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The causal mechanism of Alzheimer’s disease is extremely complex. Achieving great

statistical power in association studies usually requires a large number of samples. In

this work, we illustrated a different strategy to identify AD risk genes by clustering AD

patients into modules based on their single-patient differential expression signatures.

The evaluation suggested that our method could enrich AD patients with similar clinical

manifestations. Applying this to a cohort of only 310 AD patients, we identified 174 AD

risk loci at a strict threshold of empirical p < 0.05, while only two loci were identified using

all the AD patients. As an evaluation, we collected 23 AD risk genes reported in a recent

large-scale meta-analysis and found that 18 of them were rediscovered by association

studies using clustered AD patients, while only three of them were rediscovered using all

AD patients. Functional annotation suggested that AD-associated genetic variants mainly

disturbed neuronal/synaptic function. Our results suggested module analysis helped to

enrich AD patients affected by the common risk variants.
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1. INTRODUCTION

Alzheimer’s disease is a prevalent neurological disease among the aging population. Even with
decades of intensive studies, its causal mechanisms remain elusive. Studies of the familial
early-onset cases revealed three mutated genes, including APP, PSEN1, and PSEN2 (Lanoiselée
et al., 2017). They provided valuable insights into the contribution of the amyloidogenic pathway
for AD genesis. Genome-wide association studies (GWAS) of late-onset AD patients discovered
more risk genes. Among them, APOE ε4, an apolipoprotein, is a major genetic risk of late-onset
AD. It accounts for 3- (heterozygous) to 15-fold (homozygous) increase in AD risk (De Jager
et al., 2012). The AlzGene database (http://www.alzgene.org) stores these AD risk genes. Even
though many AD risk genes have been discovered, known genes only explain a small proportion
of heritability. There is still a great challenge on how to illustrate the AD causal mechanism in an
integrated way, limiting their application in drug discovery.

Power is a critical consideration in association studies (Ball, 2013). AD often requires a large
sample size to achieve a good power (Belloy et al., 2019; Kunkle et al., 2019). For example, a recent
meta-analysis included 71,880 cases and 383,378 controls and identified 25 risk loci, implicating
215 potential causative genes (Jansen et al., 2019). However, such studies are limited by sample
collection and cost, which hinders the discovery ofmore risk variants. To overcome such a problem,
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a viable strategy is to stratify patients based on some disease-
relevant features (Dahl et al., 2019). For AD, the carrier’s status of
APOE-ε4 had been used to cluster the AD patients in association
studies and successfully reported novel features (Marioni et al.,
2017). Other factors, e.g., sex (Deming et al., 2018) and age (Lo
et al., 2019), have also been used for AD patient stratification
and the improved performance supports the values of patient
stratification in association studies.

With the increase in multi-omics data, system biology
methods show a good potential to unveil the complexmechanism
of AD genesis (Wang et al., 2016; Mostafavi et al., 2018; Meng
and Mei, 2019). One example is the Accelerating Medicines
Partnership–Alzheimer’s Disease (AMP-AD) projects, which
includes transcriptomics, epigenomics, genetics, and proteomics
data from over 2,000 human brain samples. These data allow
for AD patient stratification so that the patients affected by the
common causal mechanism can be clustered together. Currently,
there are some single-patient analysis tools (Vitali et al., 2017).
These algorithms integrate gene expression with network or
pathway annotation to identify the disease-related changes at a
single-patient level (Gardeux et al., 2014; Liu et al., 2014; Schissler
et al., 2017). These tools can report disease-relevant genes or
pathways at a single-patient level. However, these tools still have
some limitations. For example, it is hard to evaluate the generality
of reported genes and pathways among different patients, making
it less applicable for precise drug discovery.

In this work, we have proposed a new strategy to stratify AD
patients by clustering the AD patients with similar differential
expression patterns at a single-patient level. Our evaluation
suggested that this method could enrich AD patients with
common clinical manifestations. We applied it to 310 AD
patients for both patient module analysis and genetic association
studies. We identified 174 AD risk loci in 143 modules at a strict
cutoff of empirical p < 0.05, while there were only two risk
loci identified using all the AD patients. Function annotation
suggested that identified risk genes were mainly related to
neuronal/synaptic functions. We also evaluated 23 known AD
risk genes and re-discovered 18 of them in at least one module.
Allele frequency studies indicated that module analysis using
single-patient DEGs enriched AD patients affected by common
risk variants.

2. MATERIALS AND METHODS

2.1. The Samples and Subjects
The AD and control sample data were collected from the
“ROS/MAP” study (De Jager et al., 2012) and “HBTRC” study
(Zhang et al., 2013). “ROS/MAP” data included the genotype,
expression, and clinical data of 1,788 subjects. The AD-related
clinical annotation was provided by the data suppliers. The
important one included age, the cognitive score (cts), years of
education, ApoE genotype, braak stage (braaksc), and assessment
of neuritic plaques (ceradsc). We use the clinical annotation
for “cogdx,” a physician’s overall cognitive diagnostic category,
to select the AD patient (cogdx = 4 or 5) and control subjects
(cogdx = 1). After filtering the ones with missing or unclear
information for either clinical records or RNA-seq, we found

219 AD patients and 187 control subjects that would be used
for module analysis and clinical enrichment studies. “HBTRC”
study had both RNA-seq and genotype data for 573 samples,
including 311 AD samples. We filtered the one with missed
clinical information, RNA-seq, or genotype data. Finally, 310 AD
patients and 153 control subjects were used. Detailed information
for selected data are publicly available at https://www.synapse.
org/#!Synapse:syn5550382.

