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Integration of distinct biological data types could provide a comprehensive view of 
biological processes or complex diseases. The combinations of molecules responsible 
for different phenotypes form multiple embedded (expression) subspaces, thus 
identifying the intrinsic data structure is challenging by regular integration methods. In 
this paper, we propose a novel framework of “Multi-view Subspace Clustering Analysis 
(MSCA),” which could measure the local similarities of samples in the same subspace 
and obtain the global consensus sample patterns (structures) for multiple data types, 
thereby comprehensively capturing the underlying heterogeneity of samples. Applied 
to various synthetic datasets, MSCA performs effectively to recognize the predefined 
sample patterns, and is robust to data noises. Given a real biological dataset, i.e., 
Cancer Cell Line Encyclopedia (CCLE) data, MSCA successfully identifies cell clusters 
of common aberrations across cancer types. A remarkable superiority over the state-of-
the-art methods, such as iClusterPlus, SNF, and ANF, has also been demonstrated in 
our simulation and case studies.

Keywords: multi-view subspace clustering analysis, data integration, heterogeneity, low-rank representation, 
graph diffusion

INTRODUCTION

The rapid advance of high throughput technologies makes large amounts of various omics data 
available to study biological problems (Schuster, 2008). While, different types of data could provide 
complementary or common information to each other since a biological system consists of a series 
of highly ordered molecular and cellular events (Wang et al., 2014; Ma and Zhang, 2017; Shi et al., 
2017a). Thus, compared to single data types (e.g., gene expression), the integration of multiple omics 
data is more likely to completely understand the molecular mechanisms underlying particular 
biological processes or complex diseases, and therefore offers more opportunities to better address 
biological or medical issues, e.g., to identify cancer subtypes with different biological or clinical 
outcomes (Xiong et al., 2012; Chen and Zhang, 2016; Shi et al., 2017a).

So far, quite a lot of data-integration methods have been proposed and they can be briefly summarized 
into two main categories: firstly, to extract signals from each data type; secondly, to acquire comprehensive 
information by a sample-centric integration (Arneson et al., 2017; Zhang et al., 2017a). In addition, these 
data integration methods mainly depend on two strategies, one is space projection method (Fan et al., 
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2016), and the other one is metric (similarity measures) fusion 
technique (Wang et al., 2014). These ideas match the nonlinear 
characteristics of biological systems and should really work when 
capturing the whole phenotype landscape.

However, their solutions to obtain the sample or gene patterns 
from multiple data domains are really distinct from each other. The 
earliest proposed methods identify multi-dimensional genomic 
modules (e.g., mRNA-miRNA functional pairs) (Ghazalpour et al., 
2006; Kutalik et al., 2008; Li et al., 2012; Zhang et al., 2012; Chen 
and Zhang, 2016), which present high correlations over the samples 
in data sets. Such “co-modules” can only uncover common sample 
structures across data types and likely lead to biased clustering because 
much phenotype-associated differential information is missing. 
Later, Mo et al. developed a method, iClusterPlus (Mo et al., 2013), 
which considers different properties of omics data (e.g., continuous, 
count or binary valued variables) through corresponding linear 
regression models. However, some assumptions held by this method 
are too strong for heterogeneous tumor samples, and may also lose 
biologically meaningful information. As a nearly assumption-free and 
fast approach, SNF (Wang et al., 2014) (similarity network fusion) can 
overcome such issues and it uses local structure preservation method 
(i.e., K-nearest neighbors) to adjust sample similarity networks 
for each data type. But, SNF can only characterize pair-wise Euclidean 
(or other) distances in the sample neighborhoods, and is sensitive to 
local data noises or outliers. Recently, Ma and Zhang proposed ANF, 
an “update” of SNF, which incorporates weights of views for each 
data type (Ma and Zhang, 2017). ANF presents more general and 
interpretable power than SNF, but it still reserves the unstable nature of 
pair-wise clustering. Notably, increasing biological evidence suggests 
that distinct regulatory mechanisms preside over physiological 
phenotypes (e.g., Waddington’s canalization) or even the tumor cell 
states (Mark and Aviv, 2002). Cell types or patients present extremely 
strong heterogeneity due to the different master gene sets, implying 
that these individuals are scattered in multiple biological states (feature 
subspaces) even at a single data level (Shi et al., 2017b; Haghverdi et al., 
2018). That means the pair-wise similarity measurement (e.g., in SNF) 
can’t capture the true heterogeneity spanning in different subspaces, 
further leading to inaccurate integrative clustering. Thus, the more 
effective integration approach is still lacking.

