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ABSTRACT 
 
Lassa fever is an infectious viral disease that is endemic in Nigeria and other West African 
countries. Early detection and response to outbreaks of the disease are critical to prevent its spread 
and reduce illnesses and death. Finding some mathematical patterns that explain the mechanisms 
of Lassa fever transmission, as well as a thorough understanding of the biological contributing to 
affecting the disease, are necessary in putting in place a surveillance system with a view to 
preventing further spread of the disease. In this study, we developed a Hidden Markov Model 
(HMM) approach to surveil the transmission of Lassa fever virus infections in Nigeria. The HMM 
was developed using the susceptible Infection recovered (SIR) model to formulate the transition 
matrix and data from past outbreaks of the disease to compute the observations. Our results 
showed that the dry season as the peak period for Lassa fever and recorded the lowest numbers 
during the rainy season. The transition matrix showed a 98% chance of transitioning to the infected 
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state from being susceptible and a 96% chance of remaining infected. The stable probability 
resulted in a 97.9% probability of transitioning to the infected state and a 1.7% chance of 
transitioning to the susceptible state. The Empirical analysis using the proposed HMM approach 
does not only provide a valuable tool for public health officials to track and respond to outbreaks of 
Lassa fever, leading to more effective disease control strategies but also, establishes an efficient 
structure for other infectious diseases modeling to aid in early detection and response to epidemic 
outbreaks. 
 

 

Keywords: Lassa fever; hidden Markov model; infectious diseases; transition probability matrix; 
emission matrix; Viterbi algorithm. 

 

1. INTRODUCTION 
 

Lassa fever is a viral illness that is spread by 
infected rodents known as multimammate rats 
(Mastomys natalensis). The main transmission of 
the virus is through person-to-person 
transmission, direct or indirect contact with food 
or objects contaminated with urine or faeces of 
infected multimammate rats [1, 2, 3]. These rats 
are abundant in rural areas of parts of some 
West African countries, including Nigeria, Sierra 
Leone, Liberia, and Guinea [4]. The low 
standards of living and poor sanitations are the 
available reasons this virus is dominantly 
common in these rural communities.  
 

Consequently, Lassa fever has been endemic in 
these West African countries where the 
multimammate rats are present in large numbers. 
The number of infections per year of Lassa fever 
is estimated between 100,000 and 300,000, with 
approximately 1% leading to death [1]. 
 

In Nigeria, Lassa fever is endemic and is typically 
detected during the dry season (December–April 
each year) with hundreds of laboratory-confirmed 
cases per month. Approximately 90–95% of 
these persons are infected by direct or indirect 
contact with household items contaminated by 
the excretions of infected Mastomys rats. 
Numerous preventive and control tactics have 
been recommended by the World Health 
Organization (WHO) and the Nigerian 
Government, through the Centre for Disease 
Control (NCDC), for the elimination of Lassa 
fever outbreaks from endemic communities in 
Nigeria. Preventive measures such as improved 
household sanitation, proper storage of 
foodstuffs, environmental sanitation, and keeping 
cats pets could reduce the ailment. Animal 
products should be meticulously cooked 
properly, early detection and proper treatment of 
the virus, seclusion of infected persons are 
thought to be some of the actions that could 
reduce the risk of person-to-person transmission 
of the disease in health care facilities [4]. 

Dissemination of protective guidelines for proper 
case management, and infection prevention and 
control (IPC); enhanced surveillance activities in 
Lassa fever-affected areas to increase detection 
of cases; provision of special treatment health-
centres facilities for clinical management in 
affected areas; increased laboratory capacity to 
ensure timely processing and diagnosis of 
samples; at risk communications individuals’ and 
community engagement activities through 
television, radio, print, social media, and other 
strategies are strongly endorsed to lessen the 
fatality rate [5]. 
 
A mathematical modeling is a theoretical 
approach that has been used extensively and 
successfully to study the dynamics and control of 
infectious diseases like Lassa fever all over the 
world.  The model considered here, can assist 
among the various existing measures against the 
disease for being more effective in predicting its 
occurrence. Though Lassa fever appears in 
WHO’s lists of prioritizing diseases for research 
and development in emergency contexts, only a 
few data are available. Some findings on Lassa 
fever using mathematical models are 
summarized below. 
 

