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Abstract: There is an increasingly urgent need for humans to interactively control robotic systems to
perform increasingly precise remote operations, concomitant with the rapid development of space
exploration, deep-sea discovery, nuclear rehabilitation and management, and robotic-assisted medical
devices. The potential high value of medical telerobotic applications was also evident during the
recent coronavirus pandemic and will grow in future. Robotic teleoperation satisfies the demands of
the scenarios in which human access carries measurable risk, but human intelligence is required. An
effective teleoperation system not only enables intuitive human-robot interaction (HRI) but ensures
the robot can also be operated in a way that allows the operator to experience the “feel” of the
robot working on the remote side, gaining a “sense of presence”. Extended reality (XR) technology
integrates real-world information with computer-generated graphics and has the potential to enhance
the effectiveness and performance of HRI by providing depth perception and enabling judgment and
decision making while operating the robot in a dynamic environment. This review examines novel
approaches to the development and evaluation of an XR-enhanced telerobotic platform for intuitive
remote teleoperation applications in dangerous and difficult working conditions. It presents a strong
review of XR-enhanced telerobotics for remote robotic applications; a particular focus of the review
includes the use of integrated 2D/3D mixed reality with haptic interfaces to perform intuitive remote
operations to remove humans from dangerous conditions. This review also covers primary studies
proposing Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) solutions where
humans can better control or interact with real robotic platforms using these devices and systems
to extend the user’s reality and provide a more intuitive interface. The objective of this article is
to present recent, relevant, common, and accessible frameworks implemented in research articles
published on XR-enhanced telerobotics for industrial applications. Finally, we present and classify
the application context of the reviewed articles in two groups: mixed reality–enhanced robotic
telemanipulation and mixed reality–enhanced robotic tele-welding. The review thus addresses
all elements in the state of the art for these systems and ends with recommended research areas
and targets. The application range of these systems and the resulting recommendations is readily
extensible to other application areas, such as remote robotic surgery in telemedicine, where surgeons
are scarce and need is high, and other potentially high-risk/high-need scenarios.

Keywords: robotics; teleoperation; extended reality; human–robot interaction; virtual reality; mixed
reality; augmented reality
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1. Introduction

Robotic teleoperation is a technological approach allowing a human operator to
perform a task by controlling a device or machine at a remote location. The distance can
vary from the micron level (micro-manipulation) to the kilometer level (space applications).
Human operators manifestly have the ability to adapt to the irregular environment and
employ a variety of strategies to place the telerobots in favorable conditions, despite the
complexity involved in remote sites.

Teleoperation provides an enormous advantage over other robotic controlling meth-
ods. A teleoperation system benefits from taking advantage of both human and robotic
capabilities. A typical teleoperation system consists of a master device and a slave device.
A human operator manipulates the master device and issues commands to the slave device,
which is manipulated to achieve a certain goal. A robot manipulator that follows the
motion of the master arm in real time rather than being pre-programmed is an example.
The kinematics of the slave device can be identical to the kinematics of the master device,
or they can be different. It can also be specifically scaled or even completely customized
according to the task and requirements.

Despite the emergence and growing application of artificial intelligence, autonomous
robots cannot reach the same level of intuition and reasoning as humans. While practical
control algorithms can be used to process complex interactions, and kinematic aspects are
better suited to humans, who perform such tasks effortlessly in their daily lives [1]. One of
the advantages of teleoperation is that it empowers the robot to fulfill tasks in unstructured
or hostile environments where situational perceptions, cognitive abilities, and professional
experience have a predominant impact on task execution [2]. Therefore, for tasks requiring
a variety of human judgments and professional skills, it is practical and feasible to utilize
teleoperation to accomplish the goals.

In general, application scenarios of teleoperation could include deep-sea robotics
applications [3], space exploration [4,5], de-mining operations, search and rescue in dis-
asters, inspection in restricted spaces [6], medical robot-assisted surgery [7], hazardous
material treatment, and micro-manipulation or minimally invasive surgery, among many
possibilities. These applications fall into areas of either high risk to humans or high need,
where human capability is not available or cannot be present for other reasons. Space or
underwater applications are examples of high-risk scenarios, while telerobotic surgery in
remote locales is an example of a high-need application, where a skilled surgeon may not
be locally available [8].

More specifically, teleoperation is suitable for tasks meeting the following set of criteria:

• Tasks to be performed in unstructured and dynamic environments, such as deep-sea
exploration and space applications.

• Tasks involving operations in hazardous situations where human health is severely
harmed. For example, in the Fukushima nuclear disaster, there was a high demand for
emergency treatment and rescue. Mining scenarios are also increasingly typical.

• Tasks requiring dexterity, especially the coordination between hands and eyes. Medical
surgery performed with remote robots is a typical example.

• Tasks requiring object recognition, obstacle detection, or situational awareness, for
example, inspection in confined spaces.

This literature review, unlike previous ones, specifically focuses on XR applications
applied to human-in-the-loop telemanipulation and telemanufacturing scenarios. The
objective of this review is to categorize the recent literature on XR-enhanced telerobotic
frameworks for telemanipulation and telemanufacturing tasks, spanning the period from
early 2016 to late 2023. Our aim is to comprehensively examine the evolution of this
research field, pinpoint the primary areas and sectors where it is currently applied, elucidate
the adopted technological solutions, and emphasize the key benefits attainable through
this technology. In this context, we address substantial challenges and opportunities,
with a specific focus on hardware and software integration to ensure stable and efficient
communication and system adaptation for various scenarios. Our review delves into
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telemanipulation and tele-welding scenarios within industrial applications, offering a
unique perspective on the integration of XR technology. Notably, our work innovatively
summarizes how XR technology can enhance remote welding tasks, providing fresh and
valuable insights in this domain. Additionally, our review recognizes the specific challenges
encountered in integrating teleoperation systems with diverse hardware platforms and
emphasizes the necessity for detailed information on the design of software architectures
for interoperability. Through our meticulous analysis, we aspire to contribute significant
knowledge to the evolving landscape of XR-enhanced telerobotic systems.

The scope of our work is focused on telemanipulation and telemanufacturing tasks
in hazardous conditions. To achieve this, we conducted a search for papers published
during a seven-year period between 2016 and 2023 in relevant resources for extended
reality and robotics, including IEEE Xplore, MDPI, ACM Digital Library, and Science Direct.
Additionally, we present and classify the application context of the reviewed articles into
two groups: mixed reality–enhanced robotic telemanipulation and mixed reality–enhanced
robotic tele-welding. We conducted a thorough literature review focusing on scholarly
databases, academic journals, conference proceedings, and reputable online repositories
related to the field of extended reality and robotics. Our searches were comprehensive
and included keywords such as human–robot interaction, teleoperation, extended reality,
virtual reality, mixed reality, and augmented reality and used Boolean operators to refine
the search results. We ensured that the selected resources were recent and peer-reviewed,
emphasizing studies and articles published within the last 7 years to maintain relevancy
and accuracy.