Motivated by above requirements from methodology and 
biology study, we propose a novel framework called “Multi-view 
Subspace Clustering Analysis (MSCA)” by using representation-
based methods (e.g., low-rank representation, namely LRR) (Lin 
et al., 2011; Liu et al., 2013). LRR or relevant subspace clustering 
algorithms are originally developed and applied in image recognition 
(Zhang et al.; Cao et al., 2015; Gao et al., 2016; Brbić and Kopriva, 
2017; Zhang et al., 2017b). These methods enable to recover the 
signal spaces of the images, providing a better description of the 
visual patterns. Furthermore, they generate a block-diagonal 
representation graph of samples, which measures sample similarities 
by linear combinations of the remaining samples, presenting more 
robust than pair-wise clustering. However, when applied to highly 
heterogenous data, such as biological omics profiles, these methods 
are often fragile since they assume linear embedded structures 
underlie the original data and can’t exploit the local geometric 
relationships of objects (Zhuang et al., 2015). Hence, we should 
improve the utility of subspace clustering to be more appropriated for 

biological cases. In our proposed MSCA model, we incorporate the 
advantage of local structure preservation to force the representations 
to be locally linear at each data type, and capture the integrative 
clustering pattern by fusing the multiple informative graphs from 
local sample representations. In particular, MSCA implements 
two steps of nonlinear pattern identification for different omics 
data during pattern fusion, where the multi-view is able to recover 
more details of systems’ complexity and heterogeneity. To validate 
the effectiveness of our method, we firstly applied MSCA to various 
synthetic datasets, and found that MSCA not only successfully 
recognizes the predefined subgroups with a better performance than 
several state-of-the-art methods, but also shows great robustness on 
different parameters’ variation. In addition, MSCA has demonstrated 
a good ability to yield biologically relevant subgroups of tumor cells 
of multiple origins in CCLE (Barretina et al., 2012) data set.

METHODS

Method Overview
MSCA takes two steps as schematically shown in  
Figure 1: i) Construction of sample representation matrix from 
each type of genomic profiles by a subspace clustering algorithm  
(Figures 1A, B); ii) Graph diffusion process of sample similarity 
matrices, which are derived from the representation matrices 
corresponding to all data types (Figure 1C). MSCA was 
implemented as a Matlab package and is freely available at https://
github.com/ZCCQQWork/MSCA.

The representation graph Z of step (i) presents each single 
sample as a linear combination of the remaining ones in the same 
subspace/cluster, and therefore it can be shown as a block-diagonal 
and sparse matrix. Such low-rank characteristic of Z makes it 
more robust to data outliers and capable to retain more structural 
information of data, thus paving a good way for the next integrative. 
After that, MSCA implements the graph diffusion step (ii). It makes 
information propagate across multiple graphs in an iteration way. 
And this could fuse biological signals from the involved genomic 
data. After a few iterations, MSCA converges to the optimal graph 
(Figure 1D), as a multi-view similarity measurement, revealing the 
underlying relationship of samples. Note that both the steps follow 
nonlinear criteria, to maximize the chance of characterizing the true 
complexity and heterogeneity of data, and especially the common 
information will strengthen the supported sample patterns whereas 
discordant local structures will weaken their similarities.