2. RELATED LITERATURE 
 
Numerous mathematical modeling with their 
methodologies and findings have been 
conducted to enlighten and provide more 
information on the transmission dynamics and to 
control the endemics of diseases [6, 7]. 
 
A multiple-patch model was developed by Onah 
and Collins, [6] to examine the effects of 
socioeconomic class on Lassa fever (LF), and 
showed a sensitivity analysis and a numerical 
illustration of the effect of parameter models in 
the spread of disease and incidence. Their 
results revealed that humans’ socioeconomic 
status has a significant influence on the 
dynamics of viral LF transmission. The study 
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recommends that human socioeconomic classes 
should be considered in order to attain complete 
LF elimination in communities where the virus is 
dominant. A study titled “Evaluation of rodent 
control to fight Lassa fever, based on field data 
and mathematical modelling” was presented 
in Marien, et al., [8]. In regard to eradication of 
LF in rural areas, the authors used a 
mathematical model to experiment numerous 
control approaches in rural Upper Guinea to 
determine the length and frequency of control 
strategies as to when they should be performed. 
The mathematical model suggests that the best 
strategy for eradicating LF is continuous control 
or rodent vaccination against the viral disease. A 
spatial analysis of Lassa fever data from human 
cases and infected rodents from 1965 to 2007 
was performed in Fichet-Calvet and Rogers [9], 
to describe the LF risk maps in Western African 
Region. The authors researched on the impact of 
environmental variables that are extrinsic such 
as temperature, vegetation, and rainfall on the 
transmission dynamics of LF in Cameroon and 
showed that rainfall has strong effect in defining 
high risk areas, while temperature has a lesser 
effect in high-risk areas endemic for the disease. 
Additionally, the risk maps revealed that the most 
unsafe region is located between Guinea and 
Cameroon within the West African Region. 
 
By using a mathematical model [10] discovered 
that any control strategy that reduces rodent 
populations and the risk of transmission from 
rodents to humans will assist in achieving Lassa 
fever elimination in Nigeria. Musa et al. [11] used 
mechanistic modelling that takes into account 
quarantine, isolation, and hospitalization 
processes of Lassa fever victims during 
epidemics in Nigeria from 2016–2019. 
Particularly, data showed some similarities in the 
transmission dynamics driving three major Lassa 
fever outbreaks, from 2016–2019 in Nigeria, as 
were outlined by their study. Ndenda et al. [12] 
also used fractional-order dynamic modelling to 
study the effects of environmental viral load of 
Lassa, interpersonal contact, and infected 
rodents on the transmission dynamics. They 
discovered that with multiple interventions and 
control measures, such as environmental 
sanitation, the methods could significantly help in 
eradicating infections. In another study, Marien et 
al. [8] applied a mathematical model to study the 
impact of rodents’ control to fight Lassa fever, 
and the team showed that rodent vaccination is 
an approach that could eliminate Lassa virus in 
the disease endemic area. Abdulhamid et al. [13] 
also used a deterministic mathematical model to 

study Lassa fever dynamics and the study 
revealed that the existence of backward 
bifurcation in the model makes the control of 
Lassa fever more difficult to achieve. Zhao et al. 
[14] presented another mathematical model to 
studying the effects of rainfall on Lassa fever 
epidemics in Nigeria, by quantifying the 
association between reproduction number and 
rainfall for several locations in Nigeria, Results 
from their study shows clear evidence of rainfall 
impacts on LF epidemics in Nigeria  
 
Innocent and Omo [15] developed a 
mathematical model for investigating the 
dynamics of the LF disease, and made 
recommendation to the effect that avoiding 
contact with species that carried the viruses and 
introducing vaccines against it for humans would 
be the most effective method of control. In the 
other hand, Akinpelu and Akinwande [16] 
developed a mathematical model for sensitivity 
analysis of Lassa fever, where the model was 
divided into five compartments of susceptible (S), 
latent (L), infected (I), isolated (I), and recovered 
(R). By using the next-generation method, what 
they obtained showed that disease-free 
equilibrium was locally and globally 
asymptotically stable. James et al., [17] analyzed 
stability for Lassa fever and recommended 
quarantines and making strategies for permanent 
immunity was an alternative method of LF 
control. Bakare et al. [6] study worked on the 
transmission dynamics of the disease and 
derived a nonlinear ordinary differential equation 
model by introducing the seasonal parameters. 
The results showed a basis for planning and 
designing cost-effective strategies for 
interventions in eradicating Lassa fever.  
 