This section provides a comprehensive overview of the article’s focus on immersive
and intuitive telemanipulation frameworks using XR technologies. The rest of the article is
structured as follows. Section 2 presents the prerequisites for effective robotic teleoperation,
focusing on natural motion retargeting and multimodal feedback. Section 3 outlines the
research methodology utilized in the literature and provides initial insights into intuitive
and natural teleoperation. Section 4 delves into XR-enhanced telerobotic frameworks for
industrial applications and classifies the application context into two groups: MR-enhanced
robotic telemanipulation and MR-enhanced robotic tele-welding. Section 5 outlines the
challenges and discusses future opportunities in the field of research. Finally, Section 6
summarizes the key findings from the reviewed works and emphasizes the integration of
XR, particularly MR, in telemanipulation systems and remote robotic welding.

2. Categories of Robotic Teleoperation
2.1. Collocated and Separated Teleoperation

Based on the relative locations of the human and robot, robot teleoperation can be
categorized into collocated and separated teleoperation. In collocated teleoperation [9,10],
the operator can directly observe the robot and its working environment in the same
space, and a visual feedback system is not necessary; augmented reality technology can
be used in collocated teleoperation to provide users with informative virtual content
superimposed on the user–robot shared space [11]. Collocated robot teleoperation presents
users with a robotic platform that shares a physical environment with the users, who have
a natural and clear 3D view of the robot’s workspace [12]. However, although humans
and robots physically share the same space, users can often only observe from a third
viewpoint alongside the robot and cannot inspect the robot’s environment from the robot’s
main viewpoint.

Spatially separated teleoperation is used in a wider range of scenarios where the user
and the robotic system are far apart or where the user must be separated from the robot
for safety reasons and cannot directly view the robot’s movements. This type of robot
teleoperation system typically requires visual and haptic feedback systems to show the user
how the robot is working at a distance, allowing the operator to make timely adjustments.
However, in the separated telemanipulation, users can typically only perceive the robot
space through 2D camera streams and have difficulty synthesizing the 2D information
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collected by the robot with contextual knowledge of robot movements in its working
space [13].

2.2. Ego-Centric and Eco-Centric Teleoperation

Depending on the operator’s perspective in observing the manipulation process,
robot teleoperation can be divided into ego-centric and eco-centric teleoperation. In ego-
centric robotic teleoperation, the user observes the remote manipulation process from
the same perspective as the robot and perceives himself as one with the robot [14]. The
operator controls the remote robot with human-level dynamics through immersive and
multimodal control–feedback schemes. Ego-centric robotic teleoperation transfers human-
level manipulation and proficiency in telemanipulation applications and equips robotic
systems with human-level motor skills. The user does not need to consider the mapping
relationship between the robot’s actions and the user’s input commands [15,16].

Eco-centric teleoperation usually involves inspecting the robot and its interactive
environment from a third-person perspective while manipulating the robotic system with
a broader view of observation (Figure 1) [17]. With the help of mixed reality technology,
users can still experience coexistence with the robot in the same virtual space but without
the immersion and intuition of being one with the robot.
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2.3. Robotic Mechanism-Based and Motion Sensor-Based Teleoperation

Robot teleoperation can be divided into robotic mechanism–based and motion sensor–
based teleoperation, according to the command input device used. Teleoperation systems
that use robots as master mechanisms usually apply robotic devices of the same or different
structure as the remotely controlled robot as the user command input system [18]. Using the
same robots to form the master–slave architecture for teleoperation, motion synchronization
can be accomplished by simple joint space mapping, and the user can directly visualize the
pose of the slave robot by observing the master robot being controlled [19–21]. When using
robots of different configurations as master and slave components for teleoperation, motion
synchronization can be achieved using joint space motion remapping or TCP motion in the
Cartesian space, and a scaling factor can be set to match the working space ranges of the
master and slave robots.

The motion sensor–based robotic teleoperation platforms eliminate the need to intro-
duce expensive and complex robot platforms as human–robot interaction command input
devices. Commercial optical and IMU-based sensors, depth cameras, motion controllers,
and gloves are often used to capture user motion information [22]. Compared to the robotic
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master devices, motion sensor–based robotic teleoperation platforms usually have a larger
space for motion tracking, the user’s movement is not constrained by the mechanical
structure, and the relatively lower price reduces the overall cost of the system [23,24].

3. Intuitive and Natural Teleoperation

In conventional telemanipulation systems, the user controls the remote robotic system
with a joystick, gamepad, keyboard and mouse, or 3D mouse and simultaneously receives
visual feedback from 2D displays [25,26]. Robot control is not intuitive and natural to
the user [27,28]. The mismatch between the range of user control space and the limits
of input device workspace can increase the difficulty of telemanipulation and lead to
poor operation [29,30]. Another disadvantage of typical telerobotic systems is the lack of
depth perception due to monocular, 2D visualization of the remote site [31–33], limiting
operator performance [34,35] and any feelings of immersion and telepresence in the remote
workspace [36,37].

Intuitive human–robot interaction schemes are needed so the operator can easily guide
the robotic system using natural motion. A conventional intuitive teleoperation platform
was developed in [38] (Figure 2). The user manipulates the seven degree-of-freedom (DOF)
master robot to intuitively drive the slave robot at a distance as if they were directly operat-
ing the slave robot. This platform requires a symmetrical relationship between the input
(master) and output mechanisms (slave). However, for 2D visualization of the telemanipu-
lation process, the user lacks a sense of presence. Monitoring the interaction process with a
2D monitor on the user side can also distract the user from effective robot control activities.
In addition, using the isomorphic master robot as the motion input device on the user side
in telemanipulation systems often leads to a significant hardware investment.
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lates the master robot of 7 DOF to intuitively drive the slave robot at a distance as if they were directly
operating the slave robot. (b) The overview of the master–slave teleoperation architecture [38].

Several noteworthy studies and frameworks have effectively implemented natural
motion retargeting and multimodal feedback. One notable example is the work of Akshit
et al. [39], in which the authors developed a telerobotic system integrating natural motion
retargeting algorithms, significantly enhancing the operator’s control precision. Another
novel interface that features a motion retargeting method for effective mimicry-based
teleoperation of robot manipulators was introduced in [40]. This framework allows novice
users to interact with the remote robotic manipulators effectively and intuitively. Addi-
tionally, the framework proposed by [41] successfully incorporates multimodal feedback,
combining visual, auditory, and haptic cues, leading to improved user immersion and
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task performance. These studies demonstrate the practical implementation of natural
motion retargeting and multimodal feedback in XR-enhanced telerobotics, emphasizing
their impact on enhancing user experience and task efficiency.

