistical analysis

Survival curves were plotted using the Kaplan-Meier method to

compare the difference in survival between the two groups. p-value

≤ 0.05 was considered statistically significant. All statistical analyses

were performed by R.
Results

Clustering of programmed cell death-
related genes

We performed consensus clustering analysis to explore ccRCC

subtypes by collecting PCD-related genes (1217 genes in total). We

found that differences between subgroups were most significant when

k=2, indicating that ccRCC patients could be well categorized into two

clusters (Figure 1A). The results of principal component analysis

(PCA) showed that patients with renal clear cell carcinoma could be

categorized into two clusters based on PCD-related genes (Figure 1B).

We found a significant difference in patient overall survival (OS)

between the two clusters (p < 0.001), with C1 associated with

patients with a good prognosis and C2 associated with patients with

a poor prognosis (Figure 1C). By comparing the differences in

clinicopathologic characteristics between the two clusters, including

ETHNICITY, T, N, M, and whether lymph node metastasis occurred.

We found that not Hispanic or latino, T, N, M staging and occurrence

of lymph node metastasis were higher in C2 than in C1, suggesting a

higher malignant phenotype in C2 patients (Figure 1D).

We then analyzed the immune profile between the two clusters.

We found that the tumor purity of C2 was significantly lower than

that of C1, while the ESTIMATEScore, immune score and stromal

score of C2 were significantly higher than that of C1, suggesting a high

level of immune infiltration in the C2 phenotype compared to C1

(Figure 1E). Analysis of the differences in the expression of common

immune checkpoints between the two clusters showed that most of

the immune checkpoints were expressed significantly higher in type

C2 than in type C1 (Figure 1F). The infiltration abundance of immune

cells was assessed by the CIBERSORT algorithm, and the results

showed that the level of immune cell infiltration was higher in type C2

(Figure 1G). Finally, the effect of the two clusters on the response to

immunotherapy was assessed by the IPS score, and we found that C2

was significantly more effective than C1 against anti-PD-1 and/or anti-

CTLA-4 inhibitors (Figure 1H).
Construction of programmed cell death
index (PCDI) in ccRCC patients

We identified 8 genes and thus constructs with programmed

cell death and its derived PCD by one-way Cox regression, lasso and

multifactorial Cox regression analyses (Figure 2A). Our model
frontiersin.org
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derived the programmed cell death index (PCDI) for each patient

by the following equation. PCDI= (0.0413*YBX3 exp.) +

(0.1458*BID exp.) + (0.0341*TCIRG1 exp.) + (0.0943*IDUA exp.)

+ (-0.0192*KDR exp.) + (-0.0485*PYCARD exp.) + (0.1625*IFNG

exp.) + (-0.0373*LRRK2 exp) (Figure 2B). We then explored the

expression of PCDI genes in unpaired and paired samples of tumor

and normal tissues in the TCGA-KIRC cohort, and showed that all

eight genes comprising PCDI were significantly upregulated and

expressed in tumor tissues (p < 0.05) (Figures 2C, D). We validated

these results by two GEO datasets (GSE36895 and GSE53757), and

the results were consistent (Figure 2E, F). The expression of the

eight genes comprising PCDI at the protein level was analyzed by
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immunohistochemical staining of the HPA database, and we found

that compared with normal tissues, the eight genes comprising

PCDI stained more deeply immunohistochemically in tumor

tissues, suggesting that the content of these eight proteins was

higher than that in normal tissues in ccRCC (Figure 2G).
External dataset validation and clinical
relevance of PCDI

We found that patients in the high PCDI group had a poorer

prognosis and were more likely to have a higher mortality rate
A B

D

E

F G

H

C

FIGURE 1

Unsupervised cluster analysis of programmed cell death genes. (A) When k=2, ccRCC patients were divided into two clusters based on programmed
cell death-related genes. (B) Principal component analysis (PCA) plot based on PCD-related genes. (C) Kaplan-Meier curves showing the prognosis
of ccRCC patients in two clusters. (D) Proportion of clinicopathologic features between two clusters. (E) Differences in tumor purity, ESTIMATEScore,
immune score and stromal score between the two clusters. Differences between common immune checkpoints (F) and immune cells (G) between
the two clusters. (H) between the two clusters to PD1- or no-CTLA4 blockers, PD1 blockers, CTLA4 blockers, and PD1-CTLA4 co-blockers. *p <
0.05 ,**p < 0.01, ***p < 0.001. ns, non significance.
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through Kaplan-Meier survival curves (p < 0.05, Figure 3A).