Salim (2020) studied a Markov chain in place of 
a time series of lung TB infections and made 
hypotheses regarding the number of infections, 
and was able to identify the chain that turned out 
to be non-ergodic. He then calculated the 
expected absorbing time and probability for the 
transient state of TB infection.  
 
Adigun, et al. (2019) examined the environmental 
elements that contribute to the transmission of 
various infectious diseases. The study calculated 
the diseases' patterns of transition, testing the 
Markovian property on how stationary the 
process is over the study period and concluded 
that the past history of infectious diseases would 
have an impact on the present state through the 
current condition. In the study, the team 
recommended that more interventions need to be 
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done by the government in the areas of 
sensitization and the fight against infectious 
diseases. 
 
Also, Inegbedion (2022) in an attempt to estimate 
the population's susceptibility to the COVID-19 
pandemic as well as the proportions of infections, 
recoveries, and fatalities that would result from it, 
designed a longitudinal study of COVID-19 using 
information from the daily updates of the NCDC 
for the period of 1 May to 23 August 2020. On 
the data, a Markov chain analysis was done and 
the findings showed that over the long term, 
8.4% of the population were at risk for COVID-19 
infections and 26.4% others would become 
infected; 61.2% of those who became infected 
would recover, while 4% of those who become 
infected would likely die.  
 
Nkemnole and Osunkeye (2016) investigated the 
prevalence of endemic diseases in a population 
and their duration of resistance using a 
Stochastic model, similar to the Markov’s chain, 
which has a continuous time and discrete state 
space and necessitated that the Monte Carlo 
simulation would produce the desired results in 
disease control. They evaluated a few areas of 
active simulation research in the health sector, 
including the impact of gender on the typical 
number of days a disease lasts, and revealed a 
significant correlation between gender and the 
duration of endemic disease persistence in a 
particular population. Nkemnole and Udoh (2022) 
had built a transition, as well as emission 
probabilities of Covid-19 cases and created a 
hidden Markov model of prediction. The outcome 
revealed that between the study periods, the 
estimated case fatality rate for Covid-19 in Lagos 
State was 4.35%. Moving from an infected state 
to, the model predicted a recovery rate of 25% 
chance, and moving from an infected state to 
death had a 50% chance; and the chance of still 
being re-infected after recovery, there would be  
a 25% chance.  

 
These studies have made significant progress in 
the dynamics and control of Lassa fever 
infections. Nevertheless, finding a reliable 
mathematical pattern that explains the 
mechanisms of Lassa fever transmission, as well 
as incorporating multiple control measures 
together with real data to study and make 
predictions of the possible future dynamics of the 
disease epidemic is a toll order.  The Nigeria 
government should find it necessary to put in 
place a surveillance system aimed at preventing 
further disease spread. As a result, it is important 

to examine the trends of the seasonality of Lassa 
fever with a view to employing the Hidden 
Markov Model to accurately predict the 
occurrence of Lassa fever in Nigeria. 
 
 The findings from this study would aid both 
researchers and policymakers in developing 
better control strategies for effective 
management of seasonal Lassa fever outbreaks 
in the country’s endemic areas. 
 

3. METHODS 
 

3.1 Epidemiology of Lassa Fever 
 
Epidemiology is the study of how diseases and 
their causes are distributed throughout human 
populations. Understanding the trends, causes, 
and effects of health and disease in populations 
as well as creating and assessing interventions 
to promote health and prevent disease 
outcomes, make up this important field of public 
health (WHO, 2021). Some of the 
epidemiological models are SIR (Susceptible-
Infected-Recovered), SEIR (Susceptible 
Exposed-Infected-Recovered) and SEIRD 
(Susceptible-Exposed-Infectious-Recovered-
Deceased). This study discusses the SIR model 
as the hidden state for developing the HMM for 
Surveilling and predicting the transmission of 
Lassa Fever Virus infections. 
 