With the inevitable limitations in the field of view of remote on-site 2D cameras
and the poor quality of the visual feedback sent back from the robot’s workspace, users
are often unable to achieve a level of situational awareness sufficient for effective and
safe remote manipulation tasks [42]. The operator is unable to perceive the physical
environment of the worksite in 3D due to the lack of stereoscopic depth information. Typical
monocular visual feedback strategies greatly reduce the efficiency of remote-controlled
robotic operations [43,44].

More specifically, the lack of depth information from 2D vision causes ambiguity about
the spatial positions of objects in static images. Operators cannot directly perceive depth in
monoscopic vision (MV) streams and have difficulty in accurately determining the distance
between the robot end-effector and workpieces. Thus, the user perception from 2D visual
feedback makes it insufficient to accomplish remote tasks effectively. Hence, the success
and efficiency of teleoperated tasks mainly depend on operator skill and proficiency [45,46].

Multi-camera arrangements can provide the relative position of objects and allow
users to view and judge the distance from various perspectives, compensating for the limits
of a single monocular 2D camera. However, as telerobotic systems become more com-
plex, avoiding robot collisions with surrounding objects with only multiple 2D feedbacks
inevitably leads to low robot control efficiency and increased operator workload.

Different levels of depth perception in telemanipulation can improve task performance
for various manipulation and grasping tasks [47–49]. Using binocular cameras can provide
additional depth information to assist operators. Stereoscopic vision and point cloud are
two methods of providing stereo-depth information and have been applied in various
telerobotic systems for remote vision [50–52]. Binocular visual feedback for robotic teleop-
eration has been widely studied on unmanned aerial vehicles and mobile robots [53,54].
Leveraging depth perception in remote robot teleoperation tasks for general object manipu-
lation is not well studied on mobile manipulators. In addition, neither multi-camera nor
binocular camera setups allow the user the flexibility to continuously change the viewing
angle to observe the remote work without introducing additional mechanisms on the robot
side [55].

Incorporating haptic feedback in telerobotics offers numerous advantages in creat-
ing immersive and natural teleoperation schemes, notably enhancing the user’s tactile
experience and augmenting immersion [56]. This technological integration enables users
to perceive and manipulate objects remotely with a heightened sense of realism. Such
realistic feedback proves invaluable in tasks necessitating a keen sense of touch, such as
delicate surgical procedures or the handling of fragile items [57]. Additionally, haptic
feedback serves to enhance the operator’s spatial awareness, offering vital cues about the
robot’s environment and the forces it encounters. This heightened perception significantly
contributes to the precise control and manipulation of the robotic system. Moreover, haptic
interfaces alleviate the cognitive burden on operators by delivering intuitive, natural feed-
back. This intuitive interaction allows operators to concentrate more on the task at hand,
reducing their dependence on interpreting visual information [44].

Nevertheless, the integration of haptic feedback into telerobotics is not without chal-
lenges. One of the primary hurdles involves ensuring real-time responsiveness, as any delay
in haptic feedback can disrupt the user’s control and sense of immersion [58]. Achieving
high-fidelity haptic feedback demands advanced hardware components and sophisticated
algorithms, thereby augmenting the overall complexity and cost of the system. Addition-
ally, the design of haptic interfaces catering to a diverse array of tasks and user preferences
poses a formidable challenge [59]. Different applications may require varying levels of force,
precision, and feedback sensations, necessitating a delicate balance to accommodate these
diverse requirements effectively. Addressing these challenges is imperative for harnessing
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the full potential of haptic feedback in telerobotics, ensuring seamless integration and
optimal user experience in various telerobotic applications.

In the process of integrating robotic teleoperation systems with diverse hardware
platforms, several specific challenges were encountered. Ensuring compatibility between
various hardware components, such as sensors, actuators, and communication interfaces,
was a primary challenge due to differences in data formats, protocols, and communication
speeds, which posed hurdles in achieving seamless integration [60]. Additionally, interfac-
ing multiple sensors, including cameras, depth sensors, and force/torque sensors, required
careful consideration and calibration to integrate data from different manufacturers in
real time, ensuring accurate and coherent information for operators [61]. Communication
delays between different hardware components could disrupt the real-time feedback loop,
impacting teleoperation tasks that demand quick response times. Minimizing latency
and optimizing communication protocols were crucial in maintaining stable and efficient
communication [62]. Furthermore, coordinating control signals sent to different hardware
modules, such as manipulator arms and grippers, necessitated precise synchronization to
prevent erratic movements or inaccuracies, highlighting the importance of synchronization
mechanisms for ensuring precise and coordinated actions.

To overcome these challenges and ensure stable and efficient communication in the
integration of teleoperation systems with diverse hardware platforms, several strategies
were employed. Implementing standardized communication protocols, such as ROS
(Robot Operating System) messages, facilitated interoperability between different hardware
components, ensuring consistent data exchange and compatibility across various devices
that use different programming languages. Designing a unified software architecture
with ROS and interface engines, such as Unity 3D, which abstracted underlying hardware
complexities, was essential. This design allowed for the implementation of high-level
control algorithms and user interfaces without the need to consider hardware-specific
details, thereby promoting interoperability and ease of development [63,64]. In summary,
the integration of ROS and Unity-based software architectures enable easy expansion and
adaptation to new devices and sensors used in telemanufacturing aspects, such as remote
robotic welding.

Teleoperation systems cope with dynamic environments by integrating advanced
technologies such as sensor fusion, artificial intelligence, machine learning, adaptive al-
gorithms, and human supervision [65,66]. These systems use various sensors to gather
real-time data and employ AI algorithms to process and adapt to dynamic changes. En-
vironmental mapping techniques, like simultaneous localization and mapping (SLAM),
enable the system to create and update detailed maps, aiding in adaptive navigation. Dy-
namic path planning algorithms calculate optimal routes in real time, considering obstacles
and changing environmental conditions [67]. Additionally, collaborative teleoperation
strategies leverage human expertise for high-level decision making while allowing robots
to execute tasks based on human guidance, ensuring adaptability and safe operation in
complex and unpredictable environments. Human supervisors also play a vital role in
remotely monitoring operations, providing contextual understanding and intervention
capabilities when necessary [68].

In adapting teleoperation technology for telehealth scenarios, particularly in remote
regions, several key strategies can be employed. Firstly, enhancing the robustness of internet
connectivity through satellite-based solutions and low-bandwidth protocols can ensure real-
time communication between remote robots and healthcare professionals [69]. Developing
affordable and portable robotic platforms, customized for telehealth applications, can
address cost and accessibility issues. Moreover, comprehensive training programs for
local healthcare providers are crucial to ensure effective operation and maintenance of
teleoperation equipment [70]. However, these implementations are not without challenges.
Limited infrastructure, such as unstable internet connectivity and power supply, poses a
significant hurdle. Finding cost-effective solutions, considering the financial constraints
of remote regions, is crucial for the widespread adoption of teleoperation technology [71].
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Addressing training gaps and ensuring cultural acceptance are equally vital. Ethical
considerations, particularly related to patient consent and data security, require careful
attention. Moreover, establishing efficient maintenance and technical support systems
in remote regions, where specialized technicians are scarce, is essential to guarantee the
continuous and effective operation of telehealth robots. By proactively addressing these
challenges, teleoperation technology can be successfully adapted to transform healthcare
delivery in remote areas [72,73].