2.2. Clustering AD Patients Using
Single-Patient DEGs
We developed a computational algorithm to cluster AD
patients (see Supplementary Figure 1). The main idea behind
this tool is that AD patients are highly diverse and can be
affected by divergent mechanisms; it is possible to cluster
AD patients if they shared a subset of differentially expressed
genes (DEGs). This algorithm is implemented in the R package
DEComplexDisease. It mainly includes four steps:

• Utilize RNA-seq data of normal subjects to construct reference
expression profiles. In this step, the parameters of a negative
binomial distribution or Gaussian distribution are estimated
to describe the distribution profile of non-disease samples;

• The gene expression of AD patients is transformed into binary
differential expression status. In this step, the expression
values of genes are fitted against reference expression profiles.
Binary differential expression status is assigned as 1, –
1, or 0 to indicate upregulation, downregulation, or no
difference, respectively;

• Apply a bi-clustering analysis to identify DEGs that are
repeatedly observed in multiple AD patients, e.g., n = 5;

• Using the spDEG of each AD patient as the signature,
we compute the co-expression correlation and identify
the patients with the most similar expression profiles to
construct modules.

The R codes are publicly available at https://github.com/menggf/
DEComplexDisease.

2.3. Clinical Manifestation Association
Analysis
“ROS/MAP” data mainly includes three AD-related clinical
features, including cognitive score (cts), CERAD score, and
braaksc. “HBTRC” has clinical information for braak and
atrophy. Such clinical features can be used to evaluate the disease
relevance of modules. Therefore, we applied our tool to generate
modules of different sizes, e.g., 40, 60, and 120. For each module,
AD patients can be grouped as module patients and non-module
patients. We did the Kolmogorov-Smirnov (KS) test to evaluate
the clinical manifestation differences between two groups of
AD patients.

2.4. Processing Genotype Data
We applied stringent quality control (QC) filters to the genotype
data. First, we removed the individuals with missing genotype
rates > 0.05 and SNPs with missing call rate > 0.05. In the next
step, the SNPs with minor allele frequency MAF < 0.1 or Hardy-
Weinberg equilibrium p-value < 1.0 × 10−5 were excluded.
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The individuals with autosomal heterozygosity above empirically
determined thresholds were filtered. We calculated the identity-
by-descent (IBD) of all possible gene pairs and removed the
ones with potential genetic relatedness. These QC filters were
performed for multiple rounds to make sure that no individual
or SNP could be filtered anyway. We then performed pre-
phasing with SHAPEIT2 (Delaneau et al., 2011), using the 1000
Genome Project data as a reference. Afterwards, we conducted
whole-genome imputation using IMPUTE2 (Howie et al., 2012)
in 5-Mb segments with filtering of the SNP with MAF less than
0.1 in the EUR population. The imputed data were evaluated
for quality control using the thresholds mentioned before. We
performed principal component analysis (PCA) on autosomal
genotype data and adjustment for stratification.

2.5. Association Study
Association studies were performed for both AD patients and
module patients. To simplify it, we only include the definite
AD patients and control individuals in the association analysis
so that binary disease status could be assigned for each patient.
We performed population stratification by use of the principal
components of chromosomal genetic variations. Association
analysis was performed using a fast score test implemented
in the GenABEL package. In this step, the first 10 principal
components were used as covariates to remove the effects of
population structure to make sure there was no clear evidence
of inflation in the association results. To control the false
positive discovery, we also estimated the empirical p-values using
performing permutation analysis by generating the distribution
under the null hypothesis for 1,000 times. In each round of call,
theminimal p-value was compared with the original p-values. For
an SNP, its empirical p-value is defined as the proportion of times
where the minimal p-values of 1,000 resamples was less than the
original p-value. We set empirical p-values< 0.05 as the cutoff to
selecting the module-associated SNPs. The codes for association
studies are available at https://github.com/menggf/spDEG_and_
Association.

2.6. Enrichment Analysis
Weperformed enrichment analysis to find the clinical association
of patient modules. Among a total of n patients, k patients were
predicted as a module. The number of patients with a clinical
manifestation is p, which also includes x module patients. We
used Fisher’s exact test to evaluate if the observed x patients
resulted from random occurrences. We used the following R
codes to calculate the p-value:

> m = matrix(c(x, k− x, p− x, n− k), ncol = 2, byrow = T)

> p = fisher.test(m, alternative = "greater")$p.value

3. RESULTS

3.1. A New Pipeline to Cluster AD Patients
Utilizing Single-Patient DEGs
Considering the diversity of AD patients, we propose a new
analysis strategy to cluster the AD patients affected by the
common mechanisms. This method is based on differential

expression analysis at single-patient levels. Figure 1A and
Supplementary Figure 1 describe the schema of the whole
analysis pipeline. In our analysis, the reference expression profile
was firstly built using the RNA-seq counts or normalized data
of the normal individuals, which defined the ranges of gene
expression values at a non-disease status. Next, gene expression
values of patients were transformed into binary status by fitting to
the reference expression profiles. In detail, if the gene expression
values of patients exceeded the range of reference expression
profiles, 1 or –1 is assigned to indicate up- or downregulation. To
improve confidence, a bi-clustering analysis algorithm is applied
to perform filtering and cross-validation so that the whole set
of single-patient differentially expressed genes (spDEGs) can be
repeatedly observed in multiple patients, e.g., n = 5. Finally,
using each patient as a seed, we cluster the patients into modules
if they carry the same set of spDEGs.