3.2 Epidemic Surveillance 
 
Epidemic surveillance is a process of collecting, 
analyzing, and disseminating data to detect and 
respond to disease outbreaks or other public 
health events (WHO, 2002). A surveillance 
system can be classified into two main types: 
passive and active.  
 

3.3 Passive Surveillance  
 

systems rely on the reporting of health events by 
healthcare providers, laboratories, or individuals. 
Such systems are useful for detecting disease 
outbreaks after they have started, but they have 
limitations in detecting outbreaks in real-time. In 
the other hand, active surveillance systems, seek 
out cases of a disease or health events by 
actively searching for cases within a community 
in question. This type of surveillance is typically 
more resource-intensive, but however, can 
detect outbreaks of diseases quite earlier and 
provide more detailed information about the 
impending outbreaks. There are also hybrid 
systems that combine both the elements of 
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passive and active surveillance, taking 
advantage of the strengths of both types 
(Petersen & Fullerton, 2018). 
 

Surveillance systems for Lassa fever typically 
involve collecting data on the incidence and 
prevalence of cases, as well as the 
demographics, comorbidities, and treatment 
trends. This type of data is then analyzed to 
detect trends, patterns, and outbreaks, and to 
inform public health action as a matter of   
urgency (WHO, 2017). Surveillance systems for 
Lassa fever can either be electronic, such as 
electronic medical records, or manual approach, 
such as paper-based reporting and can be 
implemented at various levels of the health care 
systems, including the national, regional, and 
local levels. 
 

3.4 Susceptible-Infected-Recovered (SIR) 
Model  

 
The SIR model is a classical mathematical model 
used in epidemiology to study the spread of 
infectious diseases (Hethcote, 2000) in a 
community/population. It represents the three 
distinct states in a population with a disease with 
Susceptible (S) being individuals who are 
susceptible to the disease but have not yet 
contracted it, Infected (I) referring to individuals 
who have contracted the disease and are 
capable of spreading it to susceptible individuals 
and Recovered (R) for individuals who have 
either recovered from the disease or died from it 
and are no longer capable of spreading the 
disease further. 
 
The model is typically described by a set of 
ordinary differential equations (ODEs), which 
represent the rate of change of the size of each 
population over time: 
 

 𝑑𝑆/𝑑𝑡 =  −𝛽𝑆(𝑡)𝐼(𝑡)                     (1) 
 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)                   (2) 

   

 
𝑑𝑅

𝑑𝑡
=  𝛾𝐼(𝑡)                       (3) 

 

where 𝛽  is the transmission rate, and 𝛾  is the 
recovery rate. The solutions obtained from these 
equations gives the evolution of the number of 
individuals in each state over time (William & 
McKendrick, 1927).  
 

The formulation of the SIR model in this study for 
Lassa fever transmission between states was 

established. The different transmission states                  
in the SIR model were used to generate                       
the states of a hidden Markov model. The       
Viterbi algorithm and Expectation-Maximization 
algorithms were used respectively to determine 
the most likely hidden sequences of the           
states and estimate the parameters of each 
model. 
 

3.5 The SIR Model for the Transmission 
of Lassa Fever in Nigeria 

 
The total human population at time 𝑡, denoted by 

𝑁ℎ(𝑡)   is further divided into susceptible ( 𝑆ℎ) , 
infectious ( 𝐼ℎ)  and removed ( 𝑅ℎ) . Hence, the 

total human population at time 𝑡 is given as: 
 

  𝑁ℎ(𝑡) = 𝑆ℎ +  𝐼ℎ + 𝑅ℎ              (4) 
 
The susceptible rodent population at any time 𝑡 

is represented as 𝑆𝑟(𝑡) and the infected rodent 

population at time 𝑡  is given as 𝐼𝑟(𝑡) ; the total 
rodent population at time 𝑡 is given as: 
 

  𝑁𝑟(𝑡) =  𝑆𝑟(𝑡) + 𝐼𝑟(𝑡)                                (5) 
  

