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ABSTRACT 
 

The approximation of the one step block method using the Linear Block approach (LBA) for 
simulation of second order oscillatory differential equations was examined in this research. 
The basic properties of the new method were also analyzed and satisfied. Some distinct second 
order oscillatory differential equations were directly applied on the new method, the results obtained 
were compared with those in literature and the accuracy of the new method proved to be better as it 
outperformed those of existing methods. One of the advantage of the new method is that it does not 
require much computational burden and it is also self-starting. 
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1. INTRODUCTION 
 

Differential equations in oscillatory form are used 
to simulate a problem with various independent 
variables [1]. This field of study is an interesting 
and important issue from mathematics 
(numerical analysis) to simulate various 
phenomena in physics, chemistry, biology, 
engineering, or economics [2]. For example, the 
problem of transport phenomena, the simple 
harmonic motion, mass-spring systems, highly 
stiff oscillators and so on. All of these cases can 
be simulated in the form of differential equations 
(oscillatory) which arise because physical 
phenomena in scientific studies can be 
expressed by the rate of change [3,4]. 
 

The motion in which repeats after a regular 
interval of time is called periodic motion. 
 

The periodic motion in which there is existence of 
a restoring force and the body moves along the 
same path to and fro about a definite point called 
equilibrium position/mean position, is called 
oscillatory motion. In all type of oscillatory motion 
one thing is common i.e. each body (performing 
oscillatory motion) is subjected to a restoring 
force that increases with increase in 
displacement from mean position.  
 

By a single number (called its magnitude) such 
as volume, mass, and temperature is called a 
scalar. They obey all the regular rules of 
algebraic addition, subtraction, multiplication, 
division, and so on. There are also physical 
quantities which require a magnitude and a 
direction for their complete speciation. These are 
called vectors if their combination with each other 
is commutative (that is the order of addition may 
be changed without ejecting the result).  Angular 
displacement, for example, may be characterized 
by magnitude and direction but is not a vector, 
for the addition of two or more angular 
displacements is not, in general, commutative 
[5,6]. 
 

Simple harmonic motion describes backward 
movement and forth through an equilibrium, or 
central, position, so that the maximum 
displacement on one side of this position is equal 
to the maximum displacement on the other side. 
The time interval of each complete vibration is 
the same [7-9]. The force responsible for the 
motion is always directed toward the equilibrium 
position and is directly proportional to the 
distance from it. That is,  
 

kxF               (1) 

Where F is the force, x  is the displacement, 

and k  is a constant. This relation is called 
Hooke’s law. 
 

Mathematical models in the field mentioned 
above are usually developed to understand the 
physical phenomena. These models are always 
resulted to differential equations. [10] stated 
some of the problems that involved differential 
equations in oscillatory form as  

 

i. the problem arising from determining the 
projectile motion, satellite, rocket or planet, 

ii. the problem of how to determine the 
charge or current in an electric circuit,  

iii. the study of chemical reactions and  
iv. the study of decomposition rate of 

radioactive substance or population growth 
rate. 

 

The problems mentioned above obey certain 
scientific laws that involve rates of change of one 
or more quantities. Mathematically, these rates of 
change can be expressed by derivatives. When 
the problems are converted to mathematical 
equations they will form differential equations. 
 

We shall use the Newton’s law, the laws of 
thermodynamics and Hooke’s law as regards to 
this research. 
 

In this research, the simulation of second order 
oscillatory differential equations 
 

      10 0',0,',,''   yyyyxfy          (2) 
 

shall be proposed. equation (2) play an essential 
role in solving every physical or biological 
process for the reason that such equations occur 
in connection with numerous problems that are 
encountered in several aspects of our everyday 
life [11]. Several specialists such as [12-15] 
developed an implicit second schemes in block 
form solving second order oscillatory differential 
equation (2). While [16-19] adopt the linear block 
approach to derive the block method using one 
step. 
 