Subsequently, we used the ICGC dataset as a validation cohort,

and Kaplan-Meier analysis showed that patients in the high PCDI

group were more likely to have poorer overall survival (Figure 3B).

The results of univariate and multivariate Cox regression analyses

performed showed that the p-value of PCDI was less than 0.05,

suggesting that PCDI can be an independent prognostic factor in

patients with ccRCC (Figures 3C, D). To further validate the clinical

significance of PCDI, we analyzed the differences in PCDI between

different clinical characteristics and showed that PCDI was higher

in patients with C2, male, high grading, high T stage, M1 and N1

stage, suggesting that the higher our PCDI, the closer ccRCC was to

advanced stage (Figure 3E). Analysis of survival curves stratified by
Frontiers in Immunology 06
clinical characteristics showed that PCDI significantly differentiated

the prognosis of each clinical subgroup, with patients in the high

PCDI group having a worse prognosis (Figure S1). We evaluated the

area under the curve (AUC) values of the TCGA cohort and

compared them with other clinical traits, and the results showed

that PCDI had high accuracy in predicting 1-, 3-, and 5-year

survival in patients with ccRCC and was a better predictor of

patient survival than other clinical traits (Figures 3F, G). With the

results of univariate and multivariate Cox regression analyses, we

modeled column-line plots for ccRCC patients to assess patient

prognosis, with age, gender, Laterality, and PCDI included in the

models (Figure 3H). The calibration curves of the column-line plots

showed that the predicted 1-, 3-, and 5-year survival rates were
A B

D

E F
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C

FIGURE 2

Construction of PCDI in ccRCC patients and validation of immunohistochemical staining results. Forest plots (A) and coefficient histograms (B) of
the eight genes for which PCDI was constructed. YBX3, BID, TCIRG1, IDUA, KDR, PYCARD, IFNG, and LRRK2 were found to be different in the TCGA
dataset in unpaired samples (C) and paired samples (D) of tumor tissues and normal tissues as well as in the GSE36895 (E) and GSE53757 (F)
Differences between. (G) Immunohistochemical staining results of YBX3, BID, TCIRG1, IDUA, KDR, PYCARD, IFNG and LRRK2 in normal and cccRCC
tissues. *p < 0.05 ,**p < 0.01, ***p < 0.001. ns, non significance.
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more consistent with the actual survival rates at the reference line,

suggesting that the constructed column-line plots could predict

patient prognosis well (Figure 3I).
PCDI predicts prognosis extended from
ccRCC to pan-cancer

To explore the generalization of PCDI to other cancers, we used

the modeling equations for PCDI described above to calculate PCDI

values for patients with the other 32 cancer types in TCGA and to
Frontiers in Immunology 07
plot Kaplan-Meier survival curves for the high/low PCDI group. For

Overall Survival (OS), patients in the high PCDI group in ACC,

UVM, LAML, THYM, and TGCT had a poorer prognosis, whereas

patients in the low PCDI group in BLCA, BRCA, ESCA, STAD, and

SKCM had a poorer prognosis (Figure 4A). For Disease Specific

Survival (DSS), patients in the high PCDI group in KIRP, TGCT,

and THYM had poor Disease Specific Survival, while patients in the

low PCDI group in BLCA, SKCM, and STAD had poor Disease

Specific Survival (Figure 4B). For Disease Free Interval (DFI),

patients in the high PCDI group in KIRP had poor Disease Free

Interval, whereas patients in the low PCDI group in COAD had
A B D

E

F G
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C

FIGURE 3

External dataset validation and clinical correlations of PCDI. Kaplan-Meier survival curves comparing high/low PCDI for the TCGA dataset (A) and the
ICGC external dataset (B). Univariate (C) and multivariate (D) Cox regression analysis of PCDI and other clinical traits. (E) Differences between PCDI
between common clinical traits. (F) ROC curves of PCDI at 1, 3 and 5 years. (G) ROC curves of PCDI compared with other clinical traits at 1, 3 and 5
years. (H) Column line graphs predicting prognosis in ccRCC patients. (I) Calibration curves for the probability of overall survival at 1, 3 and 5 years in
the TCGA cohort.
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poor Disease Free Interval (Figure 4C). For Progression Free

