
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: welakoundan@gmail.com; 
 
J. Pharm. Res. Int., vol. 35, no. 28, pp. 1-27, 2023 

 
 

Journal of Pharmaceutical Research International 
 
Volume 35, Issue 28, Page 1-27, 2023; Article no.JPRI.108212 
ISSN: 2456-9119 
(Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, 
NLM ID: 101631759) 

 

 

Molecular Modeling of Enoyl Acyl 
Carrier Protein Reductase Inhibitors for 

Mycobacterium tuberculosis and their 
Pharmacokinetic Predictions 

 
Narcisse Fidèle Zonon a, Logbo Mathias Mousse a*,  

Koffi N’Guessan Placide Gabin Allangba a,b,c,  
Koffi Charles Kouman a and Eugene Megnassan a,d,e 

 
a Laboratory of Fundamental and Applied Physics, University of Nangui Abrogoua, Abidjan,              

Côte d’Ivoire.  
b Physics Pedagogical Unit, Laboratory of Environmental Science and Technology, University Jean 

Lorougnon Guédé, Daloa, Côte d’Ivoire. 
c Department of Medical Physics, University of Trieste and International Centre for Theoretical Physics 

(ICTP), Trieste, Italy. 
d Laboratory of Structural and Theoretical Organic Chemistry, University Felix Houphouët Boigny, 

Abidjan, Côte d’Ivoire. 
e ICTP-UNESCO, QLS, Strada Costiera 11, I 34151 Trieste, Italy. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/JPRI/2023/v35i287446 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/108212 

 
 

Received: 15/08/2023 
Accepted: 25/10/2023 
Published: 30/10/2023 

 
 

 
 
 

Original Research Article 



 
 
 
 

Zonon et al.; J. Pharm. Res. Int., vol. 35, no. 28, pp. 1-27, 2023; Article no.JPRI.108212 
 
 

 
2 
 

ABSTRACT 
 

Tuberculosis (TB) is a deep public health concern worldwide worsened by reported multi drug-
resistant (MDR) and extensively drug- resistant (XDR) strains of Mycobacterium tuberculosis, the 
causative agent of the disease. A new class of thiadiazole inhibitors were reported to inhibit the 
enoyl-acyl transporter protein reductase (InhA) of Mycobacterium tuberculosis (MTb). We 
performed here the computer-aided molecular design of novel thiadiazole (TDZ) inhibitors of InhA 
by in situ modifying the reference crystal structure of (S)-1-(5-((1-(2,6-difluorobenzyl)-1H-pyrazol-3-
yl)amino)-1,3,4-thiadiazol-2-yl)-1-(4-methylthiazol-2-yl)ethanol-InhA (PDB code: 4BQP). Thus a 

training set of 15 hybrids with known inhibition potency (IC50
exp

) was selected to establish a one-

descriptor quantitative structure-activity relationship (QSAR) model resulting in a linear correlation 
between the Gibbs free energy (GFE) during the formation of the InhA-TDZ complex and  

IC50
exp

(pIC50
exp = = -0.29xΔΔGcom + 8.13; n=15; R2 = 0.92, R2

xv = 0.91; F-test of 142.6; σ = 0.21; α > 

95%; R2 - R2
xv = 0.01). The 3D pharmacophore model (PH4) generated from the active 

conformations of TDZs (pIC50
exp

= 0.93× pIC50
pred

 + 0.47; n=15; R2 = 0.97; R2
xv = 0.94; F-test of 

215.45; σ = 0.17; α > 98%; R2 - R2
xv = 0.03) served as a virtual screening tool for new analogs from 

a virtual library (VL). The combination of molecular modeling and PH4 in silico screening of VL 
resulted in the identification of novel potent antitubercular agent candidates with favorable 

pharmacokinetic profiles of which the six best hits predicted inhibitory potencies IC50
pre

 in the sub 

nanomolar range (0.1 – 0.2 nM). 
 

 
Keywords: Tuberculosis; enoyl-acyl carrier protein reductase (InhA); molecular modeling; QSAR 

models; pharmacophore; combinatorial library; ADME properties prediction. 

 
ABBREVIATIONS 
 
2D : Two-dimensional; 
3D : Three-dimensional; 
ADME : Absorption, distribution, metabolism and excretion; 
Eint : MM enzyme–inhibitor interaction energy per residue; 
ΔΔGcom : Relative complexation GFE; 
ΔΔHMM : Enthalpy Component of GFE; 
GFE : Gibbs free energy; 
ΔΔGsol : Relative solvation GFE; 
ΔΔTSvib : Relative entropic of GFE; 
HB : Hydrogen bond;  
HBA : Hydrogen bond Acceptor; 
HBD : Hydrogen bond Donor; 
HMM : Enthalpy component of GFE; 
HOA  : Human oral absorption; 
HYD : Hydrophobic; 
HYDA : Hydrophobic Aliphatic; 
IC50  : Half-maximal inhibitory concentration; 
IE  : Interaction energy; 
InhA  : 2-trans enoyl-acyl carrier protein reductase; 
KatG  : Mycobacterium tuberculosis catalase–peroxidase; 
MM : Molecular mechanics; 
MM-PB : Molecular mechanics–Poisson Boltzmann; 
Mtb : Mycobacterium tuberculosis;  
NADH : nicotinamide adenine dinucleotide reduced; 
PDB : Protein Data Bank; 
PH4  : Pharmacophore; 
QSAR  : Quantitative structure–activity relationships; 
RMSD : Root-mean square deviation; 
SAR : Structure–activity relationships; 
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TB : Tuberculosis; 
TS : Training set; 
VS : VALIDATION SET. 
 

1. INTRODUCTION 
 
Tuberculosis is an ancient disease [1] caused by 
Kock's basil [2] which is transmitted from an 
affected subject to a healthy one through 
airborne contamination. 90% of the affected 
population are adults with more male than 
female. According to the 2022 WHO report [3], 
10.6 million people developed the disease in 
2021 (i.e. 4.5% increase compared to 2020) with 
1.6 million people dying from tuberculosis 
(including 187.000 among HIV-positive people). 
Clearly the pathogen is resistant to the various 
treatments administered. Multidrug-resistant 
tuberculosis (MDR-TB) is defined as an infection 
with the resistant strain of Mycobacterium 
tuberculosis (MTb) to the two first-line 
antimycobacterial drugs: isoniazid and rifampicin. 
Extensively drug-resistant tuberculosis (XDR-TB) 
is caused by a strain that is additionally resistant 
to at least three of the six second-line classes 
consisting of aminoglycosides, polypeptides, 
fluoroquinolones, thioamides, cycloserine, and 
para-aminosalicylic acid [4]. “The term totally 
resistant (TDR-TB) has emerged to mean 
infection with a strain resistant to all first- and 
second-line drugs” [5]. “Used in clinical for more 
than half a century, and in the face of the various 
resistances of the various pathogenic strains to 
first and second line antimycobacterial drugs, it is 
more than urgent to find new drugs. These new 
inhibitors should be able to overcome all 
resistant strains, with a mechanism of action that 
shortens the duration of treatment, having a good 
pharmacokinetic profile for a lower dosing 
frequency, and having the shortest list of side 
effects and drug interactions” [6]. Bedaquiline, a 
new antimycobacterial, approved at the end of 
2012 [7] inhibits adenosine 5′-triphosphate 
(ATP)-synthase of MTb with good clinical efficacy 
against multiple resistant strains. However, this 
drug has cardiovascular side effects [8]. “Fatty 
acids play an important role in the supply of 
metabolic precursors to biological membranes 
and represent an important form of metabolic 
energy production. Its synthesis is therefore an 
essential process for all living organisms. 
Mycobacteria contain both FAS I and FAS II fatty 
acid synthases. The enzymatic FAS II substrate 
specific to mycobacteria synthesizes mycolic 
acids which, bound to the cell wall, form a waxy 
substance of protective coating around the 
bacterial cell serving as a permeability barrier. 