As an evaluation, we applied this pipeline to the dataset
collected from the ROS/MAP study (De Jager et al., 2012),
which includes 251 AD samples with both RNA-seq data
and clinical annotation. We identified cross-validated spDEGs
for 171 patients. Among 15,582 brain expressed genes, 3,878
spDEGs were predicted to be differentially expressed in at
least one AD patient at a cutoff of p < 0.05. Compared
to traditional differential expression analysis using all the AD
samples, they covered 93.8% of AD DEGs. We then investigated
their differential expression status among all the AD patients.
Figure 1B showed the results of the top 20 most observed
spDEGs. We did not observe any shared differential expressed
genes across all the AD patients. On the contrary, all spDEGs
were only differentially expressed in a small proportion of
251 AD patients. Additionally, we also observed inconsistent
differential expression directions. Taking the QDPR gene as
an example, it was upregulated in 22% of AD patients while
also downregulated in 3% AD patients. Similar results were
observed with other spDEGs (see Figure 1B). We also performed
module analysis using the most observed differential expressed
genes and observed distinct differential expression patterns
(see Supplementary Figures 2, 3). All these results suggested
that AD patients were greatly diverse and that it would be
a risk to treat AD patients as a homogeneous whole in
any analysis.

Next, we investigated if AD patient clustering could enrich
AD patients with common clinical manifestations. We generated
patient modules based on spDEG expression profile similarity.
The modules were arbitrarily set to have different sizes of AD
patients, e.g., 40, 60, and 100, which could be denoted as
pdeg40, pdeg60, and pdeg100, respectively. The patients within
the same module were supposed to be affected by the common
mechanisms. As a control, we also generated modules using
randomly selecting genes and DEGs identified by traditional
differential expression analysis. Figure 1C showed the evaluation
results using cognitive scores (cts). At a cutoff of p < 0.01,
37 “pdeg60” modules were enriched with detrimental cts scores,
while only five modules identified by common DEGs or random
genes were enriched. The most significant p-value was up to
p = 2.51 × 10−5 in the “pdeg60” module. On the contrary,
no module in “common DEG” and "random gene" exceeded the

Frontiers in Genetics | www.frontiersin.org 3 November 2020 | Volume 11 | Article 571609

https://github.com/menggf/spDEG_and_Association
https://github.com/menggf/spDEG_and_Association
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Huang et al. Module Analysis Alzheimer’s Disease

FIGURE 1 | Clustering AD patients into modules based on single-patient differential expression profile similarity. (A) An analysis pipeline to cluster AD patients. The

RNA-seq data of AD patients were transformed into binary DEG matrix based on the reference profile built using the data of normal individuals; the AD patients with

the shared DEG signatures are clustered as modules using a bi-clustering algorithm; genome-wide association study was performed in each patient module to identify

the AD risk loci and genes. (B) Single-patient differential expression analysis indicated the complexity of AD patients, where genes displayed diverse DE status.

(C) Module-analysis-enriched AD patients with similar clinical outcomes, e.g., cognitive test scores not by the differentially expressed genes in all AD patients or

random genes.

significance of p = 0.001. This result suggested that modules
analysis using spDEG better-enriched AD patients with common
clinical manifestations.

3.2. More Risk Variants Were Identified in
AD Patient Modules
We collected genotyping data from the “hbtrc” study (Zhang
et al., 2013), including 310 LOAD patients and 153 non-
demented healthy controls. We performed genome-wide

association studies (GWAS) using all the AD patients. In this
process, we performed a permutation procedure for 1,000 times
to estimate empirical p values. We found only two loci to have a
significant association with AD at a cutoff of empirical p < 0.05.
The significant SNPs included rs2405283 (p = 1.15 × 10−7)
and rs769450 (p = 1.65 × 10−6) (see Figure 2A). rs769450

was mapped to the second intron of the APOE gene, which
is consistent with published reports about the critical roles
of APOE.
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FIGURE 2 | More risk variants were identified in AD patient modules. (A) Manhattan plot for the association studies to both AD patients and patient modules, where

more AD risk SNPs were identified in AD modules. (B) Allele frequencies in module patients, non-module patients, and control subjects. More risk allele enrichment

was observed in module patients, suggested that module analysis enriched the AD patients affected by common risk variance. (C) Functional annotation to AD risk

genes. Here, synaptic-function-related terms were most significantly enriched.

Applying module analysis, we predicted 143 modules of AD
patients. Three association tests were performed for eachmodule:
(1) module patients against normal control; (2) module patients
against non-module patients; and (3) non-module patients
against normal control. The p-values were denoted as p1, p2,
and p3, respectively. At a strict cutoff of empirical p1 < 0.05,
we found 174 loci to have a significant association in at least
one of 143 modules (see Figure 2A and Supplementary Table 1).
Compared to the results of the association study using all
the AD patients, more AD risk loci were observed within
module patients. The APOE SNP rs769450 was observed in
41 modules and its association significance was also greatly
improved. For example, the significance of rs769450 was up to
p1 = 2.08 × 10−8 in a module of 80 AD patients while the
significance for all 310 patients was p1 = 1.65 × 10−6. Tests
between module patients and non-module patients supported

allele frequency differences in 165 out of 174 loci at a cutoff
of p2 < 0.01. Figure 2B showed the allele frequency for
some exemplary SNPs. We observed that allele frequencies of
identified risk SNPs were different from the non-module patients
and normal individuals. In most cases, non-module patients
usually had similar allele frequencies with normal subjects. We
checked if module patients were more associated with risk
SNPs than non-module patients by comparing p1 and p3 value
distribution (see Supplementary Figure 4). We found module
patients tended to report more significant associations than

non-module patients. It suggested that module analysis enriched
the AD patient affected by the common risk SNPs.