Extracting the Sample Representation 
Graph From Each Data Type
Suppose we describe a genomic profile (e.g., mRNA expression) with 
h biological measurements and n samples as a data matrix X = [x1 ,x2, 
… ,xn], xi and xj correspond to two samples; then the representation 
relationships of all samples can be calculated as follows:

 
min

,( , )

,
,

Z E

T

ij

Z E

X XZ E
Z

Z i j

∗ +

= +

= ∈Ω









λ 2 1

0
s.t. 1 1==

 (1)

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/ZCCQQWork/MSCA
https://github.com/ZCCQQWork/MSCA


Multi-view Subspace Clustering AnalysisShi et al.

3 August 2019 | Volume 10 | Article 744Frontiers in Genetics | www.frontiersin.org

where Z = [z1, z2, … ,zn] is a n × n matrix containing all 
the coefficient measurements  between pairs of samples  
xi(1 ≤ i ≤ n), and zi is a coefficient vector of sample i. ||Z||* 
represents the nuclear norm of Z, i.e., the sum of all singular 

values of Z; E eij
i

h

j

n

2 1
2

1
, = ( )∑∑ =

and is l2,1-norm of the error 

matrix E, where eij is the (i,j)-th entry of matrix E.
Note that, in the first constraint condition, the linear 

representation of samples can capture the global structure in 
data, thus a large similarity coefficient means the two samples 
are spatially close. Next in the second constraint condition, 1, 
as an all-one vector, is used to normalize Z that ∑iZij = 1. And in 
the third constraint condition, Ω denotes as the complement of 
Ω, where Ω is a set of edges between the samples in a predefined 
adjacency graph. For example, if xi and xj are not graph 
neighbors, we have   Ωi j,( ) ∈ . In this work, we use K-nearest 
neighbors to predetermine the sample local structure in terms 
of pair-wise Euclidean distances. Then, the tuning parameter 
λ is used to balance the two optimization terms, which could 
be selected according to their respective properties, or tuned 
empirically. For the selection of parameters K and λ, the 
section Evaluation of MSCA on Synthetic Examples has more 
detailed discussions. Given solving problem (1), we obtain the 
optimal solution Z*, which is block-diagonal indicating that 
samples in the same subspace are clustered together due to the 
comprehensive considerations/constraints of global and local 
data structures. The corresponding sample affinity matrix W is 
obtained by W Z Z T= +( )* * / 2, which can be passed on to the 
next step integration.

In fact, the optimization problem (1) can be solved via 
ADMM (alternating direction method of multipliers) algorithm 
(Lin et al., 2010) as below. Firstly, this problem can be converted 
to an equivalent problem:
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And its augmented Lagrangian function is:
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where μ is a penalty parameter larger than 0. ||*||F denotes the 
Frobenious norm, and Y1, Y2 and Y3 are Lagrangian multipliers 
corresponding to three constraints in equation (2) respectively; 
L ZΩ( ) = 0 corresponds to the third constraint condition in original 
optimization equation (1). As known, the above problem can be 
minimized orderly to update the variables Z, J, E by fixing the other 
variables, respectively, according to ADMM.

Suppose at k times of updates, we acquire Z J E Y Yk k k k k, , , ,1 2  
and Y k

3 , and the alternate process with update functions can be 
summarized in below:

Firstly, assuming all the other five matrices are fixed, we can 
compute Jk+1:
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FIGURE 1 | Overview of Multi-view Subspace Clustering Analysis (MSCA). (A) Different biological data types for the same set of samples. (B) Sample representation 
matrices for each data type. Coefficients are represented by dots, and bigger redder ones mean larger values. (C) Cross-graph diffusion process to integrate 
multiple similarity matrices, updating aggregated information iteratively. (D) Final integrative result when step in (C) reaches convergence. Color of square in graphs 
indicates sample-to-sample similarities. X denotes as each omic data matrix, and Z presents the representation matrix. E is the error matrix (see Methods).
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Secondly, assuming Jk+1, Zk, Y
k

1  are fixed, we can compute Ek+1:
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Thirdly, assuming Jk+1, Ek+1, Y k
1 , Y k

2  and Y k
3  are fixed, we can 

compute the updated Z from following optimization problem:
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In fact, this problem is equivalent to
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Then, it can be further linearized with respect to Z at Zk based 
on LADMAP (linearized alternating direction method with 
adaptive penalty) algorithm (Lin et al., 2011):
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where η = + +X T
2

2

2

2
11 .