This FAS fatty acid biosynthetic pathway in 
mycobacteria is a major target for the 
development of new antituberculotic agents” [9]. 
“Enoyl acyl carrier protein reductase (InhA) is a 
key component of the M. tuberculosis FAS II 
pathway. It is an NADH-dependent enzyme that 
facilitates the reduction of long-chain trans-2-
enoyl-acyl carrier protein fatty acids” (Fig. 1) [10]. 
InhA is made up of subunits including a central 
core which has a Rossmann fold containing the 
NADH binding site (Fig. 1) [11], several α-helices 
and β-strands of the Rossmann fold extending 
beyond the site binding of NADH, which creates 
a deep cleft for the lipophilic acyl substrate [12]. 
Isoniazid for its effectiveness must be converted, 
via a mycobacterial catalase-peroxidase (KatG) 
[13], into an activated form of the drug [14-19]. 
“This activated form believed to be an isonicotin-
acyl radical covalently binds to the nicotinamide 
ring of NADH within the active site of InhA, 
creating an NADH adduct to form a reactive 
species that acylates the nicotinamide moiety of 
NADH” [13]. “Mutations in KatG are the main 
causes of resistance of mycobacteria to 
isoniazid. Compounds that can therefore directly 
inhibit InhA without the need for activation by 
KatG are of major interest in the fight against 
multidrug-resistant tuberculosis (MDR-TB), 
extensively drug-resistant tuberculosis (XDR-TB) 
and drug-resistant total tuberculosis (TDR-TB)” 
[15]. Several antituberculosis drugs have been 
explored such as triclosan and its derivatives [16-
18], pyrrolidine carboxamides [17], benzamide 
derivatives [18], and new polyketide synthases 
13 [19]. A series of thiadiazole-based InhA 
inhibitors (TDZ) were discovered by 
GlaxoSmithKline in a high-throughput screening 
(Fig. 1, B) [20]. The most active inhibitor obtained 
TDZ1 is lipophilic, with a tetracyclic structure and 
a high proportion of sp2 centers and has been 
shown to be a direct and reversible inhibitor of 
InhA by binding in the active site, where it 

establishes contacts with NADH (IC50
exp

= 4 nM). 

Preliminary studies of structure-activity 
relationships were then made by AstraZeneca, 
where it was also shown that this binding 
depends on NADH oxidation [21]. Structural 
variations of this thiadiazole model are explored 
in the present study with the goal to assess new, 
more potent three-membered analogs that inhibit 
InhA and exhibit improved physicochemical 
properties for favorable pharmacokinetic profile. 
To do this, we used fifteen thiadiazole derivatives 
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as the training set (TS) and three others as a 
validation set (VS) of inhibitors with their 
experimental inhibitory activities reported by 
Roman Sink et al. [22]. We have developed a 
complexation QSAR model correlating the 
relative Gibbs free energy (rGFE) computed by 
simulating formation the fifteen InhA-TDZ1-15 
complexes built in situ (see § 2.2 Model Building) 
with their respective experimental inhibitory 

potencies ( pIC50
exp

). Then a 3D-QSAR 

pharmacophore (PH4) model based on the 
fifteen active conformations from the 
complexation QSAR method has been generated 
as subsequent TDZ chemical subspace explorer. 
The subspace is an enumerated virtual library of 
TDZs analogues which, after screening using our 
PH4, yielded dozens hits mapping to most 
pharmacophoric features. Finally, the hits 
underwent complexation simulations for 
evaluation of the predicted inhibitory activity for 
the best analogues and for calculation of their 
ADMET profile.  
 

2. METHODS 
 

2.1 Training and Validation Sets 
 
The chemical structures and biological activities 

( IC50
exp

) of training and validation sets of InhA-

inhibiting thiadiazoles used in this study come 
from the literature [23]. The potencies of these 
compounds cover a wide enough range of half-
maximal inhibitory concentrations 

(4 ≤ IC50
exp

≤ 1003 nM) to allow the construction of 

a QSAR model. The Training Set (TS) contains 
15 TDZ inhibitors and the Validation Set (VS) 
includes 3 TDZs. 
 

2.2 Model Building 
 
Three-dimensional (3D) molecular models of 
InhA-TDZx enzyme-inhibitor (E-I) complexes, 
free enzyme InhA and free inhibitors TDZx were 
prepared from the 1.89 Å resolution crystal 
structure of a reference complex containing the 
training set compound (S)-1-(5-((1-(2.6-
difluorobenzyl)-1H-pyrazol-3-yl)ami-no)-1.3.4-
thiadiazol-2-yl)-1-(4-methylthiazol-2-yl) ethanol 
(TDZ-1) (Fig. 1. B) bound to mycobacterial InhA 
(Protein Data Bank [24] PDB code: 4BQP [23]) 
using the molecular modeling program Insight- II 
[25]. The structures of InhA and E-I complexes 
were considered to be at pH 7 with N- and C-
terminal residues and all protonizable and 
ionizable residues charged. No crystallographic 
water molecules were included in the model. The 

inhibitors were integrated into the 4BQP 
reference structure [23] by the in situ 
replacement of derived groups in the molecular 
scaffold of the matrix inhibitor TDZ1. Extensive 
conformational search of all rotational linkages of 
replacement function groups coupled with careful 
progressive minimization of the energy of the 
modified inhibitor and InhA active site residues 
located near the inhibitor (radius of 5 Å) was 
used to identify the low energy bound geometry 
of the modified inhibitor. 
 
“The resulting low-energy structures of the E-I 
complexes have been carefully refined by 
minimizing the entire complex. Successfully this 
procedure has been used for the construction of 
previous models of viral, bacterial and protozoan 
enzyme inhibitor complexes and the design of 
peptidomimetics, hydroxynaphthoic, thymidine, 
triclosan, pyrrolidine, carboxami-des, nitriles, acid 
derivatives hydroxamic, benzofuran derivatives 
and chalcone-based inhibitors” [26-31]. 
 

2.3 Molecular Mechanics 
 
Modeling of inhibitors, InhA and E-I complexes 
was carried out by molecular mechanics using 
CFF force field [26].  
 

2.4 Conformational Search 
 
Conformations of free inhibitors were derived 
from their bound conformations in E-I complexes 
by progressive relaxation to the nearest local 
energy minimum as previously described [32]. 
 

2.5 Solvation Gibbs Free Energies 
 
The electrostatic component of the relative Gibbs 
free energy of solvation (rGFE) which also 
includes the effects of ionic strength via 
numerically solving the nonlinear Poisson-
Boltzmann equation [27-28,21] was calculated by 
the DelPhi module in Discovery Studio [28].  
 
2.6 Calculation of Binding Affinity and QSAR 

Model 
 

Calculation of binding affinity expressed as GFE 
complexation has been fully described above 
(see session 3-2-1). 
 

2.7 Interaction Energy 
 

Calculation of the MM interaction energy (Eint) 
between the enzyme residues and the inhibitor 
was performed as previously described [32]. 



 
 
 
 

Zonon et al.; J. Pharm. Res. Int., vol. 35, no. 28, pp. 1-27, 2023; Article no.JPRI.108212 
 
 

 
5 
 

 
   

(A) InhA (B) TDZ1 ( IC50
exp

= 4 nM) (C) Isoniazid (D) Triclosan 

  

(E) Scaffold (F) Reaction catalyzed by InhA 
 

Fig. 1. (A) Three-dimensional structure of InhA. (B) TDZ1 discovered by GlaxoSmithKline. (C) 
Chemical structure of Isoniazid. (D) Chemical structure of triclosan. (E) Scaffold atom and 

the substitution position of the R group. (F) Reaction catalyzed by InhA 
 

2.8 Pharmacophore Generation 
 
The bound conformations of the inhibitors taken 
from the E-I complex models were used for the 
construction of the 3D-QSAR (PH4) 
pharmacophore by means of the Catalyst 
HypoGen algorithm [21] implemented in 
Discovery Studio [28] as previously reported [32]. 
 

2.9 ADME Properties 
 
The pharmacokinetic profile of BHMBs was 
calculated by the QikProp program [23] as 
described earlier [32]. 
 

2.10 Virtual Library Generation 
 
The generation of the virtual library was 
performed as previously described [32]. 
 

2.11 ADME-Based Library Searching 
 
The drug-likeness selection criterion served to 
focus the initial virtual library as described earlier 
[32]. 
 

2.12 Pharmacophore-Based Library 
Searching 

 
The pharmacophore model (PH4) described in 
section 4.8 and derived from the model related to 
the conformations of TDZs at the active site of 
InhA served as a library search tool as described 
earlier [32]. 
 