According to their disease status, each 
subpopulation's progression from one class to 
another is modeled. The recruitment rate, Λℎ , 
populates the susceptible human population 
through birth or immigration and from recovered 
subpopulation due to 𝛾  rate of immunity loss 
(Abioye et al., 2020). The dynamics of Lassa 
fever in the population are described by the 
deterministic system of nonlinear differential 
equations given as: 
  
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Λℎ −

𝛼1𝛼2𝑆ℎ(𝑡)𝐼𝑟(𝑡)

𝑁ℎ
+ 𝛾𝑅ℎ(𝑡) + 𝜏𝑛𝑐𝐼ℎ(𝑡) −

𝜇ℎ𝑆ℎ(𝑡),    𝑡 ≥ 0             (6) 
 
𝑑𝐼ℎ(𝑡)

𝑑𝑡
=

𝛼1𝛼2𝑆ℎ(𝑡)𝐼𝑟(𝑡)

𝑁ℎ
− 𝜏𝑐𝐼ℎ(𝑡) − 𝑟𝑐𝐼ℎ(𝑡) −

𝜏𝑛𝑐𝐼ℎ(𝑡) − 𝛿𝐼ℎ(𝑡) − 𝜇ℎ𝐼ℎ(𝑡),   𝑡 ≥ 0  
              (7) 
 
𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝜏𝑐𝐼ℎ(𝑡) + 𝑟𝑐𝐼ℎ(𝑡) − 𝛾𝑅ℎ(𝑡) − 𝜇ℎ𝑅ℎ(𝑡),    𝑡 ≥

0               (8) 
 
𝑑𝑆𝑟(𝑡)

𝑑𝑡
= Λ𝑟 −

𝛼1𝛼3𝑆𝑟(𝑡)𝐼ℎ(𝑡)

𝑁ℎ
− 𝜇𝑟𝑆𝑟(𝑡),    𝑡 ≥ 0        (9) 

 
𝑑𝐼𝑟(𝑡)

𝑑𝑡
=

𝛼1𝛼3𝑆𝑟(𝑡)𝐼ℎ(𝑡)

𝑁ℎ
− 𝜇𝑟𝐼𝑟(𝑡),    𝑡 ≥ 0        (10) 

 
where 𝑆ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑅ℎ(0) ≥ 0, 𝑆𝑟(0) ≥
0, 𝐼𝑟(0) ≥ 0. 
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The model parameters are defined as follows: 
 

Table 1. The parameter definitions of the SIR 
model 

 

Parameters Description 

𝑁ℎ Number of human populations 

𝛼1 Infection rate of rodents 

𝛼2 The force of infection 

𝛼3 Infection rate of human interact 

𝜏𝑐 The connection of humans 
with drugs 

𝜏𝑛𝑐 The rate at which humans do 
not have a relationship with 
drugs 

𝑟𝑐 Rate of awareness 

𝛾 Loss of immunity 

Λℎ Birthrate of humans 

𝜇ℎ Deathrate of humans 

𝛿 Rate of mortality of an 
infectious class 

Λ𝑟 The birthrate of rodents 

𝜇𝑟 The deathrate of rodents 
𝜎𝑖:𝑖 = 1,2,3,4,5 Randomness of each sub-

population 

  
It was opined that some of the models’ 
characteristics ought to be validated for 
accuracy, whether or not would represent the 
transmission of Lassa fever; few of those 
characteristics are given below. 
 

3.6 Transition Probabilities from the SIR 
Model 

 

Given the earlier defined SIR model, the 
transition probabilities from one hidden state to 
another in transmission of Lassa fever can be 
estimated using the model parameters. In the 
SIR model, the assumption is that transitions are 
made from the suspected state to the infected 
state, from the infected state to recovery and 
from recovery to susceptible state (Hethcote, 
2000). 
 

The probability of transitioning to infected state is 
given as: 
 

  𝑝(𝑠−1,𝑖+1)←(𝑠,𝑖)(∆𝑡) =  
𝛽𝑠𝑖

𝑁
∆𝑡         (11) 

 

The probability to make the transition from the 
infectious class to recovered class is: 
 

 𝑝(𝑠,𝑖−1)←(𝑠,𝑖)(∆𝑡) =  𝛾𝑖∆𝑡                     (12) 

 
Since a constant population is assumed, the 
probability that the number of infectious remains 

unchanged after a time step is:  
   

 𝑝(𝑠,𝑖)←(𝑠,𝑖)(∆𝑡) = 1 − [
𝛽𝑠𝑖

𝑁
− 𝛾𝑖] ∆𝑡         (13) 

 
where 𝛽 𝑎𝑛𝑑 𝛾  are transmission rand recovery 
rate respectively. 
 