Interval (PFI), patients in the high PCDI group in KIRP, PAAD,

and THYM had poor Progression Free Interval, whereas patients in

the low PCDI group in BLCA and STAD had poor Progression Free

Interval (Figure 4D). The above results suggest that PCDI not only

has a good effect in predicting the prognosis of ccRCC (KIRC), but

also has a predictive prognostic value in other cancers.
Tumor microenvironment dissection based
on programmed cell death index

In order to investigate the regulatory pathways of tumorigenesis

in the high PCDI group, we performed GSEA analysis of tumors in

the high PCDI group, which showed that the high PCDI group was

significantly enriched in CELL Killing, CYTOLYSIS, Necrotic cell

death, Pyroptosis, and Apoptosis (p < 0.05) (Figure 5A). In
Frontiers in Immunology 08
addition, tumors in the high PCDI group were significantly

enriched (p < 0.05) in immune function pathways such as B cell

mediated immunity, NK cell activation, T cell activation and T cell

mediated immunity, suggesting that our high PCDI group and

tumor immune microenvironment closely associated with the

tumor immune microenvironment (Figure 5B).

Using the ESTIMATE algorithm, we found that the high PCDI

group had lower tumor purity but higher immune scores and

stroma scores (Figure 5C). ssGSEA algorithm results showed that

patients in the high PCDI group had better immune cell infiltration

and immune-related functions compared to the low PCDI group

(Figure 5D). cIBERSORT algorithm showed that the high PCDI

group The level of immunostimulatory CD8 T cells was

significantly higher than that of the low PCDI group, while the

level of immunosuppressive M2-type macrophages was significantly

lower in the high PCDI group, which suggested that our high PCDI

group had high immune infiltration characteristics (Figure 5E).
A

B

D

C

FIGURE 4

Predictive value of PCDI in other cancers. Comparison of Overall Survival (OS) (A), Disease Specific Survival (DSS) (B), Disease Free Interval (DFI) (C),
and Progression Free Interval (PFI) (D).
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Efficacy of PCDI in predicting
immunotherapy outcome

To further explore the relationship between PCDI and the

immune microenvironment, we compared the differences in the

expression levels of common immune checkpoints, MHC

molecules, cytokines, and cytokine receptors between the high/

low PCDI groups, and the results showed that the expression levels

of immune checkpoints, MHC molecules, cytokines, and cytokine

receptors of patients in the high PCDI group were significantly

higher than those in the low PCDI group (p < 0.05, Figure 6A).

Then we analyzed the correlation between PCDI and common

immune checkpoints, and the results showed that most of the

immune checkpoints were significantly positively correlated with

PCDI (p < 0.05, Figure 6B). These results suggest that the tumors in

the high PCDI group showed “hot” tumor characteristics, and the

efficacy of immune checkpoint inhibitor therapy in the high PCDI

group may be better than that in the low PCDI group. By analyzing

the association between TMB, MSI and PCDI, we found that

patients in the high PCDI group showed higher TMB and MSI

(Figures 6C, D). In addition, the prognosis of patients in the high

TMB group was worse than that of patients with low TMB. ccRCC

patients were divided into four groups after the combination of
Frontiers in Immunology 09
TMB and PCDI, and we found that the prognosis of patients in the

high TMB+high PCDI group, the high TMB+low PCDI group, and

the low TMB+high PCDI group were all similarly worse than that of

patients in the high TMB+high PCDI group (Figures 6E, F). We

also examined the mutation rates in ccRCC in the cBioPortal

database for the eight genes from which PCDI was constructed

and found a higher mutation rate of 15% for LRRK2 and a lower

mutation rate of 4% for PYCARD compared to the other six genes

from which PCDI was constructed (Figure S2).