2.13 Inhibitory Potency Prediction 
 
The conformer with the best mapping on the PH4 
pharmacophore in each cluster of the focused 

library subset was selected for in silico screening 
by the complexation QSAR model. The 
computed ΔΔGcom of each selected new analog 
was used for prediction TDZ inhibitory potency 

( 𝐈𝐂𝟓𝟎
𝐩𝐫𝐞𝐝

) of the focused virtual library of TDZ 

analog by inserting this parameter into the target-
specific scoring function given in equation (1) 
parameterized using the complexation QSA 
model of the training set of TDZ inhibitors.  
 

p𝐈𝐂𝟓𝟎
𝐩𝐫𝐞𝐝

= −log10𝐈𝐂𝟓𝟎
𝐩𝐫𝐞𝐝

= a. ΔΔGcom + b         (1) 

 

3. RESULTS 
 

3.1 Training and Validation Sets of InhA 
Inhibitors 

 
The set of data including the chemical structures 
and the experi-mental biological activities of the 
thiadiazole derivatives, InhA inhibitors used in 
this work, is taken from the article published by 
Roman Sink et al. [23]. These compounds were 
divided into two groups including 15 for the test 
set (TS) and 3 for the validation set (VS) 
according to Table 1. They cover a range of half-
maximal inhibitory concentrations 

(4 nM ≤ IC50
exp

≤ 1003 nM) wide sufficiently to allow 

the design of a reliable QSAR model.  
 

3.2 QSAR Model of InhA Inhibition 
 

3.2.1 Single-descriptor QSAR model of InhA-
TDZs affinity 

 

Each of the 15 TS and 3 VS InhA-TDZx 
complexes (Table 1), was prepared by in situ 
modification of the crystal structure of the refined 
matrix (PDB entry code 4PQP) of the InhA-TDZ1 
complex as described in the Methods section. In 

 NAD

 InhA



 
 
 
 

Zonon et al.; J. Pharm. Res. Int., vol. 35, no. 28, pp. 1-27, 2023; Article no.JPRI.108212 
 
 

 
6 
 

addition, the relative Gibbs free energy of 
formation of the InhA-TDZx complex (ΔΔGcom) 
was calculated for each of the 18 enzyme-
inhibitor complexes. Table 2 lists the calculated 
values of ΔΔGcom and its components (ΔΔHMM, 
ΔΔTSvib and ΔΔGsol) for the TS and VS of 
thiadiazoles [23]. The QSAR model explained 
more than 92% of the variation in the 

experimental inhibitory powers of TDZs (pIC50
exp

 = 

−log10 (IC50
exp

) [23]) by correlating it with ΔΔGcom 

calcu-lated by linear regression (Table 3). The 
QSAR model explained more than 92% of the 
variation in the experimental inhibitory powers of 

TDZs (pIC50
exp

 =−log10 (IC50
exp

) [23]) by correlating it 

with ΔΔGcom calculated by linear regression 
(Table 3).  
 
Relatively high values of the R2 regression 
coefficient, R2

xv crossover validated regression 
coefficient, and Fischer's F-test of correlation in 
solvent suggest a strong relationship between 
the 3D model of inhibitor binding and inhibitory 
potencies observed from TDZs. In addition, the 

pIC50
pre

/pIC50
exp

 ≈1 ratio calculated for the entire VS 

validation set reinforces the robustness of our 
QSAR model. Therefore, the structural 
information derived from 3D models of the 
complexes can be expected to lead to a reliable 
prediction of the inhibitory potencies of InhA-
TDZx for the new analogs based on the QSAR 
equation (B) (Table 3) as well than the 
generation of the pharmacophore PH4. 
 
The statistical data confirmed validity of the 
correlation Equations (A) and (B) plotted on Fig. 

2. The ratio pIC50
pre

/pIC50
exp

 ≈1 (the pIC50
pre  values 

were estimated using correlation Equation B. 
Table 3) calculated for the validation set TDZV1-
3 documents the substantial predictive power of 
the complexation QSAR model from Table 2. 
Thus, the regression Equation B (Table 3) and 
computed ∆∆Gcom GFEs can be used for 

prediction of inhibitory potencies IC50
pre  against 

InhA for novel TDZ analogs, provided they share 
the same binding mode as the training set 
thiadiazole TDZ1-15. The validation of the QSAR 
model is in compliance with OECD cross 
validation guidelines and other extended 
validation criteria [29-31]. 
 

3.3 Binding Mode of TDZs 
 
Structural information on enzyme-inhibitor 
interactions extracted from the crystal structure 
of the InhA-TDZ1 complex [23] showed that 
TDZs are specific inhibitors of InhA. Several 

interactions are highlighted at the active site by 
observing Fig. 3. The methyl-thiazole group of 
TDZ1 engages with the ribose group of the 
nicotinamide ring of the NAD cofactor through a 
hydrogen bond (HB) between the thiazole 
nitrogen and the ribose hydroxyl of the 
nicotinamide ring. This nitrogen acts as a 
hydrogen bond acceptor for the ribose hydroxyl 
of the NAD cofactor [27]. The catalytic residue 
Met98 establishes a hydrogen donor-acceptor 
bond pair with the ligand: the nitrogen of the 
thiadiazole ring and the amine "NH" located 
between the thiadiazole and pyrazole rings 
maintain an H bond respectively with the amide 
skeleton "NH and carbonyl "O" of the catalytic 
residue Met98. The orientation of this 
donor−acceptor hydrogen and the pairing of 
bonds provide an excellent opportunity for the 
introduction of the pyrazole linker which allows 
better access to the hydrophobic pocket for the 
difluorophenyl ring. This large hydrophobic 
pocket accommodates various fragments 
enriching in the same way the structural quality 
of new analogues with better inhibitory power. 
Furthermore, the thiadiazole, pyrazole and 
phenyl ring of the endogenous ligand wrap 
around the side chain of Met103. Fluorine 
interactions are observed with Ala198 and 
Met103 as well as a Pi-Sulfide bond established 
between the sulfur of the thiazole and Met199. 
Several alkyl and Pi-alkyl interactions are also 
visible. The large hydrophobic pocket containing 
residues Met98, Gln100, Met103, Gly104, 
Phe149, Ala157, Tyr158, Lys+165, Thr196, 
Leu197, Ala198, Met199, Ile202, Ala206, 
Leu207, Ile215, Leu218 [32] remains the 
prominent interaction rooting the TDZs in InhA 
active site (Fig. 3. C) confirming our recent 
reported results about triclosans targeting the 
same enzyme, starting from complexation QSAR 
simulations and ending by Molecular Dynamics 
runs to confirm the best TCL analogues’ active 
conformation stability [33].  
 

3.4 Interaction Energy 
 
For the same TS used to establish the 
complexation QSAR model, the interaction 
energy (Eint) was computed through Molecular 
Mechanic MM. This energy was calculated 
between the enzyme residues and the inhibitor 
through a protocol available on Discovery Studio 
(DS) [28] which calculates the non-binding 
interactions (the Van der Waals and electrostatic 
terms) between a defined set of atoms. The 
calculations were performed using the CFF force 
field with a dielectric constant of 4. The results 
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are presented in the diagram of Fig. 4 depicting 
the individual energetic contribution from each 
InhA active site residue to Eint. The breakdown of 
interaction energy into individual contributions 
from active site residues is important in the 
selection of R-group substituents for enhancing 
the binding affinity of thiadiazole analogs with 
InhA and subsequently their inhibitory capacity. 
For the analysis, individual contributions to Eint 
are classified into three groups according to the 
level of activity of the training set‘s ligands: the 
most active (TDZ1-5), the moderately active 
(TDZ6-10) and the less active ligands (TDZ11-
15) (Fig. 4: (A), (B) and (C)). Comparing these 
contributions values lets identify the residues 
which contribution to the binding affinity is yet to 
be improved. After analysis, we notice that the 
level of contribution with respect to the 
interaction energies of the residues of the active 
site is almost the same for the three categories of 
inhibitors. Therefore, no better specific 
suggestions about the R-group substituents with 
binding affinity enhancing capacity emerge. 
Therefore the design of new thiadiazole TDZs 

analogues through a combinatorial approach is 
adopted. Accordingly, we generated an in silico 
library of 7800 thiadiazole analogs to be 
screened using the Pharmacophore PH4 of InhA 
inhibition derived from the QSAR complexation 
model, as can be seen from the IE analysis             
(Fig. 4).  
 

3.5 3D-QSAR Pharmacophore Model 
 
The interaction generation protocol in the 
Discovery Studio (DS) molecular modeling 
program [28] provides the pharmacophore 
characteristics of the active site of a protein. 
 