We mapped 174 AD risk loci to 107 genes based on genomic
proxy and GTEx eQTL annotation (see Supplementary Table 1).
Among them, 86 genes were observed in more than one module
at a cutoff of empirical p1 < 0.05. APOE is the most observed
risk gene, which is significantly associated with AD patients
in 41 modules. We searched the published GWAS results and
found that 46 genes had been reported for AD or brain-related
function (see Table 1). Some of them had been reported in
association studies of AD, such as PDE1A, JAM3, DLGAP1,
CYYR1, SERPINB11, andMCPH1. To understand their function
involvement, we performed Gene Ontology enrichment analysis
to 107 AD risk genes (see Figure 2C). We found that the
most enriched terms were also related to synaptic and neuronal
function, e.g., “synapse organization” (p = 7.65 × 10−6). It

suggested that the identified AD risk genes were related to normal
brain function and had potential roles in AD genesis.

In a recent large-scale meta-analysis, 23 AD risk loci were
reported (Kunkle et al., 2019).We checked their association using
either all patients or module patients. We loosed the cutoffs of
significant association by replacing empirical p < 0.05 with
p1 < 10−4. Association study using all AD patients failed to
identify any extra known AD risk gene to satisfy a threshold of
p1 < 10−4. Unlike the results using all AD patients, we observed
that 18 out of 23 AD genes have a significant association with
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TABLE 1 | The results of association studies using module patients, non-module patients, and control.

id chr pos p1 p2 p3 p(emp) OR Type Gene Region PubMed ID

rs3867593 17 7464046 1.59E-08 1.20E-04 3.73E-03 0.001 2.63 pdeg60 ZBTB4 Intron 29045054

rs769450 19 44907187 2.08E-08 1.94E-02 1.44E-04 0.001 2.91 pdeg80 APOE Intron 24821312

rs146624252 2 182412080 2.40E-08 3.14E-07 2.60E-01 0.002 2.01 pdeg60 PDE1A Intron 29363967

rs9912864 17 9105233 2.31E-07 9.05E-04 2.53E-02 0.005 2.51 pdeg120 NTN1 Intron 27060954

rs80167208 3 113224966 2.46E-07 1.69E-05 1.11E-01 0.009 1.99 pdeg60 BOC Intron 22445332

rs34233526 6 150947695 2.91E-07 6.86E-06 5.81E-02 0.013 2.31 pdeg60 MTHFD1L Intron 22330827

rs72129870 1 107645322 3.07E-07 1.25E-05 3.32E-01 0.008 2.03 pdeg100 VAV3 Intron 28927664

rs4788579 16 71917942 3.77E-07 3.00E-04 1.45E-02 0.011 3.24 pdeg60 IST1 Intron 31223056

rs113337484 6 87710980 4.05E-07 5.46E-04 2.03E-02 0.009 2.87 pdeg60 AKIRIN2 Intergenic 27871306

rs11253483 10 872071 4.83E-07 7.06E-04 5.34E-03 0.029 2.26 pdeg40 LARP4B Intron 20435134

rs17077094 8 6480005 5.50E-07 3.75E-03 1.73E-02 0.015 3.01 pdeg60 MCPH1 Intron 21297427

rs11339072 11 85061332 5.87E-07 4.92E-04 2.66E-02 0.019 2.86 pdeg60 DLG2 intron 29290481

rs33954745 2 169259162 6.69E-07 2.54E-04 8.27E-02 0.039 0.52 pdeg60 LRP2 Exon 20971101

rs11412426 3 65493079 6.77E-07 8.09E-04 1.07E-02 0.012 0.44 pdeg80 MAGI1 Intron 22166940

rs222960 21 26551898 7.11E-07 2.34E-04 4.81E-02 0.006 2.19 pdeg80 CYYR1 Intron 30820047

rs8088835 18 3728055 7.17E-07 6.90E-05 1.76E-01 0.006 3.23 pdeg120 DLGAP1 Intron 30448613

rs11859292 16 6491819 8.68E-07 7.55E-03 3.35E-03 0.02 2.09 pdeg80 RBFOX1 NMD 30596066

rs10138555 14 30020759 8.74E-07 2.14E-04 2.10E-02 0.035 2.15 pdeg60 PRKD1 Nocoding 21696630

rs2501215 13 70069895 9.29E-07 1.92E-03 1.76E-02 0.011 2.47 pdeg100 KLHL1 Intron 15715669

rs1783749 11 85049683 9.82E-07 4.92E-04 3.71E-02 0.03 4.01 pdeg60 DLG2 Intron 29290481

rs348658 12 62063579 1.04E-06 2.38E-03 2.33E-02 0.028 3.06 pdeg80 TAFA2 Intron 30137205

rs6958644 7 139796416 1.06E-06 1.91E-03 1.92E-02 0.035 2.03 pdeg80 TBXAS1 Nocoding 24608097

rs5892206 8 69583407 1.11E-06 2.10E-02 1.89E-03 0.04 2.67 pdeg60 SULF1 Intron 30035253

rs11862587 16 83628162 1.27E-06 2.69E-04 2.01E-02 0.021 2.11 pdeg60 CDH13 Intron 29771432