This section on intuitive and natural teleoperation highlighted two important require-
ments for an effective and intuitive teleoperation platform. First, natural motion retargeting,
or the use of natural human behavior to teleoperate robotic systems, effectively reduces
training costs and grants human-level dynamics to telerobotic systems; it is an important
component of natural and intuitive human–robot interaction systems. Second, sufficient
multimodal feedback, particularly visual feedback, is pivotal in interactive telemanipula-
tion systems, providing depth information and enhancing situational awareness to enable
the operator to know the dynamic situation in the robot’s workspace; it is also critical
in interactive telemanipulation systems. The human operator in the control loop team
must be aware of the relative positions of the robot end-effector and the workpieces in the
workspace to make decisions and avoid collisions or damage to the robotic system, the
working area, and/or the environment.

4. Mixed Reality for Human-Robot Interaction
4.1. Human-Robot Interaction

Human–Computer Interaction (HCI) delves into the study of how individuals interact
with computers and the extent to which computers are designed for successful human
interaction [74]. This discipline encompasses the design, evaluation, and implementation
of interactive computing systems tailored for human use, along with the examination of
significant phenomena associated with them. HCI fundamentally revolves around compre-
hending the intricate relationship between humans and computers and crafting computer
systems that facilitate meaningful and efficient interactions [75]. It places a strong emphasis
on enhancing the usability and user experience of computer interfaces, ensuring technol-
ogy is accessible, efficient, and enjoyable for users [76]. Human–Robot Interaction (HRI)
constitutes a multidisciplinary field focused on comprehending, designing, and evaluating
interactions between humans and robots [77]. This domain involves the comprehensive
study, design, and analysis of behaviors, interfaces, and systems geared towards robots
interacting with humans across diverse contexts [78]. The overarching objective of HRI is
to develop robots capable of collaborating effectively and intuitively with humans, offering
assistance or services in a variety of settings, including homes, workplaces, healthcare
facilities, and public spaces [79].

4.2. Reality–Virtuality Continuum

Extended reality (XR) encompasses the mutual embedding and fusion of physical
and virtual scenes, along with the human–computer interaction occurring in the generated
environment [80], where X represents the degree of interpenetration and integration of real
scenes and virtual content in spatial or immersive computing technologies, involving the
user’s sense of presence and acquisition of perception [81]. XR spans the entire spectrum
from entirely realistic to fully virtual, encompassing all representative forms and possible
variations of AR, VR, AV, MR, and other interpolations between reality and virtuality [82,83].
The reality–virtuality continuum presented by Milgram et al. [84] outlines the XR ecosystem
and the relationship between AR/VR/AV/MR and fully real and virtual environments,
which are schematically illustrated in Figure 3.
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Augmented reality (AR) overlays informative virtual 3D graphics onto the physical
world and allows real-time interaction with the 3D graphics, enabling the user to reach
into the augmented world and manipulate 3D objects directly as if they were real-world
objects [85]. The advantage of AR is it superimposes important cues on physical objects
or hovers the display in real space to indicate the user’s potential or actual future actions,
or the robot’s motion planning, while eliminating distractions caused by typical display
methods [86]. AR–HRI interfaces provide users with an exo-centric view of the robot
and its surroundings and allow operators to maintain situational awareness of the robot
and ensure intuitive interaction and communication between the human and robot using
multimodal interfaces [87].

Virtual reality (VR) uses fully immersive computer-generated graphics with scenes and
objects that appear to be real to completely replace the physical surroundings in which the
user is located [88]. In the virtual environment, the users perceive immersion in an identical
or completely different scene from the physical surroundings and perceive an imaginary
environment with muti-modalities of visual, acoustic, and haptic information [89]. VR
allows users to move around in the scene and manipulate the virtual objects by using
wireless controllers or haptic robotic structures as input sources.

Mixed reality (MR) technology involves the merging of physical and imaginary spaces
and does not occur exclusively in the physical or virtual world [90]. MR enables real-
time visualization and interaction between physical and digital content [91] and takes full
advantage of the visual information of real scenes and the three-dimensional immersion
and interaction provided with virtual cues [92]. Head-mounted display (HMD)-based
mixed reality can be achieved in two ways: either by displaying the camera captured video
feedback of the real world in the HMD or by allowing the user some direct visibility of the
real world in the HMD [93,94].

Augmented virtuality (AV) is a fully immersive computer-generated virtuality-dominated
environment enhanced by sensory data from physical environments [95]. AV keeps the virtual
environment central but superimposes the real-world elements on the virtual content [96]. AV
is also classified as a subset of MR. The term AV is less commonly used in the literature for
immersive telerobotic interfaces and is often generally referred to as MR.

In MR, the hierarchy of reality spans from partial sensory input to a proximity infinitely
close to immersive reality [97]. The reviewed MR-enhanced intuitive and immersive
teleoperation schemes in this article fall into the category of partially superimposing real-
world visual inputs onto computer-generated virtual content.

4.3. Mixed Reality–Enhanced Telemanipulation
4.3.1. Mixed Reality–Enhanced Intuitive Telemanipulation

In recent years, mixed reality technologies have been widely applied in the field
of robotics, and these research directions can be divided into three categories according
to application aspects: (1) human–robot interaction (HRI): immersive teleoperation, in-
tuitive telemanipulation, collaborative interaction, wearable robots, haptic effects, and
virtual devices; (2) medical robotics: robot-assisted surgery (RAS), prosthetics, and robot-
assisted rehabilitation and training devices; (3) robot motion planning and control: trajec-
tory generation, robot programming, simulation, and manipulation. Table 1 outlines the
main differences between this article and previous research in the realm of MR-enhanced
robotic manipulation.
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Table 1. Differences between this article and comparable studies recently introduced in the literature
on MR-enhanced robotics.