3.5.1 InhA active site pharmacophore 
 

The active site of InhA is globally hydrophobic 
(figure 3. C) as confirmed by previous work 
[31,33]. The design of competitive InhA substrate 
inhibitors often exploits the flexibility of the 
pocket due to the high mobility of the Tyr158, 
Phe149 side chains and the substrate-binding 
loop (Thr196–Gly208) [34]. 

 

 

 
 

Fig. 2. (Top) plot of correlation equation between p𝐈𝐂𝟓𝟎
𝐞𝐱𝐩  and relative enthalpic contribution 

to the GFE ∆HMM [kcal.mol−1]. (Bottom) similar plot for relative complexation Gibbs free 
energies of the InhA-TDZx complex.formation ∆∆Gcom [kcal.mol−1] of the training set [23]. 

The validation set data points are shown in red color 
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(A) 

 

 
(B) 

 
(C) 

 

Fig. 3.  (A) 2D schematic interaction diagram of the most potent inhibitor TDZ1( 𝐈𝐂𝟓𝟎
𝐞𝐱𝐩

=

𝟒 𝐧𝐌) [23] at the active site of InhA. (B) 3D structure of the active site of InhA with the 
most active inhibitor TDZ1. The carbon atoms of the ligand are colored in yellow, the 

residues’ side chains in green, NAD cofactor carbon atoms are in cyan. Interaction color 
code: hydrogen bonds (green), Alkyl and Pi-Alkyl (pink), Pi-Sulfide (orange), Fluorine 
bond (blue). (C) Molecular surface of the active site of InhA. Surface coloring legend: 

red, hydrophobic; blue, hydrophilic; white, intermediate 
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Table 1. Set (TDZ1-15) and validation set (TDZV1-3) of InhA inhibitors [30] used in the preparation of QSAR models of inhibitor binding. 

 
 

 TDZ1 TDZ2 TDZ3 TDZ4 TDZ5 TDZ6 

R 

      

𝐈𝐂𝟓𝟎
𝐞𝐱𝐩 

(nM) 4 18 46 77 179 197 

 TDZ7 TDZ8 TDZ9 TDZ10 TDZ11 TDZ12 

R 

      
𝐈𝐂𝟓𝟎

𝐞𝐱𝐩 
(nM) 260 264 363 386 551 894 

 TDZ13 TDZ14 TDZ15 TDZV1 TDZV2 TDZV3 

R 

  
 

 
  

𝐈𝐂𝟓𝟎
𝐞𝐱𝐩 

(nM)  1001 1002 1003 13 299 741 
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Table 2. Gibbs free energy (binding affinity) and its components for the training set of InhA 
Inhibitors TDZ1-15 and validation set inhibitors TDZV1-3 [23] 

 

Training Mw 
b ΔΔHMM 

c ΔΔGsol 
d ΔΔTSvib 

e ΔΔGcom
 f 𝐈𝐂𝟓𝟎

𝐞𝐱𝐩  g 

Set a [g.mol-1] [kcal.mol-1] [kcal.mol-1] [kcal.mol-1] [kcal.mol-1] [nM] 

TDZ1 434 0 0 0 0 4 
TDZ2 387 -2.16 2.45 -1.95 2.24 18 
TDZ3 466 2.43 -2.06 -3.6 3.97 46 
TDZ4 359 4.57 1.73 2.23 4.07 77 
TDZ5 412 4.44 2.27 -0.41 7.12 179 
TDZ6 398 7.24 -0.85 -0.66 7.04 197 
TDZ7 333 4.5 2.23 1.1 5.63 260 
TDZ8 349 3.13 2.51 0.22 5.42 264 
TDZ9 337 5.42 2.15 0.08 7.49 363 
TDZ10 319 6.32 1.93 1.55 6.74 386 
TDZ11 337 4.47 2.54 -1.11 8.11 551 
TDZ12 322 6.24 2.97 1 8.21 894 
TDZ13 322 7.5 1.78 1.44 7.84 1001 
TDZ14 323 8.28 1.74 1.3 8.73 1002 
TDZ15 333 7.65 2.44 1.98 8.11 1003 

Validation Mw 
b ΔΔHMM

 c ΔΔGsol 
d ΔΔTSvib 

e ΔΔGcom
 f 𝐩𝐈𝐂𝟓𝟎

𝐩𝐫𝐞
/𝐩𝐈𝐂𝟓𝟎

𝐞𝐱𝐩 g 

Set a [g.mol-1] [kcal.mol-1] [kcal.mol-1] [kcal.mol-1] [kcal.mol-1] 
 

TDZV1 398 2.49 -0.89 -1.11 2.71 0.93 
TDZV2 402 7.5 2.88 5.34 5.04 1.02 
TDZV3 349 5.55 3 0.92 7.61 0.97 

a for the chemical structures of the training set of inhibitors see Table 1; b Mw is the molar mass of inhibitors; c 
ΔΔHMM is the relative enthalpic contribution to the GFE change related to E-I complex formation derived by 

MM; ΔΔHMM ≈ [EMM{E-Ix} − EMM{Ix}] − [EMM{E-Iref} − EMM{Iref}]. Iref is the reference inhibitor TDZ1; d ΔΔGsol is the 
relative solvent effect contribution to the GFE change of E-I complex formation: ΔΔGsol = [Gsol{E-Ix} − Gsol{Ix}] 

−[Gsol{E-Iref} − Gsol{Iref}]; e −ΔΔTSvib is the relative entropic contribution of inhibitor Ix to the GFE of E-Ix complex 
formation: ΔΔTSvib = [TSvib{Ix}E − TSvib{Ix}] − [TSvib{Iref}E − TSvib{Iref}]; f ΔΔGcom is the overall relative GFE 

change of E-Ix complex formation: ΔΔGcom ≈ ΔΔHMM + ΔΔGsol − ΔΔTSvib; g 𝐼𝐶50
𝑒𝑥𝑝

 is the experimental half-

maximal inhibition concentration of InhA obtained from ref. [23]; ratio of predicted and experimental half-

maximal inhibition concentrations 𝑝𝐼𝐶50
𝑝𝑟𝑒

/𝑝𝐼𝐶50
𝑒𝑥𝑝

 (𝑝𝐼𝐶50
𝑝𝑟𝑒

= −log10𝐼𝐶50
𝑝𝑟𝑒

) was predicted from computed ΔΔGcom 

using the regression equation for InhA shown in Table 3, B 
 
Table 3. Analysis of computed binding affinities ΔΔGcom, its enthalpic component ΔΔHMM and 

experimental half-maximal inhibitory concentrations 𝐩𝐈𝐂𝟓𝟎
𝐞𝐱𝐩

= −log10𝐈𝐂𝟓𝟎
𝐞𝐱𝐩

 of TDZs towards 

MtInhA [23] 
 

Statistical Data of Linear Regression A B 

pIC50
exp = -0.21xΔΔHMM + 7.66 (A) 

  

pIC50
exp = = -0.29xΔΔGcom + 8.13 (B) 

  

Number of compound  n  15 15 
Squared correlation coefficient of regression R2  0.75 0.92 
LOO cross-validated squared correlation coefficient R2

xv 0.73 0.91 
Standard error of regression σ 0.36 0.21 
Statistical significance of regression. Fisher F-test 38.11 142.67 
Level of statistical significance  α >95% >95% 
Range of activities IC50

exp [nM]  4 - 1003 

 
3.5.2 Generation and validation of 3D-QSAR 

pharmacophore 
 
Through its algorithmic program Catalyst 
HypoGen [21], DS [28] allowed us to establish 
the active conformations of inhibitors from 

complexation QSAR models of different E-I 
complexes used for the construction of the 3D-
QSAR pharmacophore (PH4). This construction 
made from the active conformation of 15 TS 
TDZ1-15 and evaluated by 3 VS TDZV1-3 
covering a wide range of experimental activities 
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(4–1003) nM was made in three steps: the 
constructive step, the subtractive step and the 
optimization step. During the build phase, as 
described earlier [24], only TDZ1 was 
automatically selected as the conductor to 
generate the starting PH4 features, as it alone 