26460479

rs28764186 17 79306443 1.30E-06 6.08E-03 8.46E-03 0.021 0.44 pdeg100 RBFOX3 Intron 30475774

rs12281243 11 40133562 1.46E-06 6.98E-05 9.56E-02 0.039 2.58 pdeg60 LRRC4C Intron 29751835

rs12705741 7 110873688 1.48E-06 2.33E-04 1.18E-01 0.046 2.14 pdeg80 IMMP2L Intron 22486522

rs2373961 7 150984122 1.50E-06 1.45E-07 8.23E-01 0.044 0.42 pdeg80 KCNH2 Intergenic 19412172

rs115231703 1 182348704 1.51E-06 5.15E-05 3.88E-01 0.046 0.47 pdeg120 GLUL Intergenic 29441491

rs548084743 17 47919005 1.64E-06 4.09E-04 1.29E-01 0.028 2.26 pdeg60 SP2 SP2-AS1 Intron 23293287

rs77144903 13 102144657 1.82E-06 1.41E-03 3.92E-02 0.039 0.2 pdeg100 FGF14 Intron 28522250

28469558

rs146092846 15 100217974 1.87E-06 1.22E-03 4.53E-02 0.03 0.43 pdeg120 ADAMTS17 Intron 22710270

rs7147828 14 71994665 1.88E-06 7.58E-04 8.16E-02 0.039 2.18 pdeg80 RGS6 Intron 27002730

rs75538719 8 36794270 1.90E-06 3.36E-03 8.00E-03 0.046 2.47 pdeg100 KCNU1 Intron 26858991

rs2977548 8 133224849 1.92E-06 7.50E-04 1.05E-01 0.044 2.53 pdeg60 CCN4 NMD 22475393

rs78818922 14 54638870 2.03E-06 5.89E-04 1.87E-01 0.038 2.06 pdeg100 SAMD4A Intron 29432188

rs62223372 21 31377966 2.04E-06 1.09E-03 8.62E-03 0.009 0.42 pdeg80 TIAM1 Intron 23109420

rs12881844 14 51639930 2.06E-06 1.79E-02 1.77E-03 0.023 0.39 pdeg120 FRMD6 Nocoding 22190428

rs609214 13 102174932 2.20E-06 3.00E-03 7.04E-02 0.037 0.23 pdeg120 FGF14 Intron 28522250

28469558

rs4903566 14 77274080 2.30E-06 9.77E-05 9.71E-02 0.045 0.46 pdeg60 POMT2 Intergenic 22984654

rs60119577 18 57155356 2.56E-06 1.22E-03 1.59E-01 0.029 0.41 pdeg100 BOD1L2 Intergenic 27166630

rs146623074 15 32107801 2.76E-06 2.36E-03 6.07E-03 0.035 0.43 pdeg80 CHRNA7 Intron 24951635

rs141887840 18 79482278 2.79E-06 1.18E-03 3.07E-02 0.036 2 pdeg60 NFATC1 Intron 20401186

rs12902710 15 55318928 3.03E-06 7.21E-04 6.12E-02 0.048 0.47 pdeg100 PIGBOS1 RAB27A 5’UTR 26985808

rs10444855 15 33393629 3.25E-06 1.97E-07 5.52E-01 0.047 1.89 pdeg60 RYR3 Intron 29590321

rs6103379 20 43547767 3.94E-06 2.28E-04 1.99E-01 0.041 0.49 pdeg100 L3MBTL1 NMD 29898393

31061493
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AD in at least one module. Table 2 summarized the analysis
results using module patients. By checking p2 and p3 values,
we found significant allele frequency differences between module
patients and no-module patients, supporting the conclusion that
module analysis enriched AD patients affected by commonly
known risk variants.

3.3. Biological Relevance of AD Risk Genes
Module-based clustering analysis allows us to bridge AD risk
genes to clinical features and affected biological processes. The
clinical association of modules is determined by enrichment
analysis. In HBRTC’s dataset, we identified nine and eight
modules to be associated with braak and brain generalized
atrophy at a cutoff of p < 0.01, respectively. Among them, three
modules were associated with both braak and brain atrophy.
Association study to these modules identified eight and 20 loci
respectively. In Table 3, we summarized the analysis results.
These results supported that some AD risk genes might be more
associated with some AD clinical outcomes. For example, the
NTN1 gene is a microtubule-associated force-producing protein
and it is predicted to be related to the braak stage.

AD patient modules are always associated with a list of
spDEG signature genes, which could be used to investigate
the biological relevance of AD risk genes. Figure 3 showed
the analysis results of functional annotation to module spDEG
signature genes. Among the significant terms, "extracellular
matrix assembly," "synaptic signaling," "learning and memory,"
and "protein folding" were more observed or more significant.
By text mining studies, we found much published evidence for
their close association with AD, supporting that predicted AD
risk genes contributed to AD development. For example, the

extracellular matrix was observed to have significant changes
during the early stages of AD (Lepelletier et al., 2017) and
extracellular matrix could induce β-Amyloid Levels (Ma et al.,
2019). Among predicted risk genes, APOE, POMT2, FGF14,
CDH13, and RBFOX3 display more functional involvements.

3.4. Evaluation Using Randomly Modules
of AD Patients
In the above analysis, we attempted to cluster AD patients
with a common set of spDEGs so that the clustered patients
were more affected by common AD variants. As an evaluation,
we performed a simulated study by randomly splitting AD
patients into simulated modules at corresponding sizes. We then
predicted AD risk SNPs using the same setting. In each round
of the simulation, we identified about 105 AD risk SNPs on
average at a cutoff of empirical p < 0.05. We compared their
analysis results to those of true modules and found that about
63% of risked SNPs (out of total 174 loci) could be overlapped
with the SNPs predicted using true modules. This evaluation
seemed to support the conclusion that subsetting AD patients
had benefits to improve the power of association studies, even
when the criteria to stratify AD patients was to randomly pick
up. Compared to random modules, modules of spDEG signature
could recover more AD risk SNPs.