2. NUMERICAL DERIVATION OF THE 
METHOD 

 
This section describe the derivation of second 
order hybrid method using the linear block 
approach (LBA) developed by [16,17]. In order to 
derive the method, the following corollary was 
consider. Considering the general form of the 
block method while implementing it one-by-one 
to obtain the expected block method for solving 
second order ordinary differential equations (2). 
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Corollary 1 
 
Obtain the block method from the given expression 
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Corollary 2 
 
Obtain the first and second derivative schemes of the block method from 
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1  and 
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The implementation of corollary 1 and equation (3), yield the following form 
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The implementation of corollary 2 and equation (4), yield the following form 
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To get the unknown coefficients


, it is defined that  
BAi

1  were A  and B  are defined above. 
Therefore, using equation (5) and corollary 1, 
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Similarly, to obtain the unknown coefficients , it is defined that  
DAia

1  were A  and D  are 
defined above. Therefore, using equation (6) and corollary 2,   
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3. PROPERTIES OF THE BLOCK METHOD 
 

The properties of the block method shall be investigated to insure the convergence of the block 
method when solving the equation (2). The properties includes the order, error constant, consistency, 
zero stability and convergence [20]. 
 

3.1. Order and Error constant of the Method  
 

Corollary 3 [21,22] 
 

Let the linear operator  
 

  hxyl n ;
                                                                                                 (9) 

compared with the new method (5) and (6), with the truncation error
   070606

06 0 hxyhC n 
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Proof 
 

We compared the linear difference operators (9) with the new method (5) and (6) as 
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Corollary 4 [22]   

To find the local truncation error of (5) and (6), we assume 
 xy

 to be sufficiently differentiable and 

expanding 
 qhxy n   and 

 jhxy n   about nx
 using Taylor series. Collect the like terms (the 

coefficient of h ) to obtain the expressions for the local truncation error of (10) as 
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Thus, from the above results, the order of the method (5) and (6) is 6, and the error constants is 
 

T

C 









619315200

37

283155200

343

792723456
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734003200

67

01981808640

1217

 
 

3.2 Consistency of the Method 
 

Definition: According to [21], a block method is said to be consistent if its order is greater than or 
equal to one. From the above analysis, it is obvious that our method is consistent.  
 

3.3 Zero Stability of the Method 
 

Definition: The numerical method is said to be zero-stable, if the roots
ksms ,,2,1, 

 of the first 

characteristics polynomial  m  defined by 
    EmAm  0det

 satisfies 
1sm

 and every root 

satisfies 
1sz

 have multiplicity not exceeding the order of the differential equation. The first 
characteristic polynomial is given by, 
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Thus, solving for 
q

in 
67 mm   gives

1,0,0,0,0m . Hence the method is said to be 
zero stable [21] 
 

3.4 Convergence of the Block Method 
 

Theorem: the necessary and sufficient 
conditions for linear multistep method to be 
convergent are that it must be consistent and 
zero-stable. Hence our method is convergent 
according to [22]. 
 

Region of Absolute Stability of our Method 
 

Definition: the region of absolute stability is the 

region of the complex z  plane, where hz   
for which the method is absolute stable. To 
determine the region of absolute stability of the 
block method, the methods that compare neither 
the computation of roots of a polynomial nor 
solving of simultaneous inequalities was 
adopted. Thus, the method according to [17] is 
called the boundary locus method. Applying the 
method we obtain the region of absolute stability 
in as 
 

 
 

Fig. 1 Region of Absolute Stability of our 
method 

 

4 SIMULATION OF THE METHOD 
 
In this section, the newly derived method is used 
to simulate some oscillatory differential equation 
of the form (2). The first oscillatory differential 
equation would be carried out to determine the 
type of spring in a motion. Secondly, nonlinear 

oscillatory differential equation and lastly, the 
highly stiff oscillatory differential equation is been 
simulated. The class of oscillatory differential 
equation is used to validate the accuracy and 
convergence of the newly derived method.  
 

The following notation is use in the tables and 
figures. 
 

ES: Exact Solution 
CS: Computed Solution 
ENM: Error in New Method 
EAR23: Error in [23] 
EAO24: Error in [24] 
EAO25: Error in [25] 
EOM26: Error in [26] 
EJL27: Error in [27] 
EAO28: Error in [28] 

 

4.1 Numerical Examples 
 

Example 1:  
 

Consider the second order oscillatory differential 
equation that was set up in motion. 