In the end, we obtain Zk+1 according to the following 
updating rule:
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Fourthly, assuming that Ek+1, Zk+1 and Jk+1 are fixed, we can 
calculate simultaneously:

 Y Y X XZ Ek k k k k
1

1
1

1 1+ + += + − −µ ( )  (10)

 Y Y Zk k k T T k
2

1
2
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All the above subproblems can form a closed loop until 
convergence, and the whole step to derive the graph weight 
matrix W can be briefly summarized in Algorithm 1.

ALGORITHM 1 Algorithm to extract the sample representation matrix for each 
data type.

Input: the profile of ith data type, i.e. X x x xi i i
n
i=  1 2, , ..., , tuning parameter λ, 

and nearset neighbors parameter K.
Output: the sample representation matrix Wi of ith data type.
1. Obtain neighbors in data Xi using K-nearset neighbour method, and assign the 
parameter Ω

2. Solve the equation (1) by updating (4), (5), (9)-(12) until the iteration converges 
and obtain the optimal Z*

3: Construct the sample similarity matrix WI by W Z Zi T= +( )* * / 2

Capturing Multi-View Graph From Various 
Omics Data
Given m different genomics data types, we could obtain respective 
affinity matrices Wi, i = 1, 2, …, m as nonlinear similarity 
measurements of all samples by above Algorithm 1. This step would 
fuse individual affinity graphs to a systematic one. The graph diffusion 
process is implemented like SNF ever does (Wang et al., 2014). In 
this step, we continue to take advantage of locality-preserving 
strategy and define a kernel matrix, S, to ensure samples in the same 
neighborhood still stay close across data sources. Simultaneously, we 
normalized the raw affinity matrix W to a new status matrix P, which 
keeps the original information and reduces the scale bias. Note that 
matrix P still carries the full information about the similarity of each 
sample to all others whereas matrix S only encodes the similarity to 
the local neighborhoods for each sample.

For the m different biological data types, matrices Pi and Si of the 
i-th data type are obtained by equations (13) and (14) based on (Wi, 
i = 1, 2, …, m).
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where Ni is the K nearest neighbors of the sample xi based on Wi.
The key step of MSCA is to iteratively update status matrix in 

graph diffusion across data types as follows:
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where Pt
i
+1 is the status matrix of i-th data type after t + 1 iterations 

and P Pi i
1 =  represent the initial status matrix at t = 1.

The equation (15) updates the status matrices each time 
generating m parallel interchanging diffusion processes. After 
t steps, the overall status matrix or multi-view matrix W# is 
computed as: 

 
W

P

m

t
i

i

m

# = =
∑

1
 (16)

Iterative Updating Process and Clustering 
Method
Given a series of sample representation matrices generated by 
Algorithm 1, the iterative integration process is summarized as 
Algorithm 2.

ALGORITHM 2 The Iterative Updating Process for MSCA.

Input: The profile of the m data types, i.e., X X X Xm= [ , ,..., ]1 2 , tuning 
parameter λ, and nearset neighbors parameter K.
Output: The multi-view similarity matrix W# across m data types
1. Computing the representation matrix Wi (i = 1,2,..m) of each data type 
according to Algorithm 1

2. Updating the status matrix Pi (i = 1,2...m) of each data  type by the equation 
(15) until the process reaches convergence
3. Capturing the multi-view similarity matrix W# by the equation (16)

Therefore, the final undirected graph W#, involving multi-layer 
signals, i.e., local and global information, is capable to present the 
intrinsic complexity of data. The multi-view fused matrix can be 
applied into spectral clustering algorithm [e.g., Ratio Cuts (Ding 
et al., 2013)] to identify the meaningful groups of samples, e.g., 
prognostic different subtypes, or other potential applications.