4. DISCUSSION

In this work, we took more consideration to AD patient
diversity and attempted to stratify patients into modules affected
by different genetic background. We therefore came up with
an analysis pipeline to cluster AD patients based on some

TABLE 2 | The association results for known AD risk genes.

Association of module patients Association of all AD patients

SNP gene p1 p2 p3 p(emp) OR Module type Region SNP p1 p(emp) Region

rs769450 APOE 2.08E-08 1.94E-02 1.44E-04 0.001 3.68 pdeg80 Intron rs769450 1.65E-06 0.015 Intron

rs71454394 MS4A2 9.25E-06 3.73E-03 4.32E-02 0.257 2.48 pdeg40 Intergenic – – – –

rs9462659 TREM2 1.08E-05 8.99E-03 4.85E-02 0.35 2.02 pdeg40 Intergenic – – – –

rs7152488 SLC24A4 1.21E-05 1.85E-04 1.71E-01 0.175 0.3 pdeg100 Intron – – – –

rs5021727 HLA-DRB1 1.59E-05 1.80E-04 3.88E-01 0.389 0.45 pdeg120 Intergenic – – – –

rs144409358 CR1 2.09E-05 1.44E-03 1.79E-01 0.552 0.3 pdeg120 Intron – – – –

rs12416009 ECHDC3 2.10E-05 2.66E-04 2.19E-01 0.514 1.86 pdeg40 Intergenic – – – –

rs9897336 ACE 2.41E-05 2.03E-04 4.91E-01 0.306 0.48 pdeg100 Intergenic – – – –

rs55662472 EPHA1 2.61E-05 5.33E-03 7.65E-02 0.519 3.15 pdeg80 Intergenic – – – –

rs34708229 MEF2C 2.81E-05 4.09E-03 2.17E-02 0.675 2.45 pdeg40 Intron rs79820174 1.40E-04 1 Intron

rs6099038 CASS4 2.86E-05 1.55E-04 3.16E-01 0.305 2.30 pdeg100 Intergenic – – – –

rs13422890 BIN1 3.35E-05 4.42E-06 8.04E-01 0.753 1.96 pdeg60 Intron – – – –

rs36057699 PTK2B 3.39E-05 8.08E-03 4.63E-02 0.576 0.41 pdeg120 Intron rs36057699 8.70E-04 1 intron

rs659023 PICALM 6.53E-05 8.73E-06 4.35E-01 0.797 0.54 pdeg120 Intergenic – – – –

rs77792633 FERMT2 8.95E-05 5.18E-04 5.44E-01 0.8 0.62 pdeg60 Intergenic – – – –

rs57816367 CD2AP 9.17E-05 9.36E-05 4.60E-01 0.957 2.13 pdeg40 Intron – – – –

rs10539341 INPP5D 9.42E-05 7.99E-03 9.36E-02 0.983 0.42 pdeg100 Intron – – – –

rs2285898 ABCA7 9.09E-05 1.00E-02 1.48E-01 0.632 0.53 pdeg120 Intergenic – – – –
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TABLE 3 | The association results for known AD risk genes.

SNP chr pos p1 p1(emp) Seed patient tp Gene Region Braak Atrophy

SNPs ASSOCIATED WITH ATROPHY

rs147216627 1 157467609 7.04E-07 0.022 X15888 pdeg100 – 7.4E-02 9.05E-04

rs78818922 14 54638870 2.03E-06 0.038 X15888 pdeg100 SAMD4A Intron 7.4E-02 9.05E-04

rs1231702 11 29525814 4.97E-07 0.012 X15914 pdeg60 AC110058.1,AC090124.1 Intergenic 0.95 7.96E-03

rs3867263 18 63664376 9.40E-07 0.031 X15914 pdeg40 SERPINB11 Intron 0.24 7.18E-03

rs236111 20 5952889 7.13E-07 0.011 X15914 pdeg60 MCM8 Intron 0.95 7.96E-03

rs7113161 11 16969038 9.68E-07 0.024 X15941 pdeg120 PLEKHA7 Intron 1.34E-02 3.82E-03

rs10489293 1 172217647 1.12E-07 0.005 X16020 pdeg40 DNM3 Intron 6.52E-02 7.87E-04

rs12819631 12 104013393 2.84E-07 0.01 X16020 pdeg40 GLT8D2 Intron 6.52E-02 7.87E-04

rs9912864 17 9105233 2.89E-06 0.037 X16020 pdeg100 NTN1 Intron 0.97 2.28E-03

rs6875561 5 121537532 1.47E-06 0.049 X16037 pdeg80 – 1.27E-02 1.42E-03

rs7930638 11 5567722 1.85E-06 0.043 X16179 pdeg120 AC104389.4 NMD 3.56E-02 4.16E-03

rs548084743 17 47919005 9.62E-07 0.021 X16179 pdeg40 SP2,SP2-AS1 Intron 9.51E-02 7.26E-03

rs764624 14 71993857 2.32E-06 0.049 X16183 pdeg60 RGS6 Intron 0.11 8.66E-03

rs78641850 10 53421383 2.17E-07 0.001 X21821 pdeg100 – 2.02E-02 6.43E-03

rs17112518 14 21948703 2.30E-06 0.027 X21901 pdeg120 – 0.10 6.98E-03

rs12881844 14 51639930 2.06E-06 0.023 X21901 pdeg120 FRMD6 Intergenic 0.10 6.98E-03

rs12480378 20 3110711 2.29E-06 0.025 X21901 pdeg120 UBOX5-AS1,UBOX5 Intergenic 0.10 6.98E-03