 
An object stretches a spring 6 inches in 
equilibrium. 

 
i. Set up the equation of motion and find its 

general solution. 
ii. Find the displacement of the object for

0t , if it’s initially displaced 18 inches 
above equilibrium and given a downward 
velocity of 

 

s

tf
3

 
 

From Newton’s second law of motion, we have  
 

Fykycym  '''
          (11) 

 

By setting 0c  and 0F , we get 

 

0''0''  y
m

k
yykym

        (12) 
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The equation of the weight of the object is given 
as follow: 

 

l

g

m

k
lkgm




         (13) 

 
Substituting  

 

tfl
s

tf
g

12

6
,32

2


 
 
into (13) we obtain 
 

64
32

12
6


m

k

          (14) 

 
Substituting equation (14) into the equation (12) 
we get 
 

064''  yy
          (15) 

 
The initial upward displacement of 18 inches is 
positive and must be expressed in feet. The 
initial  

 
downward velocity is negative; thus, 

 

    30',
2

3
0  yy

 and 1.0h  

 
We make use of (15) as  

 

        
















 30',
2

3
0,064'' yyxyxydsolver

  (16) 
 
We obtain the exact solution (16) as 
 

     xxxy 8cos
2

3
8sin

8

3


        (17) 
 
Source [23] 

 
Example 2:  

 
Consider the oscillatory differential equation 

 

    ,10',10,010001001''  yyyyy (18) 
 
Whose exact solution is 
 

   xxy  exp
          (19) 

 
See [24,25] 

 
Example 3:  

 
Consider the nonlinear oscillatory differential 
equation 

 

    ,40',20,8'4'' 3  yyxyyy
     (20) 

 
Whose exact solution is  
 

       
816

3

32

3
2sin

64

3
2cos22exp

22 xxx
xxxxy 









  (21) 

 
Source:  [26,27]. 
Example 4:  

 
Consider the nonlinear oscillatory differential 
equation 

 

    ,10'0,''  yyyy
        (22) 

 
Whose exact solution is 

 

  xxxy sincos 
         (23) 

 

Source:  [28]. 
 

5. RESULTS AND DISCUSSION 
 

The new method was applied to solve some 
special second order oscillatory differential 
equation (2). [23] proposed an efficient one-eight 
step hybrid block method for solving (16,17), the 
new method shows better than convergence than 
[23] (see Table 1 and Fig. 2). In literature, [24,25] 
proposed a methods that solved (18, 19). When 
comparing, the new method is converges faster 
(see Table 2 and Fig. 3). Also, the hybrid 
multistep methods with Legendre basic function 
developed by [26] and a self-starting linear 
multistep method proposed by [27] for solving 
(20, 21), their methods diverges while the new 
method converges (see Table 3 and Fig. 4).  
Finally, example 4 was applied on the new 
method and compared with the hybrid block 
method developed by [28] using Taylor series 
expansions (see Table 4 and Fig. 5). Therefore, 
the new method performs better than the existing 
methods we considered. 
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Table 1. Comparison between the new method and existing method for problem 1 
 

x ES CS ENM EAR 23 

0.1 0.77605152993342709579 0.77605152389579373913 6.0376(-09) 3.3496(-07) 

0.2 - 0.41863938459249752594 - 0.41863940002060177343 1.5428(-08) 1.6371(-06) 

0.3 - 1.3593892660185498469 - 1.35938927769431688740 1.1678(-08) 3.2716(-06) 

0.4 - 1.4755518599067871611 - 1.47555184845953636160 1.1447(-08) 3.5979(-06) 

0.5 - 0.69666449555494477770 - 0.69666445459004623494 4.0965(-08) 1.3589(-06) 

0.6 0.50481020347261010590 0.50481025540395725921 5.1931(-08) 2.9143(-06) 

0.7 1.4000738069674951883 1.40007383380115662890 2.6834(-08) 6.7226(-06) 

0.8 1.4460714263183540043 1.44607139912130218950 2.7197(-08) 7.0589(-06) 

0.9 0.61490152285494961183 0.61490144505266366544 7.7802(-08) 2.6543(-06) 

1.0 - 0.58925939319668845548 - 0.58925947996884071070 8.6772(-08) 4.6056(-06) 
 

Table 2. Comparison between the new method and existing methods for problem 2 
 

x ES CS ENM EAO  24 EAO 25 

0.1 0.90483741803595957316 0.90483741803595952927 4.3890(-17) 1.0547(-14) 2.0500(-11) 

0.2 0.81873075307798185867 0.81873075307798182897 2.9700(-17) 1.7764(-14) 4.3900(-11) 

0.3 0.74081822068171786607 0.74081822068171781989 4.6180(-17) 2.3426(-14) 6.5500(-11) 