The probabilities involved in transitions are then 
estimated for each time step  𝑡 using the values 
of the rate parameters 𝛽 𝑎𝑛𝑑 𝛾. The probabilities 
gotten would makes up a Markov chain transition 
matrix containing the transition from one hidden 
state to another. 
 

3.7 Hidden Markov Model (HMM) 
 

The HMM is composed of two sets of variables: 
the hidden states and the observations. The 
hidden states are the underlying variables that 
define the internal state of the system, and the 
observations are the variables that are directly 
observable. The hidden states and the 
observations are related through a set of 
probabilistic relationships, and the aim of an 
HMM is to estimate the hidden states given a 
sequence of observations. 
 
3.8 Assumption of Hidden Markov Model 
 
The HMM is based on three major assumptions: 

 
• Markov Assumption: The current hidden 

state 𝑋𝑡 depends solely upon the previous 
state of the hidden variable i.e. 

 

 Pr[𝑋𝑡 = 𝑥𝑡|𝑋𝑡−1 = 𝑥𝑡−1, 𝑂𝑡 = 𝑜𝑡] =
Pr[𝑋𝑡 = 𝑥𝑡|𝑋𝑡−1 = 𝑥𝑡−1]   ∀𝑥𝑡 ∈ 𝕏       (14) 

 

• Output Independence: The current 
observed state 𝑂𝑡 depends solely upon the 
current state of the unobserved variable, 
i.e.   

 

 Pr[𝑂𝑡 = 𝑜𝑡|𝑋𝑡 = 𝑥𝑡 , 𝑂𝑡−1 = 𝑜𝑡−1] =
Pr[𝑂𝑡 = 𝑜𝑡|𝑋𝑡 = 𝑥𝑡]   ∀𝑜𝑡 ∈ 𝕆        (15) 

 

• Stationarity: The transition probabilities 
are independent of time, i.e. ∀𝑡 ≥ 0, 𝑠 ∈
0, … , 𝑡 

 

 Pr[𝑋𝑡 = 𝑗 |  𝑋𝑡−1 = 𝑖] = Pr[𝑋𝑡+𝑠−1 =
𝑖]  ∀ 𝑖, 𝑗 ∈ 𝕏                                   (16) 

 

3.9 Parameter Estimation 
 
Parameter estimation in HMM involves finding 
the values of the parameters (i.e. transition 
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probabilities, emission probabilities, initial state 
probabilities) that maximize the likelihood of 
observing the data given in the model. The 
parameter estimation is to find the values that 
best describe the underlying processes that 
generated the data. The parameter estimates 
obtained from this process are then used to 
make predictions the future disease events. 
 
The Baum-Welch algorithm, a special case of the 
Expectation-Maximization (EM) algorithm, is one 
method for estimating the parameters of an 
HMM. The Baum-Welch algorithm for the 
estimation of the parameters of a HMM are 
described as follows: 
 

i)  Set the initial values for the transition 
probability matrix A and the emission 
probability matrix B. The initial values for 
the state probabilities (π) are calculated 
based on the number of hidden states. 

ii) Compute the forward probability matrix 𝛼 

and the backward probability matrix 𝛽 
using the forward algorithm and the 
backward algorithm. 

iii) For each state 𝑖  and each observation 𝑡 , 

calculate the intermediate quantity 𝛾(𝑖, 𝑡) 
using the formula: 
 

𝛾(𝑖, 𝑡) =
𝛼(𝑖,𝑡)𝛽(𝑖,𝑡)

(∑ 𝑗𝛼(𝑗,𝑡)𝛽(𝑗,𝑡))
            (17) 

 

iv) Re-estimate the transmission probabilities 
𝑎(𝑖, 𝑗) using: 
 