SNPs ASSOCIATED WITH BRAAK

rs6103379 20 43547767 3.94E-06 0.041 X15917 pdeg100 Z98752.3,L3MBTL1 NMD 8.37E-03 1.01E-01

rs11850894 14 22312243 2.04E-06 0.033 X15989 pdeg80 TRAV40 Intergenic 1.33E-04 7.33E-02

rs73699762 7 57341624 1.01E-06 0.028 X15989 pdeg120 – 2.55E-03 6.59E-02

rs222960 21 26551898 4.39E-06 0.033 X16038 pdeg60 CYYR1,CYYR1-AS1 Intron 7.20E-03 5.03E-01

rs6880404 5 163990493 9.32E-07 0.031 X16105 pdeg120 – 2.86E-03 4.77E-02

rs538060878 17 9142309 1.10E-07 0.004 X21810 pdeg40 NTN1 Intron 4.27E-03 6.56E-01

rs1016268 12 129517265 1.88E-06 0.048 X21810 pdeg80 TMEM132D Intron 6.58E-04 1.92E-01

rs6769967 3 44217312 1.77E-07 0.012 X21810 pdeg40 – 4.27E-03 6.56E-01

rs16885931 6 22265940 8.04E-07 0.021 X21810 pdeg120 CASC15 Intergenic 6.11E-04 2.32E-02

SNPs ASSOCIATED WITH BOTH ATROPHY AND BRAAK

rs769450 19 44907187 7.12E-07 0.008 X16149 pdeg120 APOE Intron 9.62E-03 1.94E-03

rs78415808 12 69406115 8.07E-07 0.023 X16183 pdeg80 – 2.18E-03 5.84E-03

rs820562 3 112745366 1.46E-06 0.042 X16037 pdeg120 LINC02042 Intergenic 6.11E-03 3.99E-05

assumptions. These included that (1) AD patients are very diverse
and differential expression patterns differ among AD patients,
and that (2) we can use single-patient DEGs as biomarkers to
indicate the dysregulation status of AD patients and to cluster the
AD patients affected by common mechanisms. In our previous
work, we have applied similar strategies to discover enriched
transcription factor binding sites (Meng and Vingron, 2014)
and cancer driver mutations (Meng, 2018), and we achieved a
good performance. Evaluation using real patient data suggested
that this method could group AD patients with similar clinical
outcomes and common risk variants, validating our assumptions.
Compared to existent methods, our pipeline not only can
discover patient-specific DEGs but also considers the reliability
of spDEGs by evaluating their occurrence in multiple patients.

We applied it to find the differentially expressed genes for each
AD patient and module patients based on the spDEG signatures.
In this process, we made some assumptions. For example, we
defined the reference expression profiles for normal individuals

by fitting to a Gaussian or negative binomial distribution. The
robustness of this step was dependent on the number and
homogeneity of control individuals. To identify the differentially
expressed genes, we need to set some thresholds to determine
if the gene expression level of one AD patient was beyond the
normal ranges. In our work, we tested different cutoffs and
selected p = 0.1.

We did an association study in each module of size 40 to
120. Compared to the study using all AD patients, the statistical
power decreased with a decreased sample size in each association
study. However, more AD risk loci were identified for the
increased number of AD patient modules. A total of 174 loci
were predicted to be associated with AD at a strict threshold of
empirical p < 0.05, while only two loci exceed such a threshold
using all AD patients. The genotype frequency was found to be
different between module and non-module patients. All these
results suggested that AD risk variants might contribute only a
limited subset of the AD population.
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FIGURE 3 | Functional relevance of AD risk genes. Here, the module spDEG signatures were used for Gene Ontology enrichment to indicate the functional

involvement of modules.

During simulation analysis, we also predicted many AD risk
SNPs. The reason could be that random sampling also enriched
AD patients affected by some AD risk SNPs. For example, we
foundAPOE SNPs were not associated with AD patients in nearly
half of simulated modules. It suggested that randomly sampling
enriched the AD patient less affected by APOE. Similarly, it was
possible to enrich the AD patients affected by other AD risk SNPs,
especially when the AD sample size was limited.

As an evaluation, we also collected ROSMAP data and
performed a similar study. We found that our method helped
to identify more AD risk genes, validating our conclusion
that module analysis improved the power of association study.
However, we observed only limited overlaps for identified AD
risk SNPs between ROSMAP and HBTRC dataset (see Table 4).
The reasons could be that (1) there were only 251 AD patients
in ROSMAP data, which were too limited to recover full AD risk
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TABLE 4 | The association results for ROSMAP data.