0.4 0.67032004603563930074 0.67032004603563925767 4.3070(-17) 2.7978(-14) 8.3800(-11) 

0.5 0.60653065971263342360 0.60653065971263337424 4.9360(-17) 3.1308(-14) 9.8600(-11) 

0.6 0.54881163609402643263 0.54881163609402638382 4.8810(-17) 3.3973(-14) 1.1000(-10) 

0.7 0.49658530379140951470 0.49658530379140946379 5.0910(-17) 3.5638(-14) 1.1900(-10) 

0.8 0.44932896411722159143 0.44932896411722154097 5.0460(-17) 3.6748(-14) 1.2400(-10) 

0.9 0.40656965974059911188 0.40656965974059906128 5.0600(-17) 3.7304(-14) 1.2800(-10) 

1.0 0.36787944117144232160 0.36787944117144227189 4.9710(17) 3.7415(-14) 1.3000(-10) 

 
Table 3. Comparison between the new method and existing methods for problem 3 

 

x ES CS ENM EOM 26 EJL 27 

0.1 2.3941125769963956181 2.39411257699352383890 2.8718(-12) 7.1426(-08) 5.1070(-06) 

0.2 2.7481413324264235256 2.74814133241247383060 1.3949(-11) 1.7491(-07) 1.4959(-05) 

0.3 3.0078669405110678859 3.00786694047387329760 3.7195(-11) 3.6449(-07) 2.7853(-05) 

0.4 3.1017624057742078185 3.10176240569717560410 7.7032(-11) 6.1898(-07) 4.2891(-05) 

0.5 2.9395431007452620774 2.93954310060732702720 1.3794(-10) 6.9889(-07) 6.7031(-05) 

0.6 2.4118365344157147255 2.41183653419197661580 2.2374(-10) 1.4794(-06) 1.0264(-04) 

0.7 1.3915548304898433104 1.39155483015321951580 3.3662(-10) 2.1022(-06) 1.4491(-04) 

0.8 - 0.262326758334357631 - 0.26232675881007383216 4.7572(-10) 2.8409(-06) 1.9091(-04) 

0.9 - 2.697771160773070925 - 2.69777116140831225640 6.3524(-10) 3.6689(-06) 2.3973(-04) 

1.0 - 6.058560720845666951 - 6.05856072164790713340 8.0224(-10) 4.5617(-06) 2.9467(-04) 

 
Table 4. Comparison between the new method and existing method for problem 4 

 

x ES CS ENM EAO 28 

0.1 1.09483758192485391840 1.09483758192485360470 3.1370(-16) 1.1570(-07) 

0.2 1.17873590863630284660 1.17873590863630156920 1.2774(-15) 3.0990(-07) 

0.3 1.25085669578694559480 1.25085669578694266340 2.9314(-15) 5.0550(-07) 

0.4 1.31047933631153557450 1.31047933631153027220 5.3023(-15) 6.9570(-07) 

0.5 1.35700810049457571640 1.35700810049456731460 8.4018(-15) 8.7890(-07) 

0.6 1.38997808830471365440 1.38997808830470142760 1.2227(-14) 1.0540(-06) 

0.7 1.40905987452217947990 1.40905987452216272100 1.6759(-14) 1.0080(-06) 

0.8 1.41406280024668818260 1.41406280024666621860 2.1964(-140 9.2260(-06) 

0.9 1.40493687789814784490 1.40493687789812005180 2.7793(-14) 8.2610(-06) 

1.0 1.38177329067603622400 1.38177329067600204150 3.4183(-14) 7.2160(-06) 
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Fig. 2. Comparison between the new method and [23] 
 

 
 

Fig. 3. Comparison between the new method and [24, 25] 
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Fig. 4. Comparison between the new method and [26, 27] 
 

 
 

Fig. 5. Comparison between the new method and [28] 
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6. CONCLUSION 
 

The new method was derived using the linear 
block approach (LBA) proposed by [16, 17] which 
is quite straight forward to adopt. The analysis of 
the basic properties of the new method, viz. 
order, error constant, consistency, zero-stable, 
convergence, and region of absolute stability 
were analyzed and satisfied. The new methods 
was applied on some special second order 
oscillatory differential equation and compared 
with existing once in literature. Hence, the new 
method proved better accuracy and faster 
convergence than the existing methods 
considered. 
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