Subsequently, we collected external immunotherapy datasets to

validate PCDI to predict immunotherapy efficacy, and the results

showed that PCDI was significantly higher in patients in the

immunotherapy-responsive group than in the non-responsive

group in Imvigor210 (anti-PD-L1), Kim cohort (anti-PD-1), and

Liu cohort (anti-PD-1) patients (Figures 6G–I). We then explored

the association between PCDI group and immunophenotypic core

(IPS) by assessing immunogenicity to predict patient response to

immune checkpoint blockade (anti-PD1 and/or anti-CTLA4), and

we found that IPS scores were higher in the high PCDI group,

suggesting that patients in the high PCDI group may be better

responders to immunotherapy (Figure 6J). We also compared the

association between positive and negative immune efficacy-related

genes and PCDI, and showed that PCDI was significantly positively
A B

D E

C

FIGURE 5

Assessment of tumor microenvironment based on programmed cell death index. (A, B) GSEA analysis of patients in the high PCDI group. (C)
Differences in tumor purity, ESTIMATEScore, immune score and stromal score between high/low PCDI groups. (D) The ssGSEA algorithm assesses
differences in immune cells and immune function between patients in the high/low PCDI group. (E) CIBERSORT algorithm to assess immune cell
differences between patients in the high/low PCDI group. *p < 0.05 ,**p < 0.01, ***p < 0.001. ns, non significance.
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associated with positive immune efficacy-related genes (POLD1 and

POLE) and significantly negatively associated with negative

immune efficacy-related genes (CTNNB1, EGFR, JAK1 and

PTEN) (Figure 6K). All these results indicated that PCDI could

better predict the immunotherapy effect, and the high PCDI group

had better effect on immunotherapy.
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Efficacy of PCDI in predicting
drug sensitivity

To explore the association between PCDI and drug sensitivity,

we calculated half-maximal inhibitory concentration (IC50) values

for common drugs in ccRCC samples and compared them with
A

B
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G IH J

K

C

FIGURE 6

Efficacy of programmed cell death index in predicting immunotherapy outcome. (A) Differences in the expression levels of common immune
checkpoints, MHC molecules, cytokines and cytokine receptors between high/low PCDI groups. (B) Correlation between PCDI and common
immune checkpoints. Differences between TMB (C) and MSI (D) between high and low PCDI groups. (E, F) TMB and survival curves associated with
PCDI. External immunotherapy datasets Imvigor210 (G), Kim cohort (H) and Liu cohort (I) validate PCDI for immunotherapy effect prediction. (J)
between high-PCDI and low-PCDI groups to PD1- or no-CTLA4 blockers, PD1 blockers, CTLA4 blockers, and PD1-CTLA4 co-blockers. (K)
Association between positive immunotherapy efficacy-related genes and negative immunotherapy efficacy-related genes with PCDI. *p < 0.05 ,**p <
0.01, ***p < 0.001. ns, non significance.
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those between PCDI subgroups. We found that many common

chemotherapeutic agents for renal cell carcinoma were significantly

different between the high/low PCDI groups (p < 0.05), and the

IC50 values for Docetaxel were significantly lower in the high PCDI

group than in the low PCDI group, suggesting that patients in the

high PCDI group may have a better response to Docetaxel-based

chemotherapy.The IC50 values for Lapatinib were significantly

lower in the low PCDI group was significantly lower than that in

the high PCDI group, suggesting that patients in the low PCDI

group had a better response to Lapatinib-based chemotherapy

(Figure 7A). Then, we analyzed the relationship between drug

sensitivity and mRNA expression of the eight genes constructing

PCDI using the GDSC and CTRP databases; positive correlation

indicated that gene expression was associated with drug resistance,

while negative correlation indicated that gene expression was

associated with drug sensitivity. The results indicated that BID

and YBX3 gene expression was associated with most drug

sensitivities (Figures 7B, C).
Knock-down of IDUA inhibited RCC cell
proliferation and migration

To confirm the biological function of IDUA in RCC, we

knocked down IDUA using two siRNAs in ACHN and 786-O

cells. Western blotting showed that IDUA could be effectively

silenced by two independent siRNAs (Figure S3). The

proliferation of ACHN and 786-O cells was noticeably decreased

after down-regulation of IDUA expression compared with the

corresponding control cells in the CCK8 assay (Figures 8A, B). In

addition, EDU incorporation analysis also showed that the

proportion of EDU-positive ACHN and 786-O cells was

significantly reduced in the IDUA-interfered group compared

with the corresponding control cells (Figures 8C, D). The results

of transwell assay showed that interference with IDUA crippled the

migratory capacity of ACHN and 786-O cells (Figures 8E, F).