RESULTS

Evaluation of MSCA on Synthetic Examples
To demonstrate the ability of MSCA on multi-view subgroups 
identification, simulation experiments are conducted, with 
comparison to the above mentioned methods (Mo et al., 2013; 
Wang et al., 2014; Cao et al., 2015; Brbić and Kopriva, 2017; 
Ma  and Zhang, 2017; Zhang et al., 2017b). In addition, the 
selection of parameters in MSCA has also been discussed in 
these synthetic examples.

Synthetic Data
Two categories of numeric data sets have been considered for 
a complete evaluation. Each contains two types of data and 90 
samples underlying predefined sample structures by singular value 
decomposition (Meng et al., 2015). To preserve feature characteristics 
(e.g., amount, diversity and variance) of biological data types (e.g., 
gene expression and methylation profiles), the two data types in 
synthetic examples are directly generated from real data sets (i.e., 
GSE49278 and GSE49277) (Assié et al., 2014) (Supplementary 
Information). And each data type could provide partial but effective 
information to describe the whole sample patterns (e.g., type 1 and 
type 2 in Figure 2A and Supplementary Figure S1A). We called the 
“weak heterogeneity” numeric example as simData1 where samples 
are distributed in a single subspace and the “strong heterogeneity” 
one as simData2 where different manifold subspaces exist. Briefly, 
the 90 samples with three established clusters (namely, 1-30, 31-60, 
61-90) in simData1 and simData2 are randomly selected from real 
data, where samples 31-90 present similar distributions from data 
type 1; and 1-60 appear close from data type 2. But the samples 
in 31-90 and 1-60 would have different embedded structures or 
manifold subspaces. Note that the true clusters cannot be recovered 
by any single data type in both synthetic examples (Figure 2A and 
Supplementary Figure S1A).

Evaluation and Comparison Based on Cluster 
Identification
We first applied MSCA and the other methods to the generated 
data sets (i.e., simData1 and simData2) with predetermined 
clustering structures. To avoid accidental events, both the 
data sets were randomly repeated 500 times under different 
systematic conditions (i.e., low: 0% extra noises; moderate: 
10% extra noises; high: 30% extra noises), respectively. And 
the performance of each algorithm was measured by adjusted 
Rand index (ARI) (Santos and Embrechts, 2009), and a high 
value indicates an identical clustering. According to all the 
results, MSCA always succeeded to piece the information 
of each data type together, brilliantly distinguishing the 
pre-designed three clusters (Figure  2B and Supplementary 
Figure S1B). Given simData1 of less heterogeneity, all of the 
compared methods almost perform excellent (Supplementary 
Figure S1B). However, when complexity increases, a great 
performance difference among different methods comes out. 
Our MSCA model still performed accurately and robustly to 
identify sample patterns, even across varying noise strengths 
(Figure 2B). But the pair-wise clustering-based methods, 
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i.e., SNF and ANF, obviously can’t recognize the multiple 
manifolds embedded in high-dimensional space. Even for 
those subspace clustering algorithms, they didn’t perform that 
well when integrating data sets with biological characteristics 
(Supplementary Figure S2), thus highlighting the feasibility 
of MSCA for biological cases. While, iClusterPlus performed 
the second best on accuracy, but the accuracy ranges 
manifested “long-tail” to expose the unstable nature of 
iClusterPlus. It’s probably because iClusterPlus uses random 
sampling procedure to solve equations (Mo et al., 2013), and 
is sensitive to data noises. In all, the novel nonlinear similarity 
measurement in MSCA is demonstrated to be robust to data 
noises and heterogeneity, which helps provide a more accurate 
multi-view for sample patterns in multi-level dataset.