fulfills the threshold criterion (IC50
exp

 ≤ 1.25 × 4 nM 

= 5 nM). In the subtractive phase, compounds for 

which IC50
exp

 > 4×103.5 nM = 12649.1 nM were 

considered inactive. Consequently, none of the 
TDZx training sets were inactive and no starting 
PH4 functionality was removed. Finally, during 
the final optimization phase, the score of the PH4 
hypotheses was improved. For the generation of 
the pharmacophore, four features available in the 
HypoGen algorithm were selected: aromatic 
hydrophobic (HYD_Ar), aliphatic hydrophobic 
(HYD_Al), hydrogen bond donor (HBD) and 
hydrogen bond acceptor (HBA). Assumptions are 
scored via a simulated annealing approach 
based on errors in the regression and complexity 
activity estimates. At the end of the optimization, 
the 10 unique best hypotheses displaying five 
characteristics points were kept: cost values, 
correlation coefficients, root mean square 
deviation (RMSD) values, pharmacophore 
characteristics and the maximum adjustment 
value of the 10 best-ranked hypotheses 
(Hypo1−Hypo10). These characteristics are 
listed in Table 4. The reliability of the PH4 
models was then assessed using the calculated 
cost parameters ranging from 62.4 (Hypo1) to 
122.1 (Hypo10). Their statistical data (costs, root 
mean square deviation RMSD, R2) are listed in 
Table 6; 1.66≤ RMSD ≤ 3.32 and 0.88≤ R2 ≤ 
0.97. The PH4 hypo1 with the best RMSD and 
the highest R2 was retained for further analysis; 

its regression equation p IC50
exp

 = 0.93× pIC50
pre

 + 

0.47 (plot in Figure 6); n=15; R2 = 0.97; R2
xv = 

0.94; F-test of 215.45; σ = 0.17; α > 98% with 
attest to the predictive capacity of the PH4 
model. For this model, the fixed cost (39.49) is 
less than the zero cost (389.78) by a difference D 
= 350.29. This difference is a major indicator of 
the quality of PH4 predictability (D > 70 
corresponds to an excellent chance or a 
probability greater than 90% that the model 
represents a true correlation [33]). Moreover, the 
configuration cost (11.82 for all assumptions) is 
well below 17 confirms this pharmacophore as 
reasonable [35]. The link between the 98% 
significance and the number of 49 scrambled 
runs of each hypothesis is based on the formula 
S = [1 − (1 + X)/Y] × 100. with X the total number 

of hypotheses having a total cost lower than the 
starting assumption (Hypo 1) and Y the total 
number of HypoGen runs (initial + random 
draws): X = 0 and Y = (1 + 49). So 98% = {1 − [(1 
+ 0)/(49 + 1)]} × 100. From all the above. The 
first hypothesis (Hypo1) was retained. We have 
designed a virtual library taking into account the 
active centers indicated by the PH4 at the level 
of the substitution zone (Fig. 5.A) namely a 
hydrophobic aromatic ring and an aliphatic 
hydrophobic group. This library has been 
screened by PH4 in order to obtain new. More 
potent analogs that can inhibit InhA from 
Mycobacterium tuberculosis. 
 

3.6 Generation of Virtual Library and it’s 
in silico Screening  

 
In silico screening of a virtual library 
(combinatorial) can lead to the identification of 
hits as demonstrated in our previous work on 
inhibitor design [26,31-33]. 
 
3.6.1 Virtual library 
 
A virtual library (VL) was generated through 
substitutions at the R position of the thiadiazole 
scaffold. To do this, three rings were selected 
(thiophene, furan and pyridine) then underwent 
substitutions at their X, Y and Z position by 
aliphatic groups (Table 5). This first library 
obtained has 3x10x20x13 = 7800 analogues. To 
design a more targeted library of reduced size 
and increased content of drug-like molecules, we 
introduced a set of filters and penalties such as 
Lipinski's rule of fives [36] which allowed 
selecting a smaller number of TDZs that can be 
screened in silico. This focus reduced the size of 
the first library to 990. 
 
3.6.2 In silico screening of library TDZs 
 
The targeted library of 990 analogs was then 
screened for molecular structures matching the 
3D-QSAR PH4 pharmacophore model of Hypo1. 
253 TDZs mapped to at least 2 pharmacophoric 
features including 58 to at least 3 PH4 features. 
These best-fit analogs (PH4 hits) then underwent 
complexation QSAR model screening. The GFE 
calculation of InhA-TDZx complex formation, its 
components and the predicted half-maximal 

inhibition concentrations IC50
pre

 calculated from 

correlation equation (B) (Table 3) is listed in 
Table 6. 
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A 

 
B 

 
C 
 

Fig. 4. Mechanics of intermolecular interaction energy distribution of Eint to residue 
contributions in [kcal.mol−1]: (A) Most active inhibitors TDZ1-5. (B)  Moderately active 

inhibitors TDZ6-10. (C) Less active inhibitors TDZ11-15. Table 2 [23] 
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C D 

 
E 

Fig. 5. Features of the best PH4 model (Hypo1) of InhA inhibitors generated by the 3D-QSAR 
pharmacophore module: (A) Coordinates of the centers. (B) Mapping of Hypo1 with TDZ1 

(the most potent TDZ molecule of the training set). (C) Angles (In degree) between the 
centers. (D) Distances in Å between the centers of the pharmaco-phoric features. Color code 

of features: blue (hydrophobic aliphatic); green (hydrogen bond acceptor); cyan 
(hydrophobic aromatic). (E) Plot of linear correlation of experimental vs predicted inhibitory 

activity. The validation set data points are shown in red color 
 

Table 4. Parameters of 10 generated pharmacophoric hypotheses for the InhA inhibitor after 
the CatScramble validation procedure (49 scrambled runs for each hypothesis at the selected 

confidence level of 98%) 
 

Hypothesis RMSD a R2 b Total Costsc Costs 
Differenced 

Closest  
Randome 

Featuresf 

Hypo1 1.66 0.97 62.4 327.4 58.2 HBA HBD HYD HYD_Ar HYD_Al 
Hypo2 2.54 0.93 89.4 300.4 84.6 HBA HBD HYD HYD_Ar HYD_Al 
Hypo3 3.07 0.90 110.2 279.6 87.7 HBA HBD HYD HYD_Ar HYD_Al 
Hypo4 3.16 0.89 114.4 275.4 90.2 HBA HBD HYD HYD_Ar HYD_Al 
Hypo5 3.17 0.89 115.1 274.7 91.1 HBA HBD HYD HYD_Ar HYD_Al 
Hypo6 3.25 0.88 119.0 270.8 91.8 HBA HBD HYD HYD_Ar HYD_Al 
Hypo7 3.26 0.88 119.2 270.6 92.2 HBA HBD HYD HYD_Ar HYD_Al 
Hypo8 3.26 0.88 119.5 270.3 92.7 HBA HBD HYD HYD_Ar HYD_Al 
Hypo9 3.32 0.88 122.1 267.8 93.7 HBA HBD HYD HYD_Ar HYD_Al 
Hypo10 3.32 0.88 122.1 267.8 93.7 HBA HBD HYD HYD_Ar HYD_Al 

a root mean square deviation; b squared correlation coefficient; c overall cost parameter of the PH4 
pharmacophore; d cost difference between Null cost and total cost of this hypothesis; e lowest cost of 49 

scrambled runs at a selected level of confidence of 98%. Fixed Cost = 39.49 with RMSD = 0, Null Cost = 389.78 
with RMSD = 6.96 and Configuration cost = 11.82. f HBA (hydrogen-bond acceptor); HYD (hydrophobic); HYD-Al 

(hydrophobic aliphatic); HYD-Ar (hydrophobic aromatic) 
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Table 5.  R Group (fragments. building blocks. substituents) used in the design of the initial thiadiazole diversity virtual combinatorial library 
 

 
R A B C 

   
 THIOPHENE FURANE PYRIDINE 

X1 X2 X3 X4 X5 X6 X7 

       

methyl chloromethyl 1-bromopropyl 1-fluoropropyl butyl fluoromethyl 1-chloropropyl 

X8 X9 X10 Y1 Y2 Y3 Y4 

    
   

1-fluorobutyl 1-chlorobutyl 1-fluoropentyl 1-bromohexyl 2-methylbutyl 2.2-dimethylheptyl 2-methylheptyl 

Y5 Y6 Y7 Y8 Y9 Y10 Y11 

  
  

   

3-methylpentyl 3-methyloctyl 2-chloro-3-ethylpentyl 1-chlorobutyl-2-ol 1-bromohexyl-2-
amine 

neopentyl-N- propyl-1-
amine 

heptyl-2-amine 

Y12 Y13 Y14 Y15 Y16 Y17 Y18 

 
 