id chr pos p1 p2 p3 p(emp) Type Gene

rs2688748 10 70744565 9.85E-08 1.51E-06 – 0.04 pdeg60 ADAMTS14

rs2532019 16 4074299 3.60E-08 5.80E-05 – 0.03 pdeg40 ADCY9

rs117051234 8 6538298 2.56E-07 – – 0.025 pdeg120 ANGPT2,MCPH1

rs118150738 12 99429000 7.79E-09 2.32E-07 – 0.025 pdeg40 ANKS1B

rs1064725 19 44919304 1.20E-09 – – 0.005 pdeg40 APOC1

rs75524475 9 33021586 1.01E-07 – – 0.03 pdeg60 APTX

rs55791516 14 58299182 8.04E-08 1.81E-05 – 0.005 pdeg60 ARID4A

rs79038737 16 80841428 2.24E-09 – – 0.005 pdeg60 ARLNC1

rs8033014 15 50144866 6.64E-07 2.48E-06 – 0.04 pdeg60 ATP8B4

rs2154498 21 29311727 6.36E-07 – – 0.04 pdeg40 BACH1

rs230107 9 119163787 1.91E-08 1.22E-06 – 0.005 pdeg80 BRINP1

rs11641442 16 83320409 5.49E-08 – – 0.005 pdeg80 CDH13

rs142424916 10 60780861 8.23E-09 9.85E-06 – 0.005 pdeg40 CDK1

rs117661233 14 95269426 6.51E-07 – – 0.03 pdeg120 CLMN

rs7723296 5 10306906 5.66E-08 – – 0.01 pdeg60 CMBL

rs142513159 18 52370108 6.14E-08 9.24E-09 – 0.03 pdeg40 DCC

rs10971346 9 33031085 6.41E-08 – – 0.02 pdeg60 DNAJA1

rs16990792 22 43593673 1.44E-08 – – 0.005 pdeg100 EFCAB6

rs148526127 14 99756716 4.68E-09 – – 0.004975124 pdeg60 EML1

rs7279562 21 32036384 2.85E-06 – – 0.04 pdeg120 HUNK

rs79334679 3 124548449 1.99E-08 1.50E-08 – 0.01 pdeg60 KALRN

rs73423776 7 120689401 1.77E-07 1.19E-06 – 0.025 pdeg60 KCND2

rs150056741 10 77390525 4.25E-09 7.91E-06 – 0.004975124 pdeg60 KCNMA1

rs11654934 17 40978630 2.05E-08 5.95E-08 – 0.01 pdeg60 KRT40

rs140730427 17 41041338 5.90E-08 2.91E-05 – 0.015 pdeg60 KRTAP1-1

rs11792940 9 33019794 1.52E-07 – – 0.04 pdeg60 APTX

rs3730850 19 48165452 2.85E-07 1.26E-05 – 0.025 pdeg40 LIG1

rs986117 18 46548540 5.90E-07 – – 0.035 pdeg100 LOXHD1

rs112704814 2 141324888 1.33E-08 3.94E-05 – 0.005 pdeg120 LRP1B

rs73193820 21 29172348 1.39E-06 2.09E-06 – 0.01 pdeg80 MAP3K7CL

rs73539906 6 110302890 1.87E-10 1.31E-05 – 0.005 pdeg40 METTL24

rs7871013 9 75146220 1.27E-08 3.16E-06 – 0.025 pdeg40 OSTF1

rs10151276 14 57051817 3.32E-07 – – 0.02 pdeg80 OTX2-AS1

rs11564502 19 48110444 5.88E-08 7.32E-05 – 0.005 pdeg80 PLA2G4C

rs41278865 22 43880927 1.92E-08 5.81E-05 – 0.005 pdeg40 PNPLA5

rs4448724 12 27578227 2.11E-07 1.37E-06 – 0.04 pdeg60 PPFIBP1

rs34304517 12 62739081 8.98E-08 3.88E-06 – 0.025 pdeg40 PPM1H

rs230159 20 42487156 2.85E-07 4.12E-05 – 0.015 pdeg100 PTPRT

rs80087065 14 68520366 2.10E-08 2.30E-08 – 0.005 pdeg40 RAD51B

rs17242783 14 20695527 5.76E-09 – – 0.005 pdeg40 RNASE4

rs10925501 1 237738307 2.84E-07 – – 0.015 pdeg120 RYR2

rs111671818 14 71543950 7.48E-07 – – 0.005 pdeg120 SIPA1L1

rs2274766 9 33055812 8.97E-08 – – 0.03 pdeg60 SMU1

rs34601004 22 43861694 2.15E-08 2.18E-05 – 0.005 pdeg40 SULT4A1

rs56171440 6 158715662 4.29E-15 6.66E-06 – 0.005 pdeg40 SYTL3

rs141418488 4 182544545 3.03E-08 2.20E-05 – 0.005 pdeg60 TENM3

rs73571693 6 155057540 1.31E-07 2.25E-06 – 0.045 pdeg60 TIAM2

rs4985720 17 16958916 1.74E-06 – – 0.04 pdeg120 TNFRSF13B

rs4235957 6 158250454 1.91E-08 5.56E-07 – 0.01 pdeg60 TULP4

rs16949592 16 79123857 1.95E-07 – – 0.035 pdeg60 WWOX

rs11053909 12 10703084 2.92E-08 4.14E-06 – 0.03 pdeg40 YBX3

rs11100901 4 145825808 2.91E-08 – – 0.04 pdeg40 ZNF827
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SNPs, and (2) the cutoff of the association study was too strict to
identify all the AD risk SNPs.

In this work, we proved the benefits of the patient module in
association studies to AD. In our application, we reported more
AD risk genes even when only 310 AD patients were used. In the
large-scalemeta-analysis, there were about 20–30 genes identified
as AD risk genes (Cuyvers and Sleegers, 2016; Jansen et al., 2019).
However, by searching public literature and databases, e.g., the
GWAS catalog, we found more than 100 studies and 300 genes
that had been reported in associated studies to AD patients.
These studies could be treated as a subset of large-scale AD
meta-analysis. This result suggested that there might be more AD
risk genes, and AD patient subsetting helped to identify them.
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