𝑎(𝑖, 𝑗) =
∑ 𝑡𝛾(𝑖,𝑡)𝑎(𝑖,𝑗)𝑏(𝑗,𝑦(𝑡+1))𝛽(𝑗,𝑡+1)

∑ 𝑡𝛾(𝑖,𝑡)
           (18) 

 

v)  Re-estimate the emission probabilities 
𝑏(𝑖, 𝑘): 
 

 𝑏(𝑖, 𝑘) =
∑ 𝑡𝛾(𝑖,𝑡)𝐼(𝑦(𝑡)=𝑘)

∑ 𝑡𝛾(𝑖,𝑡)
             (19) 

 

Repeat steps (ii) to (v) until the difference 
between the previous iteration and the current 
iteration is small or until a maximum number of 
iterations is reached. 
 

One has to repeat steps (ii) to (v) until the 
difference between the previous iteration and the 
current iteration is small or until a maximum 
number of iterations is reached. 
 

3.9 Estimating the Stages of the LF Virus 
with HMM 

 
With the SIR model already defined, the HMM 
would then be used to estimate the unobserved 

infection stages of the virus based on the trend of 
confirmed cases as recorded per week. The 
three classes of the SIR model were used as the 
hidden states of the model so built. 
 
The vector 𝑆 = {𝑠1, 𝑠2, 𝑠3} represents the hidden 

states of the model where 𝑠1 is the susceptible 

state, 𝑠2  is the infected state and 𝑠3  is the 
removed state. Likewise, 𝑄 = {𝑞1, 𝑞2, 𝑞3}  is the 

set of observations with 𝑞1  representing 

increasing number of confirmed cases (IN), 𝑞2 for 

steady number of confirmed cases (ST) and 𝑞3 
for decreasing number of confirmed cases (ST). 
 

3.10 Transition and Emission Matrix 
 
A is the transition probability matrix of 3 × 3 

dimension. It stores the probability 𝑎𝑖𝑗  of 

transitioning from one of the hidden states 𝑖 
known to be either susceptible, infected or 
recovered to another one of the state 𝑗. 
 
                                                           

[

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

 

𝑎𝑖𝑗 = 𝑃(𝑆𝑡+1 = 𝑠 ′|𝑆𝑡 = 𝑠), ∀ 𝑠 ′, 𝑠 ∈ 𝑆        (20) 

 
The emission probability matrix B is also 3 × 3 

which contains the probability 𝑏𝑗𝑘  of having any 

of the decreasing, increasing or steady 
observation 𝑘 given any hidden state 𝑗. 
 

[

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

] 

 

𝑏𝑗𝑘 = 𝑃(𝑄𝑡 = 𝑞|𝑆𝑡 = 𝑠) ∀ 𝑠 ∈ 𝑆, 𝑞 ∈ 𝑄        (21) 

 
The initial probability vector 𝜋 = {𝜋1, 𝜋2, 𝜋3} 
represents the probability of starting the process 
from the susceptible, infected or recovered state 
of Lassa fever. The hidden Markov model 𝜃 built 
from the three parameters stated is then given 
as: 

 
𝜃 = {𝜋, 𝐴, 𝐵}            (22) 

 

The hidden Markov model 𝜃 = {𝜋, 𝐴, 𝐵} is then 
used to solve two problems: 
 

i) Finding the hidden sequence: The 
transition matrix 𝐴, emission matrix 𝐵 and 

a sequence of given observations 𝑄 =
(𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑇) is used to find the hidden  
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S 
I 
R 

IN S DC 

S 

R 
I 



 
 
 
 

Nkemnole and Oyewole; Int. J. Trop. Dis. Health, vol. 44, no. 18, pp. 1-14, 2023; Article no.IJTDH.105450 
 
 

 
8 
 

sequence 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑡)  that is most 

likely to generate 𝑄 = (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑇), i.e  
 

𝑆∗ = argmax
𝑆

𝑃(𝑄|𝑆, 𝐴, 𝐵)                      (23) 

 
ii) Estimating the parameters: The 

transition matrix 𝐴  and emission matrix 
which are then estimated, and the 
parameters of the models are estimated. 
The estimated parameters represent the 
values that are most likely to generate any 
given sequence 𝑄 i.e 

 
 𝐴∗, 𝐵∗ = argmax

𝐴,𝐵
𝑃(𝑄|𝐴, 𝐵)             (24) 

 
The problems above can be solved using the 
Viterbi algorithm and Baum-Welch algorithm. 
 