  
 

  
Oxyl-ethane hexyl-1-amine 1-chloro-1-fluoro-methyl methylamine methyl formylamide 2-chloro-3-

methylpentyl 
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Y19 Y20 Z1 Z2 Z3 Z4 Z5 

  

H 

  

 

 
1-chloroethyl-1-
amine 

1-chloro-2-
methylbutyl 

hydrogen 3.3-dimethylbutyl-2-
thiol 

2-chloro-3-
methylpentyl 

octyl-3-amine 1-chlorobutyl-2-ol 

Z6 Z7 Z8 Z9 Z10 Z11 Z12 

    
 

  

methylamine 1.1-dibromo-1-
fluoropropyl 

1-chlorobutyl-2-ol butyl-2-ol propyl-1-ol 2.2-dimethylbutyl 3-methylpentyl 

Z13       

 
ethylamine 
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Table 6. Relative GFE and their components for the top scoring 58 virtual TDZ analogs. The 
analogs numbering concatenates the index of each substituent R with the substituent 

numbers taken from Table 5 

` 
 

N° TDZ Analogs Mw a ΔΔHMM b ΔΔGsol c ΔΔTSvib d ΔΔGcom e 𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

  f [nM] 

Ref. TDZ1 434 0 0 0 0 4 g 
1 B-X8-Y20-Z1 487 -7.24 0.56 1.82 -8.50 0.1 
2 B-X5-Y15-Z1 394 0.19 -5.54 2.23 -7.58 0.1 
3 B-X2-Y7-Z1 489 -7.42 -0.18 -0.41 -7.19 0.1 
4 B-X2-Y15-Z1 386 3.30 -11.12 -0.90 -6.92 0.1 
5 A-X1-Y12-Z11 467 0.77 0.36 7.83 -6.70 0.1 
6 B-X10-Y16-Z1 411 -4.41 0.02 1.90 -6.29 0.2 
7 C-X6-Y12-Z12 480 4.26 -6.93 3.48 -6.15 0.2 
8 B-X4-Y14-Z1 435 -2.61 -4.19 -0.94 -5.86 0.2 
9 C-X6-Y16-Z12 450 2.86 -5.09 3.56 -5.78 0.2 
10 B-X9-Y19-Z1 476 -2.96 -2.50 0.03 -5.49 0.2 
11 B-X8-Y14-Z1 449 -8.62 2.23 -1.07 -5.32 0.3 
12 B-X6-Y12-Z11 469 6.93 -4.15 7.89 -5.11 0.3 
13 A-X4-Y20-Z1 489 3.89 -7.28 1.07 -4.46 0.4 
14 C-X1-Y20-Z1 438 0.23 -0.72 2.54 -3.03 1 
15 A-X1-Y12-Z2 499 1.62 1.02 5.64 -3.00 1.1 
16 B-X4-Y5-Z1 487 1.85 -1.39 2.88 -2.42 1.5 
17 A-X6-Y16-Z11 455 1.63 1.55 5.43 -2.25 1.7 
18 C-X2-Y20-Z1 472 3.05 -3.07 1.80 -1.82 2.3 
19 C-X7-Y13-Z1 495 13.84 -8.66 6.89 -1.71 2.4 
20 B-X7-Y16-Z1 399 -2.13 2.11 1.26 -1.28 3.2 
21 C-X1-Y18-Z1 452 3.31 -2.00 2.12 -0.81 4.4 
22 C-X4-Y5-Z6 493 15.22 -9.77 6.13 -0.68 4.7 
23 B-X1-Y20-Z1 427 0.00 0.08 0.68 -0.60 5.0 
24 B-X5-Y16-Z1 379 -1.59 2.16 1.02 -0.45 5.5 
25 A-X6-Y16-Z2 487 2.57 0.63 3.23 -0.04 7.3 
26 B-X4-Y18-Z1 487 2.57 0.33 2.90 0.00 7.5 
27 B-X1-Y12-Z12 451 11.65 -7.58 4.04 0.02 7.6 
28 C-X1-Y5-Z6 481 8.69 -5.60 3.05 0.04 7.6 
29 B-X2-Y20-Z1 461 -2.75 1.10 -1.71 0.06 7.8 
30 B-X1-Y20-Z6 456 0.84 0.29 0.81 0.32 9.3 
31 C-X1-Y14-Z12 484 12.46 -8.89 2.94 0.64 11.4 
32 B-X5-Y8-Z1 471 4.61 -0.86 2.94 0.82 12.8 
33 A-X2-Y12-Z10 475 -1.00 2.17 0.06 1.10 15.5 
34 A-X8-Y12-Z1 443 1.82 0.30 0.31 1.81 24.6 
35 A-X5-Y12-Z1 425 2.74 0.44 1.17 2.01 28.1 
36 C-X2-Y2-Z1 438 12.41 -8.13 1.84 2.45 37.6 
37 C-X7-Y2-Z1 466 18.41 -11.05 4.80 2.56 40.5 
38 A-X1-Y20-Z6 472 4.58 -0.39 1.50 2.69 44.1 
39 A-X4-Y13-Z1 484 -6.88 14.41 4.69 2.83 48.5 
40 B-X2-Y16-Z12 455 7.63 -0.07 3.82 3.74 49 
41 A-X1-Y13-Z1 438 11.01 -7.23 0.72 3.07 56.7 
42 A-X10-Y12-Z1 457 4.08 1.99 2.23 3.84 94.7 
43 A-X6-Y20-Z6 490 3.49 1.50 0.90 4.09 111 
44 C-X1-Y15-Z12 481 16.05 -8.24 3.15 4.66 163 
45 A-X1-Y12-Z1 383 5.64 0.97 1.48 5.12 221 
46 A-X6-Y12-Z1 401 3.58 1.22 -0.61 5.41 268 
47 A-X1-Y11-Z1 452 10.77 0.17 5.43 5.51 285 
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N° TDZ Analogs Mw a ΔΔHMM b ΔΔGsol c ΔΔTSvib d ΔΔGcom e 𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

  f [nM] 

48 A-X1-Y12-Z9 455 3.02 5.02 2.31 5.72 328 
49 B-X1-Y20-Z9 499 5.60 7.47 7.13 5.94 379 
50 B-X1-Y15-Z12 436 12.20 0.44 6.57 6.06 411 
51 A-X10-Y14-Z1 479 0.07 4.04 -2.16 6.28 473 
52 A-X1-Y12-Z10 441 7.74 1.17 2.29 6.62 596 
53 C-X2-Y2-Z6 467 18.09 -8.11 2.24 7.74 1244 
54 A-X1-Y12-Z8 489 7.26 0.81 -0.57 8.64 2266 
55 C-X2-Y5-Z13 495 20.09 -6.47 4.62 8.99 2859 
56 C-X2-Y7-Z6 495 20.53 -7.26 3.82 9.46 3889 
57 A-X2-Y20-Z1 477 8.40 0.14 -1.03 9.56 4168 
58 B-X6-Y20-Z1 445 3.63 1.63 -4.93 10.19 6324 
a Mw is the molar mass of the inhibitor; b ΔΔHMM is the relative enthalpy contribution to the GFE change of InhA-
TDZ upon formation of the ΔΔGcom complex (for details. see footnote to Table 2); c ΔΔGsol is the solvation GFE 
contribution relative to ΔΔGcom; d ΔΔTSvib is the relative (vibrational) entropic contribution to ΔΔGcom; e ΔΔGcom is 
the relative Gibbs free energy change related to the formation of the InhA-TDZ enzyme-inhibitor complex ΔΔGcom 

= ΔΔHMM + ΔΔGsol −ΔΔTSvib; f 𝐼𝐶50
𝑝𝑟𝑒

 is the predicted inhibitory potency towards InhA calculated from ΔΔGcom 

using the correlation equation (B), Table 3; g 𝐼𝐶50
𝑒𝑥𝑝

 is given for the reference inhibitor TDZ1 instead of 𝐼𝐶50
𝑝𝑟𝑒

 

  

3.7 Pharmacokinetic Profile of New 
Analogs TDZ  

 