Reference Year Topics Focused on Recent Papers Differences with This Article

[98] 2021

• Review of the current state of VR/AR
solutions in HRI and HRC

• Solutions summarized in four main
categories: operator support, instruction,
simulation, and manipulation

• Referenced citations were published
between 2010 and 2019

• Review of novel XR-enhanced robotic
approaches for intuitive remote
teleoperation applications

• This article focuses on XR technologies in
robotic telemanipulation and
telemanufacturing scenarios

• Articles presented were published from
2016 to 2023

[99] 2022

• Review of existing AR-enhanced HRI and
robotic interfaces

• Approaches presented in two main
categories: augmenting robots and
augmenting surroundings

• This article reviews XR-enhanced
telerobotic solutions, including the use of
VR, MR, and AR

• The scope of this work is focused on
telemanipulation and telemanufacturing
tasks in hazardous conditions

[100] 2023

• Review of existing VR/AR/MR tools and
frameworks in HRC using game engines

• Recent literature on software tools
categorized into communication tools and
interaction tools

• Applications presented in four main
categories: social robotics, programming of
industrial robots, teleoperation, and
human–robot collaboration

• This article presents XR systems that extend
the user’s reality and provide a more
immersive and intuitive interface

• This article focuses on both software and
hardware aspects

• This work classifies the industrial
application context of the reviewed articles
into two groups: XR-enhanced
telemanipulation and XR-enhanced
tele-welding

MR interfaces enhance operator immersion through realistic 3D visualizations and
interactive elements. To minimize fatigue, haptic feedback and intuitive gestures are
integrated, enhancing the user experience. Additionally, optimizing rendering algorithms
is essential. Techniques like foveated rendering, where high-quality graphics are focused on
the user’s gaze, ensure a smooth experience while conserving computational resources [101].
MR has been applied to robotic teleoperation systems to optimize operator immersion
and enhance user perception of the remote side to enable immersive robotic teleoperation
(IRT) [102–104]. A three-dimensional virtual world similar to the slave side can be simulated
through MR and displayed to the user on the master side. By implementing MR as a
human–robot interaction interface (HRI), the user experiences a physical presence in the
remote environment and co-existence with the robotic platform via MR subspace, while
guiding and monitoring the robotic platform at the local user space [105,106]. MR interfaces
blend virtual elements with the real world, providing operators with an immersive 3D
visualization of the remote environment, such as a welding site [107]. This immersion
allows operators to perceive the task space in depth, enhancing their understanding of the
work area and minimizing cognitive load. By feeling present in the remote environment,
operators can focus more effectively on their tasks, reducing distractions and mental
fatigue [108]. MR-based user interfaces with natural control commands minimize fatigue
by utilizing human instincts, such as motion and gestures, to interact with complex robotic
systems [109]. MR-enhanced teleoperation allows direct mapping of control commands
and actions between the user and the robot, presenting the potential for performance
enhancements. It serves as an intermediary for integrating imitation-based motion mapping
and 3D visualization techniques [110].

Recent research on MR-enhanced teleoperation systems has primarily concentrated
on gathering demonstrations for robotic learning, incorporating haptic feedback and other
sensory inputs, developing immersive manipulation, integrating AI and machine learning,
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and addressing issues related to poor virtual transparency [111–113]. However, these
telerobotic systems do not fully exploit the potential performance enhancements provided
by using an MR subspace as an intermediary for the integration of imitation-based motion
mapping and 3D visualization mapping. Figure 4 shows the typical diagram and com-
munication structure of the XR-enhanced intuitive and immersive teleoperation systems.
The XR-enhanced robotic teleoperation system consists of four parts: (1) the XR-enhanced
human–robot interaction unit; (2) the XR scene for vision and motion mapping; (3) the
remotely controlled robot working unit; and (4) the bi-directional communication links.
Dennis Krupke et al. [114] developed an MR-enhanced heterogeneous robot telemanipula-
tion system that presents the real robot working space and the corresponding virtual scene
presented to the operator in the robot telemanipulation architecture for immersive and
intuitive remote grasping. The pose of the robot replica in MR is synchronized with the
current pose of the physical robot via messages. The communication between the robot and
MR scene is maintained via the ros-bridge. A virtual screen on the left wall augments the
virtual scene by displaying an image stream from the camera mounted above the physical
robot. However, intuitive teleoperation is only applied to the robotic hand instead of the
arm-hand system in its entirety, limiting the workspace and overall application significantly.
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In [111], researchers from the University of California, Berkeley, built an MR-based
teleoperation system on a PR2 robot through imitation learning. The system allows the
operator to teleoperate robots to perform complicated tasks naturally and intuitively. In the
proposed teleoperation system, a robot is controlled at a distance by the human operator
through an MR-based telerobotic interface with overlaid information, which is an effective
approach to collect high-quality demonstrations for training the robot. Imitation learning
techniques allow the robot to imitate human behavior and acquire skills through perceiving
human demonstrations aiming at performing specific tasks.

An MR control room for dynamic vision and movement mapping between the operator
and dual-arm robotic agent can be developed for tele-manufacturing (Figure 5) [115]. The
multiple monocular sensor displays and motion mapping approach via MR outperforms
telerobotic platforms with direct camera feeds. The control room has objects and controls
floating in space, which allows the user to perform movements relative to 3D markers to
command the remote-controlled robot. However, the researchers did not determine if the
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immersive experience led to performance improvements compared to conventional 2D
HRI platforms, so the impact remains unknown and unquantified.
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Figure 5. The MR-based Baxter’s homunculus telerobotic system for a wide range of tele-
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ROS Reality [103,104] is an open-source MR-based telerobotic manipulation frame-
work that was developed at Brown University (Figure 6). This work enables communication
and interaction between ROS-based robots and Unity-compatible MR systems. A total of
24 dexterous telerobotic manipulation tasks using ROS Reality were conducted by expert
users compared to direct kinematic manipulation of the Baxter robot. the remote-controlled
robotic platform targeted at expert teleoperators. However, user efficiency and system
functionality were not verified with novice users for manufacturing-related tasks. This
system can be used as a data acquisition and validation platform for learning from demon-
stration (LfD) and other machine learning approaches to transfer human expertise and
skills to robots.
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In [68], the authors developed an MR-based telemanipulation system to control a
robotic arm-hand system. The MR scene is augmented by real-time data from the robot
task space, to enhance the operator’s visual perception. The system incorporates a new
interactive agent to control the robot and reduce the operator’s workload. Two control algo-
rithms are introduced into the MR-based teleoperation system to improve the long-distance
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and fine motions of the robot. Telemanipulation experiments using a UR 10 robot arm and
Robotiq-85 gripper demonstrate the feasibility of the proposed telerobotic paradigm.

The results of our review indicate that using motion input devices to build intuitive
robot teleoperation with XR technology has become a focus of research in natural and
immersive HRI applications. In this context, a common application is the use of VR
controllers to capture user motion to drive physical robots, as described in [116]. However,
few works compare the effectiveness and efficiency between different control–feedback
methods for the teleoperation system. An exception is [117], which presents an integrated
mapping of motion and visualization scheme based on the MR subspace approach for
intuitive and immersive telemanipulation of robotic arm-hand systems. The effectiveness of
different control–feedback methods for the teleoperation system is validated and compared.