Robustness Analysis of MSCA Under Different 
Parameters
There are two parameters, i.e., λ and K (see Methods), in MSCA 
model, thus it is crucially important to examine their effects on the 
MSCA performance. In particular, the parameter K determines 
the predefined neighborhoods, which constrains the solutions of 
sample representation matrices. Under different selections of K or λ, 
we use simData2 to test the robustness of MSCA. To avoid results 
by chance, we repeated 1,000 times and take the average ARI values 
as evaluation measurement. According to all the results (Figure 3), 
MSCA performs stable and accurate in a wide range of K and λ. 
Once again, the advantage of combining low-rank presentation and 
local preservation makes MSCA more parameter-independent, 

and brings a novel light on developing new bioinformatic tools for 
integrating heterogeneous biological data.

Study on CCLE Data
To demonstrate the effectiveness of MSCA to address practical 
issues, we have applied MSCA to CCLE datasets (Barretina et al., 
2012) with the matched mRNA expression profiles by Affymetrix 
Human Genome U133 Plus 2.0 array and copy number data by 
Affymetrix SNP Array 6.0. Though it contains thousands of cell 
lines, we only kept 415 cell lines, whereby more than 25 cells have 
the same tissues of origin (Supplementary Table  S1). For each 
tissue, we obtained its specific expressed genes from two databases: 
The Human Protein Atlas (Uhlen et al., 2015) and PaGenBase (Pan 
et al., 2013). Several organs belong to upper aerodigestive tract 
cancer (UADT), including tongue, trachea and esophagus etc., 
thus, all their gene sets were treated as UADT specific genes. While 
tumor associated genes were collected from GeneCards (Safran 
et  al., 2010) and top 100 by the provided relevance scores were 
selected to illustrate corresponding aberration patterns among 
different subgroups. We adopted one-sided Wilcoxon signed-rank 
test to identify the tissue-specific genes between one of the clusters 
and all the remaining ones. More highly expressed genes with P < 
0.05 (adjusted by FDR) indicate the cluster strongly correlated with 
a certain tissue of origin. Similarly, differential expression or copy 
number was calculated using two-sided Wilcoxon signed-rank test 
for each single gene. A significant P-value shows gene expression 
or copy number in one group dominates the other cell lines and we 

FIGURE 2 | A simulation study on simData2. (A) 3D Illustration of sample patterns in different feature spaces. Data points, i.e., samples, are colored and shaped by 
their true cluster labels. Clean cluster boundaries only can be seen in an integrative affine space. Points in two clusters may be mislabeled in a single coordinated 
space, i.e., Cluster 2 and Cluster 3 for data type 1, Cluster 1 and Cluster 2 for type 2. (B) The clustering accuracy comparison among MSCA, SNF, ANF and 
iClusterPlus under different noise conditions, measures their effectiveness on detecting integrated sample-patterns.
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regard those differential genes with P < 0.05 (after FDR correction) 
as cluster markable features. Though clusters may share markable 
features, we count the number of shared clusters to measure the 
inter-cluster heterogeneity.

Firstly, we used the silhouette score (Rousseeuw, 1999) to 
evaluate how coherent the identified clusters are, and then we 
assigned the cell lines into nine clusters (Supplementary Figure 
S3). Among the compared methods, we observed MSCA had a 
better silhouette score, indicating superior subgroup identification 
for CCLE samples (Figure 4A). Then, we compared the 
integrative clusters with the original tissue groups (Figure 4B), 

and found some cell lines still manifest high lineage dependency 
(Pearson correlation 0.42). For example, all the AML or M. 
myeloma cell lines are assigned to single clusters (i.e., cluster1 
and cluster5, respectively), separating from other solid tumor 
ones. Accordingly, the cluster1 preserves about 77% blood genes 
and cluster5 holds 85% lymph associated genes (Supplementary 
Figure S4). Besides, the characteristic preservation of tissue 
specificity for some clusters can explain their homogeneity in turn. 
But beyond all that, we can see different histological cancer cell 
lines are grouped into the same integrative clusters because they 
share gene alterations (Supplementary Figures S5, S6). Notably, 