Subsequently, in the wound-healing assay, we found that IDUA

knocking-down decelerated wound closure speed in both ACHN

and 786-O cells (Figures 8G, H). These results indicated that IDUA

could promote renal cell carcinoma cell proliferation and migration

in vitro. IDUA is expected to be a potential target for the treatment

of renal cell carcinoma.
Discussion

An increasing number of studies have shown that cell death is

an important anti-cancer defense mechanism and therapeutic

target. In this study, we established a programmed cell death

index (PCDI) constructed from eight programmed cell death-

related genes (TBX3, BID, TCIRG1, IDUA, KDR, PYCARD,

IFNG, and LRRK2) based on the data of 13 different

programmed cell death modalities. The PCDI can be used as a

marker to classify the subtypes of clear cell renal cell carcinoma and

can be effectively used to predict the prognosis and immunotherapy
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outcome of patients with clear cell renal cancer. effectively used to

predict the prognosis and immunotherapy outcome of patients with

clear cell renal cell carcinoma. Finally, we validated the effect of

IDUA on clear cell renal cell carcinoma in vitro.

To determine the association between PCDI and clear cell renal

cell carcinoma, we first found that the high PCDI group was

strongly associated with immune cells (e.g., CD8+ T cells, NK

cells, and B cells) by gene set enrichment analysis. Then we assessed

by ESTIMATE algorithm, ssGSEA algorithm, and CIBERSORT

algorithm that patients in the high PCDI group were indeed

associated with high levels of immune infiltration. We also found

that most of the common immune checkpoints, MHA molecules,

cytokines and receptors were significantly up-regulated in the high

PCDI group by comparing the expression levels of these molecules

between the high PCDI group and the low PCDI group. In addition,

TMB and MSI have an important role in predicting patient

immunotherapy (32). Current studies have shown that high

immune cell infiltration and high immune checkpoint expression

are characteristic of “hot” tumors, which are effective for

immunotherapy (33, 34). TMB and MSI were also high in the

high PCDI group, suggesting that our patients in the high PCDI

group showed “hot” tumor characteristics that may be effective for

immunotherapy. We then verified these results with external

immunotherapy datasets Imvigor210 (anti-PD-L1), Kim cohort

(anti-PD-1), and Liu cohort (anti-PD-1), and found that the

PCDI values of the patients in the immunotherapy-responsive

group were significantly higher than those of the patients in the

non-responsive group. On the other hand, by evaluating the IC50

values of common chemotherapeutic drugs differing between high/

low PCDI groups and calculating the association between the

expression levels of genes involved in the construction of PCDI

and drug sensitivities, we found that the high/low PCDI groups

could significantly differentiate the sensitivities to common

chemotherapeutic drugs in ccRCC patients. The above results

indicate that PCDI can effectively assess the sensitivity to

chemotherapeutic drugs and immunotherapy efficacy in patients

with clear cell renal cell carcinoma, which is important for the

future precision treatment of patients with clear cell renal

cell carcinoma.

The PCDI index was constructed by the inclusion of eight

genes, including TBX3, BID, TCIRG1, IDUA, KDR, PYCARD,

IFNG, and LRRK2, all of which are highly expressed in clear cell

renal cell carcinomas. T-box Transcription Factor 3 (TBX3), a

transcription factor that not only acts as a regulator in many

critical organs, such as the heart, breast, and limbs. It is also

closely related to many cancers and stem cell maintenance

(35).BH3 Interacting Domain Death Agonist (BID) is a pro-

apoptotic factor of the Bcl-2 family that encodes a death agonist

and can regulate apoptosis by forming a heterodimer with the

agonist BAX or the antagonist BCL2 (36). TCIRG1, also known as

the V-ATPase-a3 subunit, is essential in a variety of biological

processes such as cellular metabolism, membrane trafficking, and

intracellular signaling through its dependent acidification (37).

KDR encodes the formative protein VEGFR2, which, as an

important tyrosine transmembrane protein, plays an important
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role in regulating endothelial cell proliferation and migration,

regulating angiogenesis, and other biological processes. play an

important role in the regulation of endothelial cell proliferation and

migration, and the regulation of angiogenesis. In addition, VEGFR2

has been shown to be aberrantly expressed in many malignant

tumors and is associated with tumor progression and drug

resistance, therefore, inhibitors targeting VEGFR2 are now

considered to be promising and effective cancer therapeutic

agents (38).Apoptosis-associated speck-like protein containing a

caspase recruit domain (ASC) protein, encoded by the PYCARD

gene, is involved in inflammatory and immune-related biological

processes by aggregating ASC speckles during inflammatory vesicle

activation due to pyroptosis (39).IFNG is a cytokine that regulates
Frontiers in Immunology 12
immune processes, and also possesses antimicrobial and anticancer

activities. IFNG is a cytokine that regulates immune processes and

has antimicrobial and anticancer activities, e.g., it induces iron

death in tumor cells and inhibits tumor growth (40, 41). Leucine

Rich Repeat Kinase 2 (LRRK2), a kinase with a multistructural

domain and GTP activity, regulates autophagy, and has been of

great interest in a wide range of diseases (42).