ADME-related properties (absorption. 
distribution. metabolism and excretion) were 
estimated for the designed analogs as well as for 
some selected reference anti-TB drugs. The best 
engineered TDZ derivatives with poor oral 
bioavailability due to low water solubility and 
rapid phase II metabolism should be disregarded 
for possible use as anti-tuberculosis drugs. All 
ADME-related properties shown in Table 7 such 
as octanol-water partition coefficient, aqueous 
solubility, blood-brain partition coefficient, Caco-2 
cell permeability, serum protein binding, number 
of probable metabolic reactions and 18 other 
descriptors of the new analogues were 
calculated by the QikProp program [37] based on 
the Jorgensen method [38,39]. Experimental 
data for over 710 compounds including 
approximately 500 drugs and related heterocyclic 
were used to generate regression equations 
correlating the experimental and calculated 
descriptors resulting in an accurate prediction of 
the pharmacokinetic properties of drug-like 
molecules. The predicted oral bioavailability for 
the new TDZ analogs ranges from (71-100) % 
and is significantly higher than that of triclosan 
where the best active derivative has unfavorable 
oral bioavailability. Since a value above 80% is 
considered good, our TDZ analogs show good 
human oral absorption from the gastrointestinal 
tract (HOA). Drug-like (#stars), the number of 
property descriptors that fall outside the range of 
optimal values determined for 95% of known 
drugs out of 24 selected descriptors calculated 
by QikProp was used as an additional selection 
criterion for ADME-related compounds. The 

values of the best designed TDZs are compared 
with those calculated for drugs used for the 
treatment of tuberculosis or in clinical trials 
(Table 7). Our best-designed analogues all show 
#stars equal to 0 or 1, which means that the 
optimal range of values for any of the addiction 
descriptors has not been violated. Thus our six 
best designed TDZ analogs have a much more 
interesting pharmacokinetic profile in the 
development of InhA inhibitors of Mycobacterium 
tuberculosis. 
 

4. DISCUSSION 
 
To better understand the inhibitory power of our 
designed analogs, visual analysis shows us a 
better filling of the hydrophobic pocket [33] of our 
active site by slightly larger fragments capped by 
the furan and thiophene ring. Indeed, the 
fragments X1 (methyl), X2 (chloromethyl), X5 
(butyl), X8 (fluorobutyl), X10 (fluoropentyl), Y7 (2-
chloro-3-ethylpentyl), Y12 (oxyl-ethane), Y15 
(methylamine), Y16 (methyl), Y20 (1-chloro-2-
methylbutyl) and Z11 (2.2-dimethylbutyl) 
interacted significantly with the pocket residues. 
The most active analogues exemplified by TDZ-
B-X8-Y20-Z1 (Fig. 7) with a predicted inhibitory 

potency of IC50
pre

=0.1 nM, i.e. 40 times more 

active than our best active training set ligand 

TDZ1 ( IC50
pre

= 4 nM), due to VdW interactions 

with Pro99, Gln100, Gly104, Ala201 and Ile202 
while its furan ring establishes a Pi-stacked 
amide-like hydrophobic bond with Ala198 and a 
Pi-alkyl interaction with Met103. Fluorobutyl 
through fluorine establishes alkyl interactions 
with Tyr158, Ala157, Ile215 and Leu218 while
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Fig. 6. Histograms of occurrence frequency of individual R groups in the 58 best selected analogs 
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 = 0.1 nM) 

   
TDZ-B-X2-Y15-Z1 (𝐈𝐂𝟓𝟎
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𝐩𝐫𝐞
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TDZ-B-X8-Y20-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.1nM) TDZ-B-X5-Y15-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.1 nM) 
TDZ-B-X2-Y7-Z1 (𝐈𝐂𝟓𝟎

𝐩𝐫𝐞
 = 0.1 nM) 

 

   
TDZ-B-X2-Y15-Z1 (𝐈𝐂𝟓𝟎

𝐩𝐫𝐞
 = 0.1 nM) TDZ-A-X1-Y12-Z11 (𝐈𝐂𝟓𝟎

𝐩𝐫𝐞
 = 0.1 nM) TDZ-B-X10-Y16-Z1 (𝐈𝐂𝟓𝟎

𝐩𝐫𝐞
 = 0.2 nM) 

 
Fig. 7. Mapping of analogs to InhA inhibition pharmacophore: TDZ-B-X8-Y20-Z1, TDZ-B-X5-Y15-Z1, TDZ-B-X2-Y7-Z1,  TDZ-B-X2-Y15-Z1, TDZ-A-
X1-Y12-Z11, TDZ-B-X10-Y16-Z1. 2D schematic interaction diagram of the analogs TDZ-B-X8-Y20-Z1; TDZ-B-X5-Y15-Z1, TDZ-B-X2-Y7-Z1, TDZ-B-

X2-Y15-Z1, TDZ-A-X1-Y12-Z11, TDZ-B-X10-Y16-Z1. Connolly surface of InhA active site with analogs TDZ-B-X8-Y20-Z1, TDZ-B-X5-Y15-Z1, TDZ-B-
X2-Y7-Z1, TDZ-B-X2-Y15-Z1, TDZ-A-X1-Y12-Z11, TDZ-B-X10-Y16-Z1. The surface of the binding site is colored according to the hydrophobicity 

of the residues: red - hydrophobic, blue - hydrophilic and white – intermediate 
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Fig. 8. Interaction energy per residue with the most active ligand of the TDZ1 test set (𝐈𝐂𝟓𝟎
𝐞𝐱𝐩

= 4 nM) and the six best analogues obtained: TDZ-B-

X8-Y20-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.1 nM), TDZ-B-X5-Y15-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.1 nM), TDZ-B-X2-Y7-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 1 nM), TDZ-B-X2-Y15-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

. = 0.1 nM), TDZ-A-X1-Y12-

Z11 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.1 nM),  TDZ-B-X10-Y16-Z1 (𝐈𝐂𝟓𝟎
𝐩𝐫𝐞

 = 0.2 nM) 

 
Table 7. ADME-related properties of the best designed TDZ analogs and known antituberculotic agents either in clinical use or currently 

undergoing clinical testing computed by QikProp  [40] 
 

TDZa #starb MW 
c 

[g.mol-1] 
Smol d 
[Å2] 

Smol.hfo 
e

 

[Å2] 
Vmol 

f 

[Å3] 
RotB g HBdon

h HBacc 
i logPo/w 

j logSwat 
k logKHSA 

l logB/Bcaco 
m BIPcaco 

n 

[nm.s-1] 
#metab o 𝐈𝐂𝟓𝟎

𝐩𝐫𝐞 p 

[nM] 

HOA q %HOA r 

TDZ-B-X8-Y20-Z1 1 487 773 440 1453 11 2 5 5.9 -7.1 1.0 -0.9 837 7 0.1 1 100 
TDZ-B-X5-Y15-Z1 1 394 687 380 1240 10 4 6 2.5 -3.5 0.2 -1.3 60 9 0.1 2 73 
TDZ-B-X2-Y7-Z1 1 489 771 417 1418 10 2 5 5.7 -7.3 1.0 -0.9 825 7 0.1 1 100 
TDZ-B-X2-Y15-Z1 1 386 618 249 1096 7 4 6 1.9 -3.1 0.0 -0.8 71 9 0.1 2 71 
TDZ-A-X1-Y12-Z11 1 467 764 549 1437 10 2 6 5.5 -6.7 1.0 -0.9 1298 8 0.1 1 100 
TDZ-B-X10-Y16-Z1 0 411 713 411 1286 9 2 5 4.6 -6.1 0.6 -0.9 860 7 0.2 3 100 
Rifampin 1 137.1 314 0.0 480 * 2 -3 4.5 −0.7 0 −0.8 −0.8 267.5 2 − 2 67 
Isoniazid 4 123.1 * 300 0.0 443 * 1 2 5 −0.6 −0.5 −0.8 −0.7 298.4 4 − 2 67 
Ethambutol 2 204.3 476 395.8 806 11 4 6.4 −0.2 0.6 −0.8 0.0 107.8 4 − 2 62 
Pyrazinamide 10 823.0 * 1090 * 850.0 * 2300 * 25 * 6 20.3 * 3.0 −3.1 −0.3 −2.7 38.2 11 * − 1 34 
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TDZa #starb MW 
c 

[g.mol-1] 
Smol d 
[Å2] 

Smol.hfo 
e

 