FIGURE 3 | Performance of MSCA under different parameters. Varying selected nearest neighbor number K or the tuning parameter λ, MSCA identifies the 
predefined clusters in simData2.
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the markable features between clusters, especially those copy 
number variants (Figure 4C), tend to be held by only few clusters, 
revealing strong heterogeneity between MSCA identified clusters 
(P-value < 10−12 and < 10−23 for expression and copy number data 
respectively, identified by sample shifting test for 5,000 times). 
Thus, the integrated pan-cancer analysis by MSCA may challenge 
the tissue original separation and indicate the common molecular 
aberrations across tumor types.

DISCUSSION

It’s widely acceptable that integration of distinct types of 
biological data could provide more complete information 
to understand system complexity and disease heterogeneity 
(Ghazalpour et  al., 2006; Kutalik et al., 2008; Li et al., 2012; 
Zhang et al., 2012; Zhang et al., 2017c). Over the past decades, 
the integration methods have progressed to get closer to 

biological details, from focusing on common information to 
specific signals, from critical hypothesis to assumption-free, 
and from linear models to nonlinear methods, etc. However, it 
is still a challenging task for bioinformatics to more accurately 
capture the underlying sample/gene structures from multiple 
omics data.

Here, we propose the MSCA model with the capacity to 
identify precise manifolds of samples in data space. In fact, 
our MSCA method is very similar to a previously published 
method, SNF (and ANF), which attempts to recognize 
sample patterns based on cross-view diffusion. However, the 
biggest difference is that SNF regards all the samples in the 
same feature space, nevertheless MSCA considers therein 
embedded multiple subspaces, i.e., different functional 
molecule sets. We carried out both synthetic examples and a 
real cancer dataset to demonstrate the capacities of MSCA. In 
the in silico studies, MSCA effectively fused the concordant 

FIGURE 4 | A case study on CCLE dataset. (A) Comparison of the integrative clustering results obtained by MSCA, SNF, ANF and iClusterPlus. Note that the 
number of clusters is the same, i.e., 9 for the four methods. (B) Illustration of associations between histological origins (i.e., rows) and integrated cell clusters 
(i.e., columns). Sum of each row equals 1. (C) A brief summary of remarkable features across clusters. x-axis indicates the number of shared groups. Breast, 
breast cancer; CNS, central nervous systems; AML, acute myelocytic leukemia; M.myeloma, multiple myeloma; Colorectal, colorectal cancer; LUAD, lung 
adenocarcinoma; SCLC, small cell lung cancer; LUSC, lung squamous cell carcinoma; Pancreas, pancreas cancer; UADT, upper aerodigestive tract cancer.
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information associated in certain sample subgroups and 
outperformed several state-of-the-art integrative methods, 
in terms of clustering accuracy and robustness. In real case 
study, the sample patterns derived by MSCA correspond to 
biological differences using independent knowledge and 
analytic methods. Beyond that, we believe it can also help 
other studies which need integration of various data sources, 
in addition to complex diseases.

Though MSCA implements two nonlinear steps, proven to 
be effective in theory and practice, the problem of over-learning 
might still exist because we use the local similarities twice (see 
Methods). Such design may lead to bias when data types contain 
a lot of shared noises, which is worth careful consideration and 
improvement. Furthermore, MSCA has currently dealt with 
continuous data types (e.g., mRNA expression, copy number 
variant), the effectiveness on other forms of data, e.g., binary 
data (somatic mutation), category data (clinical covariates), 
still needs to be continuously improved.
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