Evaluating the effectiveness of virtual reality (VR) training technology for prepar-
ing operators in dynamic industrial environments, particularly for unforeseen situations
during teleoperation, involves several key aspects and methodologies. Researchers use
techniques such as assessing performance metrics like task completion time, accuracy, error
rates, and response time [118]. They introduce scenario complexity through variations
and stress tests, examining adaptability. Cognitive load and decision making are analyzed
using eye tracking, think-aloud protocols, and surveys [119]. Biometric data like heart
rate, galvanic skin response, and electroencephalography offer insights into emotional and
cognitive states [120]. Feedback and iterative design involve post-training debriefing and
continuous scenario refinement. Long-term skill retention is evaluated through follow-up
assessments, and comparative studies compare VR-trained operators with those from tradi-
tional methods [40]. Real-world performance correlation assesses VR training’s translation
into job performance. This comprehensive approach aids in understanding VR training
effectiveness, informing improvements in preparing operators for unforeseen teleoperation
challenges in dynamic industrial settings.

4.3.2. Mixed Reality–Based Vision Mapping and Merging

Mixed reality (MR) scenes feature immersive integration of multiple 3D/2D visual
display modes to the users. At present, various teleoperation platforms have focused on
MR-enhanced robot control [93]. It is not yet known whether using stereoscopic vision
and point cloud within an MR environment can enhance users’ stereoscopic perception
and task performance in separated telerobotic operations. In [115], an MR control room
for dynamic vision and movement mapping between the operator and dual-arm robot
is introduced. The multiple monocular sensor displays and motion mapping approach
via MR outperforms telerobotic platforms with direct camera feeds. The control room has
objects and controls floating in space, which allows the user to perform movements relative
to 3D markers to command the remote-controlled robot. However, the authors did not
determine if the immersive experience led to performance improvements.

In [31], the authors presented an MR teleoperation interface for mobile manipulation
tasks with visual inputs from a monoscopic and stereoscopic camera setup for remote
mobile manipulation tasks in hazardous production environments. This system is equipped
with two monocular cameras and a stereoscopic camera at the robot’s working site. Users
acquire multi-view 2D images and stereo vision with depth cues in a Unity-generated MR
control room. However, the intuitive control of the robotic platform as a whole was not
assessed or presented. In addition, no comparative tests with typical telemanipulation
systems were performed to verify the performance and efficiency of the proposed system.
To reduce the training time for teleoperation, a multi-view merging method via MR was
designed (Figure 7) in [121], and the platform provides users with intuitive control of the
robot’s motion by using commercial VR controllers.
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Yiming Luo et al. [122] explored the use of stereoscopic view in an immersive manner
for mobile robot teleoperation and navigation, and the results showed the stereoscopic
view and immersive perception via virtual reality head-mounted displays (VR-HMDs)
provided the user with depth cues and improved user performance and system usability.
However, the effect of stereoscopic perception on telerobotic manipulation and the depth
cues provided by other 3D visualization resources such as point cloud was not studied.

The only exception is [118]; this work evaluates the impact of depth perception and
immersion provided by integrated 3D/2D vision and motion mapping schemes on teleoper-
ation efficiency and user experience in an MR environment. In particular, the MR-enhanced
systems maintain spatial awareness and perceptual salience of the remote scene in 3D,
facilitating intuitive mixed-reality human–robot interaction (MR-HRI). This study com-
pared two MR-integrated 3D/2D vision and motion mapping schemes against a typical 2D
baseline visual display method through pick-and-place, assembly, and dexterous manufac-
turing tasks.

Incorporating 2D/3D vision mapping into mixed reality is just one facet of the growing
adoption of XR-enhanced intuitive HRI; digital twins also play a pivotal role in facilitating
intuitive teleoperation within the MR scene [116]. These digital twins, mirroring the physi-
cal robots, provide users with real-time information about the remote robot and seamlessly
integrate into the human–robot interface [123,124]. Within the mixed reality environment,
users can interact with these digital twins naturally, enabling precise and intuitive control
over robotic systems while obtaining real-time status information about the remote robot
from the digital twins [125,126]. Digital twins enhance the user’s sense of presence and
control in teleoperation by providing visual representations, spatial awareness, real-time
monitoring, predictive capabilities, and interactivity [127,128]. These capabilities empower
operators, enabling them to teleoperate robots effectively and with a heightened sense of
immersion and control. Several challenges are associated with the real-time integration
of digital twins with robotic systems. Achieving real-time synchronization between the
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digital twin and the physical robot is crucial for seamless robotic telemanipulation [129].
Ensuring data accuracy and calibration poses another significant challenge, as digital twins
heavily depend on precise sensor data to accurately represent the state of the physical
robot [130]. Additionally, creating detailed and accurate digital twin models for complex
robotic systems presents a formidable obstacle [131,132]. The complexity of the physical
system must be faithfully mirrored in the digital twin to provide valuable and meaningful
insights, adding to the complexity of the integration process [133].

Multimodal feedback and haptic interfaces play a crucial role in XR-enhanced teler-
obotics by providing users with enhanced immersion, increased spatial awareness, and
improved perception [134,135]. Haptic interfaces provide users with a sense of touch and
force feedback, allowing them to perceive and interact with virtual objects and environ-
ments more accurately and safely [57]. Several specific studies and experiments have
highlighted their significance. In [136], the operator controls the remote robot in AR-based
immersive and multimodal control–feedback schemes in telepresence robot applications.
In [32], the authors studied XR-based multimodal interfaces and the improvements in
teleoperation through comparison of how all combinations of audio, visual, and haptic
interfaces affect performance during manipulation. The authors of [56,63,137] conducted
experiments involving practical manipulating and manufacturing tasks, including item
manipulation and item delivery of tools and components. The results demonstrate the
feasibility and significance of implementing multimodal feedback, especially haptic feed-
back, in telerobotic systems. In summary, multimodal feedback and haptic interfaces are
essential components of XR-enhanced telerobotics, significantly improving user experience
and safety and the overall effectiveness of teleoperation tasks [44,58].

4.4. Mixed Reality-Enhanced Robotic Tele-Welding
4.4.1. Robotic Tele-Welding

Welding has been used extensively in the maintenance of nuclear plants, the construc-
tion of underwater structures, and the repair of spacecraft in outer space [138]. In these
hazardous situations, in which human welders have no effective access, the judgment
and intervention of the human operators is still required [139]. Customized production is
also an application scenario for tele-welding, where welders often work in environments
with dust, strong light, radiation, and explosion hazards [140]. Human-in-the-loop (HITL)
robotic tele-welding strategies have become a feasible approach for removing humans from
these dangerous, harmful, and unpleasant environments while performing welding opera-
tions [141]. Robotic tele-welding systems (RTWSs) combine the advantages of humans and
robotics and coordinate the functions of all system components efficiently and safely [142].
For example, RTWSs can address geographical limitations for scarce welding professionals
and bring a remote workforce into manufacturing.

Welding training is a time-consuming and costly process. Intensive instruction and
training are usually required to bring unskilled welders to an intermediate skill level [143].
It is important to analyze the differences between the operating skills of professional and
novice welders to facilitate the professional welding level of unskilled welders and to
further improve the feasibility, efficiency, and welding quality of RTWSs used by novice
welders during remote welding operations.