[Å2] 
Vmol 

f 

[Å3] 
RotB g HBdon

h HBacc 
i logPo/w 

j logSwat 
k logKHSA 

l logB/Bcaco 
m BIPcaco 

n 

[nm.s-1] 
#metab o 𝐈𝐂𝟓𝟎

𝐩𝐫𝐞 p 

[nM] 

HOA q %HOA r 

Gatifloxacin 0 375.4 598 355.7 1093 2 1 6.8 0.5 −4.0 0 −0.6 17.0 1 − 2 52 
Moxifloxacin 0 401.4 642 395.6 1168 2 1 6.8 1.0 −4.7 0.2 −0.6 20.9 1 − 2 56 
Rifapentine 10 877.0 * 1025 * 844.9 * 2333 * 24 * 6 20.9 * 3.6 −2.2 −0.2 −1.5 224.0 13 * − 1 51 
Bedaquiline 4 555.5 787 213.7 1532 9 1 3.8 7.6 * −6.9 1.7 0.4 1562.2 5 − 1 100 
Delamanid 2 534.5 796 284.4 1470 7 0 6.0 5.8 −7.6 1.0 −1.0 590.9 2 − 1 85 
Linezolid 0 337.4 555 337.2 996 2 1 8.7 0.6 −2.0 −0.7 −0.5 507.0 2 − 3 79 
Sutezolid 1 353.4 594 330.6 1047 2 1 7.5 1.3 −3.4 −0.4 −0.4 449.3 0 − 3 82 
Ofloxacin 1 361.4 581 337.0 1044 1 0 7.3 −0.4 −2.8 −0.5 −0.4 25.9 1 − 2 50 
Amikacin 14 585.6 739 350.3 1500 22 * 17 * 26.9 * −7.9 * −0.2 −2.1 −3.5 0 14 * − 1 0 
Kanamycin 10 484.5 656 258.9 1291 17 * 15 * 22.7 * −6.7 * 2.0 −1.4 −3.1 0 12 * − 1 0 
Imipenem 0 299.3 487 259.1 880 8 3 7.2 1.0 −1.8 −0.7 −1.4 35.0 3 − 3 61 
Amoxicillin 2 365.4 561 164.6 1033 6 4.25 8.0 −2.5 −0.8 −1.1 −1.5 1.0 5 − 1 12 
Clavulanate 0 199.2 397 184.6 630 4 2 6.5 −0.8 0.3 −1.3 −1.3 13.3 2 − 2 42 

a designed TDZ analogs and known antituberculotic agents. Table 6; b drug likeness. number of property descriptors (24 out of the full list of 49 descriptors of QikProp. ver. 3.7. 
release 14) that fall outside of the range of values for 95% of known drugs; c molar mass in [g.mol-1] (range for 95% of drugs: (130–725) g.mol−1) [49]; d total solvent-accessible 
molecular surface in [Å2] (probe radius 1.4 Å) (range for 95% of drugs: (300–1000) Å2); e hydrophobic portion of the solvent-accessible molecular surface in [Å2] (probe radius 
1.4 Å) (range for 95% of drugs: (0–750) Å2); f total volume of molecule enclosed by solvent-accessible molecular surface in [Å3] (probe radius 1.4 Å) (range for 95% of drugs: 

(500–2000) Å3); g number of non-trivial (not CX3) non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0–15); h estimated number of hydrogen 
bonds that would be donated by the solute to water molecules in an aqueous solution. Values are averages taken over a number of configurations so they can assume non-
integer values (range for 95% of drugs: 0.0–6.0); i estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution. 
Values are averages taken over a number of configurations so they can assume non-integer values (range for 95% of drugs: 2.0–20.0); j logarithm of partitioning coefficient 

between n-octanol and water phases (range for 95% of drugs: −2 to 6.5); k logarithm of predicted aqueous solubility logS. S in [mol.dm–3] is the concentration of the solute in a 
saturated solution that is in equilibrium with the crystalline solid (range for 95% of drugs: −6.0 to 0.5); l logarithm of predicted binding constant to human serum albumin (range 

for 95% of drugs: −1.5 to 1.5); m logarithm of predicted brain/blood partition coefficient (range for 95% of drugs: −3.0 to 1.2); n predicted apparent Caco-2 cell membrane 
permeability in Boehringer-Ingelheim scale in [nm s-1] (range for 95% of drugs: < 25 poor. > 500 nm s−1 great); o number of likely metabolic reactions (range for 95% of drugs: 

1–8); p predicted inhibition constants 𝐼𝐶50
𝑝𝑟𝑒

. 𝐼𝐶50
𝑝𝑟𝑒

 was predicted from computed ΔΔGcom using the regression Equation B shown in Table 2; q human oral absorption (1 = low. 2 

= medium. 3 = high); r percentage of human oral absorption in gastrointestinal tract (<25% = poor. >80% = high); * star in any column indicates that the property descriptor 
value of the compound falls outside the range of values for 95% of known drugs 
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there are alkyl interactions between the methyl of 
1-chloro-2-methylebutyl with Ala198 on the one 
hand; and on the other hand between chlorine 
and Ala 206 and Leu207. Similarly, a hydrogen 
bond (HB) was established between the NH of 
the methylamine fragment and the "O" of the 
carbonyl group of Met103 and alkyl interactions 
between the butyl with Met103, Ala157, Tyr158 
and Ile215. The individual contribution in 
interaction energy of the residues (Fig. 8) 
confirms our results. For example in the case of 
our most active analogue TDZ-B-Y20-X8-Z1, the 
contributions at the level of most active site 
residues strongly increased in comparison to the 
those with our most active training set TDZ1 as 
shown in Fig. 8. Interactions identified through 
RX crystallography analysis from the starting 
structure [23] are conserved and improved for 
some of them with relevant R-group 
substitutions. 
 
We notice that the interaction of our analog 
doubled with Gln100, was multiplied by 11 with 
Ala206 and by approximately 3 with Leu218. 
These strong interactions of our analog with 
these residues therefore contributed to its 
stabilization in the active site of InhA. All of the 
above substantiates the inhibitory power of our 
six best engineered analogs: TDZ-B-X8-Y20-Z1 

( IC50
pre

 =0.1 nM), TDZ-B-X5-Y15-Z1 ( IC50
pre

 =0.1 

nM), TDZ-B-X2-Y7-Z1 ( IC50
pre

 =0.1 nM), TDZ-B-

X2-Y15-Z1 (IC50
pre

 =0.1 nM), TDZ-A-X1-Y12-Z11 

(IC50
pre

 =0.1 nM), TDZ-B-X10-Y16-Z1 (IC50
pre

 =0.2 

nM). 
 

5. CONCLUSION 
 
InhA is a promising target in the development 
and research of new anti-TB drugs due to its role 
in the final step of mycolic acid synthesis [9]. The 
crystallographic structure of the InhA-TDZ1 
(4BQP) complex and the structural properties of 
the thiadiazole derivatives identified by Roman 
Sink et al. [23] as a potential antituberculosis 
agent and whose target is InhA enabled us to 
develop a QSAR complexation model capable of 
explaining more than 92% of the variation in the 
experimental inhibitory activity of thiadiazole 
derivatives by the Gibbs free energy of formation 
of the InhA-TDZx complex. Following this QSAR 
model, we obtained a 3D-QSAR PH4 
pharmacophore model using a training set of 15 
TDZs and a validation set of 3 TDZs with known 
inhibitory activities [23]. The visual analysis and 
calculation of the interactions between InhA and 
TDZs in the active site of the enzyme guided us 

in the design of a virtual combinatorial library of 
new TDZ analogs with a substitution on the TDZ 
scaffold at the position R. The library thus 
obtained was first focused according to Lipinski's 
rule of five and then screened by the 
pharmacophore. This allowed us to retain 58 
best virtual hits which were subjected to the 
calculation of the inhibitory predicted potency by 
the QSAR complexation model. The six best 
analogs achieved the expected activities in the 
subnanomolar concentration range: TDZ-B-X8-
Y20-Z1, TDZ-B-X5-Y15-Z1, TDZ-B-X2-Y7-Z1, 
TDZ-B-X2-Y15-Z1, TDZ-A-X1-Y12-Z11  all with a 

predicted potency of 0.1 nM (IC50
pre

 = 0.1 nM) and 

TDZ-B-X10-Y16-Z1 (IC50
pre

 = 0.2 nM). In addition 

to their activities these molecules present a 
favorable predicted pharmacokinetic profile and 
deserve to be synthesized and biologically 
evaluated. 
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