Although our constructed programmed cell death index (PCDI)

closely reflects the prognosis of clear cell renal carcinoma as well as

predicts chemo-sensitivity and immunotherapy efficacy, and

predicts the prognosis and immunotherapy efficacy of a wide

range of cancers other than clear cell renal cell carcinoma.

However, certain limitations still exist in this study. First, the data
A

B C

FIGURE 7

Value of programmed cell death index in predicting drug sensitivity. (A) Differences in response to common chemotherapeutic drugs between the
high and low PCDI groups. the GDSC database (B) and the CTRP database (C) analyzed the relationship between drug sensitivity and mRNA
expression of the eight genes that construct the PCDI.
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FIGURE 8

IDUA promotes proliferation and migration of RCC cells. (A, B) Cell proliferation of 786-O or ACHN cells transfected with control or si-IDUA was
measured by CCK8. (C, D) Edu assay to show the cell proliferation of knock-down IDUA cells compared with the corresponding control cells. (E, F)
Transwell assay to show the cell metastasis of knock-down IDUA cells compared with the corresponding control cells. (G, H) Wound-healing assay
to show the cell metastasis of knock-down IDUA cells compared with the corresponding control cells. *p < 0.05 ,**p < 0.01, ***p < 0.001.

Wu et al. 10.3389/fimmu.2023.1293729
for our analysis were obtained from public databases, which may

lead to some case selection bias in case selection. It is also still

necessary to collect a large amount of clinical case data for

evaluation to further validate the accuracy of our findings. Finally,

further in vivo and in vitro experiments are needed to validate the

specific molecular mechanisms of the genes constructing the PCDI

index in clear cell renal cell carcinoma progression.
Conclusion

In summary, based on the comprehensive analysis of 13

programmed cell death-related genes in clear cell renal cell carcinoma,
Frontiers in Immunology 13
we conclude that PCDI can reliably and effectively predict the prognosis

and immunotherapeutic efficacy of clear cell renal cell carcinoma. The

present study identifies new prognostic and therapeutic biomarkers and

targeted small molecule drugs for ccRCC from the perspective of many

different programmed cell deaths, which provides useful clues for future

precision treatment of clear cell renal cell carcinoma.
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Prognosis curve among clinical subgroups.

SUPPLEMENTARY FIGURE 2

Association of PCDI with somatic mutations. (A) Mutation rates of the eight
genes for which PCDI was constructed. Waterfall plots of somatic mutations

in the high PCDI group (B) and low PCDI group (C).

SUPPLEMENTARY FIGURE 3

Western blotting for validating the knock-down effect of IDUA gene in RCC

cell lines 786-O and ACHN.
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TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

BCa Bladder cancer

GTEx Genotype-Tissue Expression Program

WGCNA Weighted Gene co-expression Network Analysis

PMGI PD-L1 multidimensional regulatory index

HR Hazard Ratio

ROC Receiver Operating Characteristic

PD-1 Programmed cell death 1

PD-L1 Programmed cell death 1 ligand 1

CTLA4 Cytotoxic T-lymphocyte-associated protein 4

ICB Immune checkpoint blockade

OS Overall survival

ROC Receiver Operation Characteristic

NES Normalized enrichment score

TMB Tumor mutation burden

IC50 half maximal inhibitory concentration

GDSC Genomics of Drug Sensitivity in Cancer

PPI protein–protein interaction

KM Kaplan–Meier

ssGSEA single-sample gene set enrichment analysis

TIDE tumor immune dysfunction and exclusion

GSEA gene set enrichment analysis

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

LAG3 Lymphocyte Activating 3

PFS Progression-free survival

DSS Disease-free survival

TP53 Tumor Protein P53

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma, BRCA, Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma
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KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

CNV Copy number variation
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