Thus, the expertise and skill extraction of professional welders as well as the appli-
cation of robot assistance in on-site welding operations have become popular research
topics [144]. The implementation of interactive robots can stabilize the hand movements of
novice welders for improved welding quality. However, robot-assisted welding has not
been studied in teleoperated welding scenarios. Welding motion capture systems were
used in [145] and [146] to differentiate between professional and unskilled welders in
terms of operational behavior in the gas tungsten arc welding (GTAW) process, providing
an experimental basis for the development of robot-assisted tele-welding schemes. The
experiments in [147] revealed the differences between professional and unskilled welders
in the trajectory of the GTAW hand movements and indicated the main cause of unsatis-
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factory welding results is that novice welders make abrupt movements in the direction
perpendicular to the weld surface. However, the operational difference of gas metal arc
welding (GMAW) between professional and novice users was not well examined [148].

In industrial teleoperation contexts, control algorithms play a critical role in managing
communication latency during human–robot interactions [149]. These algorithms employ
predictive modeling and adaptive strategies to compensate for the delay between the
operator’s input and the robot’s response [66,150]. By anticipating the robot’s movements
based on the operator’s commands and real-time feedback, these algorithms help synchro-
nize actions despite the latency [151]. The impact of communication latency on welding
precision is noticeable. In tele-welding tasks, precision is paramount, requiring accurate
control of the welding tool. Latency can lead to misalignments and imprecise movements,
affecting the quality and integrity of the weld [152]. Control algorithms work to minimize
this impact, ensuring that the robot’s actions closely align with the operator’s intentions,
thus maintaining welding precision even in the presence of communication delays [153].
However, achieving real-time synchronization remains a significant challenge, necessitating
continuous advancements in control algorithms to enhance both precision and efficiency in
teleoperated robotic welding scenarios.

Welding automation has advanced significantly with the integration of teleoperation
and artificial intelligence (AI). Teleoperation allows remote control and monitoring of
welding robots, while AI algorithms enhance precision and efficiency [140]. Machine
learning adapts welding parameters based on historical data, ensuring tailored and optimal
welding conditions. AI-powered computer vision systems enable real-time quality control
by detecting defects, leading to immediate adjustments. Predictive maintenance algorithms
anticipate equipment issues, reducing downtime [154]. Additionally, AI optimizes path
planning, minimizing unnecessary movements, and collaborative robots, guided by AI,
work alongside human welders, ensuring precise and efficient welding outcomes [155].
These integrations enhance adaptability, productivity, quality, and cost-effectiveness across
various industries.

4.4.2. Mixed Reality–Enhanced Robot-Assisted Welding

Recent research on human-centered robotic welding has focused on the development
of MR-based robot-assisted welding training platforms, intuitive programming for teler-
obotic welding, interactive telerobotic welding design, and MR-enhanced tele-welding
paradigms. A VR-based haptic-guided welder training system was introduced in [156].
This system provides guidance to welders, simulating a human welding trainer. Both
novice and skilled welders can use this platform to improve their welding skills in a virtual
environment. However, this system does not integrate real welding scenarios into the
virtual environment to allow welders to adjust their movements in real time according
to the welding pool status, nor does it transfer human movements to the robot for actual
tele-welding operations.

Olaf Ciszak et al. [157] proposed a vision-guided approach for programming auto-
mated welding robot paths in 2D, where the programmer draws the target weld pattern
in the user presentation space, a low-cost camera in the system captures the image, and
an algorithm detects and processes the geometry (contour lines) drawn by the human.
This intuitive remote programming system for welding is limited by programming of the
contour lines in two-dimensional planes only and does not have the real-time capability of
a telerobotic welding system. In [158], the authors analyzed the integration of advanced
technologies, such as MR, robot vision, intuitive and immersive teleoperation, and artificial
intelligence (AI), to build an interactive telerobotic welding system. This paradigm enables
efficient human-centered collaboration between remote welding platforms and operators
through multi-channel communication.

A teleoperated wall-climbing robotic welding system was developed to demonstrate
the application of various technologies in an innovative robotic interaction system to best
achieve natural human–robot interaction. However, the mobile wall-climbing welding
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robot presented in this system has a simple structure and does not have a flexible robot
manipulator to mimic welders’ human-level manipulation and make dexterous welding
adjustments. Natural human movement signals were not used to improve the system
intuitiveness and control the robot for tele-welding tasks.

More recently, research attention has been focused on MR-enhanced tele-welding
paradigms [159]. It was verified in [160] that there were no statistically significant dif-
ferences in the total welding scores between participants in the physical welding group
and the mixed reality–based welding groups. The mixed reality welding user interface
gives operators the ability to perform welding at a distance while maintaining a level of
manipulation [161]. An optical tracking-based telerobotic welding system was introduced
in [162]. The Leap Motion sensor captures the trajectory of a virtual welding gun held by
a human welder in the user space to control the remote welding robot for the welding
task. However, this welding system requires the use of a physical replica of the welding
workpiece in the user space to superimpose a real-time weld pool state and guide the
welders to adjust their hand movements to the shape of the workpiece [163]. Thus, this MR
welding system is not suitable for a wide range of workpieces.

Yukang Liu et al. [163] developed a projection-based MR telerobotic welding system
for transferring welder skills and human-level dynamics to the welding robot (Figure 8).
Human welders interact with the welding robot by moving a tracked virtual welding
torch in 3D space. A UR5 industrial manipulator equipped with vision sensors is operated
remotely to perform the welding task. The weld pool stream from the welding site is
transmitted back to the user and projected on a mock-up of the workpiece. The human
welder can monitor the work process and adjust the movements according to the projected
weld pool status from the worksite. However, the operator does not have sufficient visual
feedback to check the status of the robot during operation.
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Wang et al. [164] developed an MR-based human-robot collaborative welding system
(Figure 9). The collaborative tele-welding platform combines the strengths of humans
and robots to perform weaving gas tungsten arc welding (GTAW) tasks. The welder can
monitor the welding process through an MR display without the need to be physically
present. Welding experiments indicated collaborative tele-welding provides better welding
results compared to welding performed by humans or robots independently.
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with permission from Ref. [164]. 2019, Elsevier.

MR-based robot-assisted remote welding platforms were developed in [165] to provide
the welders with more natural and immersive human–robot interaction (HRI). However,
in these systems, the users rely on visual feedback for movement control and have no
haptic effects to completely prevent accidental collisions between the robot and the work-
piece when the operator controls the robot for welding from a distance. Hence, they are
still limited.

A visual and haptic robot programming system based on mixed reality and force
feedback was developed in [166]. However, the system was not suitable for real-time
remote welding operations and was inefficient in unstructured and dynamic welding
situations. Haptic feedback provides the welders with additional scene modality and
increases the sense of presence in the remote environment, thereby improving the ability to
perform complex tasks [167]. In contrast, it can be difficult to implement effectively.

The primary advantage of integrating haptic effects is to enhance both the performance
of tele-welding tasks and the operator’s perception. Current remote robotic welding
systems fail to fully utilize the potential improvements in performance offered by various
forms of haptic feedback. The rapid advancement of MR-enhanced teleoperation has
facilitated the merging of MR and virtual fixtures, aiming to enhance task performance
and user perception. This integration effectively addresses the deficiencies in existing
telerobotic welding systems. By creating an immersive and interactive MR environment,
virtual workpieces can be generated in the user’s space. When combined with Virtual
Fixture (VF) technology, this environment provides users with force feedback and guidance,
improving the precision of robot movements and preventing accidental collisions [168,169].

The main limitation of existing studies on tele-welding lies in the insufficient incorpora-
tion of MR technology and virtual fixtures into remote-controlled robotic welding systems.
This lack of integration hampers the elimination of potentially harmful collisions in the
tele-welding process and prevents welding robots from achieving human-level dynamics
for intricate Gas Metal Arc Welding (GMAW) tasks. Additionally, there has been no effort
to simplify operations to assist inexperienced welders in performing welding tasks quickly,
addressing the issues of time-consuming training and the shortage of qualified personnel.
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An exception is [107], which introduces an integrated approach utilizing MR and
haptic feedback for intuitive and immersive teleoperation of robotic welding systems. This
approach involves incorporating MR technology, allowing the user to be fully immersed in
a virtual operating space enhanced by real-time visual feedback from the robot’s working
area. In this proposed robotic tele-welding system, the user’s hand movements are mapped
to imitate the robot’s motions, enabling spatial velocity-based control of the robot’s tool
center point (TCP).

Several design elements, including mixed reality, digital twin, and virtual fixtures,
are integrated and implemented in user interfaces for intuitive comprehension of the
robot’s state, especially in critical welding situations. Digital twin technology was utilized
to capture the real-time pose of the physical UR5 robot during its operation, enabling
welders to observe the rotational status of each joint. By combining virtual twin data with
onsite video streams in the MR space, a comprehensive monitoring system was created,
offering real-time insights into the robot’s operations. This setup facilitated accurate and
efficient adjustments of welding motions based on the robot model data. To ensure optimal
visualization within the MR welding workspace, the virtual UR5 robot’s data and motions
were scaled at a ratio of 1:5 to match the user’s perspective. Within this framework, virtual
fixtures (VFs) were employed and categorized into guidance and prevention fixtures. The
proposed MRVF integrated both types, guiding users to the initial welding point effectively
and preventing collisions between the torch tip and the workpiece.

In the welding process, it is essential for the electrode to contact the molten weld pool
to transfer filler metal to the workpiece. Simultaneously, contact between the torch tip
and the workpiece must be avoided to prevent damage [107]. In the MRVF tele-welding
workspace (as illustrated in Figure 10), a transparent prevention VF panel was overlaid
on the virtual workpiece. This panel displayed a 2D representation of the actual welding
process, minimizing collisions between the user-manipulated torch tip and the workpiece.
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5. Challenges and Future Opportunities

Based on the reviewed and analyzed research, several challenges associated with XR
solutions for robotic telemanipulation and telemanufacturing have been identified. One
major challenge lies in the technological integration of extended reality technologies such
as AR, VR, and XR with robotic systems, giving rise to issues such as synchronization
problems, latency, and the need for real-time data processing. Additionally, designing
interfaces that offer an intuitive and immersive user experience proves to be a daunting
task, demanding seamless interaction with augmented or virtual environments while
simultaneously controlling robotic systems in real time. Providing accurate and meaningful
haptic and sensory feedback to users presents another obstacle, as replicating real-world
touch and feel in virtual environments adds complexity to system design. Furthermore,
ensuring the safety of both users and the environment remains paramount, necessitating
solutions for challenges like collision detection, emergency shutdown mechanisms, and real-
time hazard recognition. Moreover, the cost associated with developing and implementing
robust XR-enhanced robotic systems poses a significant barrier, limiting accessibility for
smaller organizations or research initiatives aiming to delve into this innovative technology.

Given the dynamic nature of XR technology, we anticipate numerous exciting oppor-
tunities in XR-enhanced telerobotics. Advancements in immersive XR interfaces, incor-
porating enhanced gesture recognition, voice commands, and brain–computer interfaces,
are expected, making teleoperation more seamless and intuitive. Customized interfaces
tailored to individual preferences, coupled with advancements in MR and haptic feedback
integration, promise a realistic and detailed sense of touch and force feedback, enhancing
the operator’s ability to perform delicate tasks remotely. Additionally, developments in AI
and machine learning could enhance robots’ autonomy and adaptability by learning from
human operators, fostering more efficient and versatile telerobotic systems. In summary,
innovations in immersive interfaces, haptic feedback, AI integration, and interdisciplinary
research are poised to revolutionize remote teleoperation and human–robot collaboration,
unlocking the full potential of XR technology in telemanipulation and telemanufactur-
ing domains.

6. Conclusions

This article identifies and summarizes the intuitive telerobotic frameworks proposed
in the human–robot interaction (HRI) literature, which aim to remove human workers
from harmful working environments by equipping complex robotic systems with human
intelligence and command/control via intuitive and natural human–robot interaction,
including the implementation of XR techniques to improve the user’s situational aware-
ness, depth perception, and spatial cognition, as fundamental to effective and efficient
teleoperation. The article commences by delving into the prerequisites for achieving effec-
tive robotic teleoperation, highlighting two important requirements for an effective and
intuitive teleoperation platform. First, natural motion retargeting, or the use of natural hu-
man behavior to teleoperate robotic systems, effectively reduces training costs and grants
human-level dynamics to telerobotic systems; it is an important component of natural
and intuitive human–robot interaction systems. Second, adequate multimodal feedback,
especially visual feedback that provides depth information and situational awareness to
enable the operator to know the dynamic situation in the robot’s workspace, is also critical
in interactive telemanipulation systems.

This review has elucidated the state-of-the-art frameworks developed by the robotics
community to integrate physical robotic platforms with XR technology. Specifically, it
underscores MR-based 3D/2D vision mapping and merging as a method for providing
immersive integration of diverse visual display modes for users. In the MR-enhanced
telerobotic schemes, digital twins also play a pivotal role in facilitating intuitive teleoper-
ation within the MR scene, in which users can interact with these digital twins naturally,
enabling precise and intuitive control over robotic systems while obtaining real-time status
information about the remote robot from the digital twins. We have presented the main
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contributions of the reviewed articles on XR-enhanced telerobotic schemes in industrial
systems and classified their application contexts into three main groups: effective and
intuitive teleoperation, MR-enhanced intuitive telemanipulation, and MR-based robotic
tele-welding. Additionally, this review highlights the pivotal role of XR, especially MR,
in the domain of teleoperation systems and robotic welding. Identified as a promising
development, the incorporation of haptic interfaces in tele-welding systems holds the
potential to enhance task performance and operator perception.
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