3.11 Solution to Finding the Hidden 
Sequence 

 
The sequence of observations 𝑄 =
(𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑇)  which corresponds to the 
decreasing, steady or increasing number of 
cases of Lassa fever infections per time and 
known transition and emission probability 
matrices 𝐴 𝑎𝑛𝑑 𝐵 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦  are used to 
compute the most likely hidden sequence of the 
set of observations in Q. For each hidden 
sequence 𝑆 of the state of Lassa fever at each 
time 𝑡 , the joint probability that both 𝑂 𝑎𝑛𝑑 𝑆 
happen is: 
 

  𝑃(𝑄, 𝑆|𝐴, 𝐵) = 𝑃(𝑄|𝑆, 𝐴, 𝐵) ∙ 𝑃(𝑄|𝐴, 𝐵)    (25) 
 

 = ∏ 𝑃(𝑞𝑡|𝑠𝑡) ∙ ∏ (𝑠𝑡|𝑠𝑡−1)𝑇
𝑖=1

𝑇
𝑖=1         (26)

  
= 𝑃(𝑞1|𝑠1) ∙ 𝑃(𝑞2|𝑠2) ∙ 𝑃(𝑞3|𝑠3) ∙∙∙ 𝑃(𝑞𝑇|𝑠𝑇) ∙
𝑃(𝑠1|𝑠0) ∙ 𝑃(𝑠2|𝑠1) ∙ 𝑃(𝑠3|𝑠2) ∙∙∙ 𝑃(𝑠𝑇|𝑠𝑇−1)   

 = 𝐵(𝑠1, 𝑞1) ∙ 𝐵(𝑠2, 𝑞2) ∙∙∙ 𝐵(𝑠𝑇 , 𝑞𝑇) ∙
𝐵(𝑠0, 𝑠1) ∙ 𝐵(𝑠2, 𝑠1) ∙∙∙ 𝐵(𝑠𝑇−1, 𝑠𝑇)   

             = ∏ 𝐵(𝑠𝑡 , 𝑞𝑡) ∙ ∏ 𝐴(𝑠𝑡−1, 𝑠𝑡)𝑇
𝑖=1

𝑇
𝑖=1   (27) 

 
The sequence 𝑆  that maximizes the equation 
above is: 
 

𝑆∗ = 𝑎𝑟𝑔max
𝑆

𝑃(𝑂, 𝑆|𝐴, 𝐵)         (28) 

 

The Viterbi algorithm simplifies and answer the 
problem of finding the most likely hidden 
sequence, it follows the following steps: 
 

i) Initialize: For each hidden state 𝑠  of the 

state of Lassa fever at each time 𝑡: 

 𝑔[1, 𝑠] ← 𝐵(𝑠, 𝑜1) ∙ 𝐴(𝑠0, 𝑠) 

ii) For 𝑡 = 2 𝑡𝑜 𝑇: For each hidden state 𝑠, 

 𝑔[𝑡, 𝑠] ← max
𝑠′

𝑔[𝑡 − 1, 𝑠 ′] ∙ 𝐴(𝑠 ′, 𝑠)𝐵(𝑠, 𝑜𝑡) 

 

 ℎ[𝑡, 𝑠] ← argmax
𝑠′

𝑔[𝑡 − 1, 𝑠 ′] ∙ 𝐴(𝑠 ′, 𝑠)𝐵(𝑠, 𝑜𝑡) 

 
iii) Follow ℎ[𝑡, 𝑠]  to find 𝑠𝑇,

∗ 𝑠𝑇−1
∗ , … , 𝑠1

∗. Starting 

at 𝑡 = 𝑇 

 
 𝑠𝑇

∗ ← argmax
𝑠

𝑔[𝑇, 𝑠] 

𝑠𝑡
∗ ← ℎ[𝑡 + 1, 𝑠𝑡+1

∗ ]      for 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1 

 
3.12 Estimating the Parameters of the 

Model 
 

The current study used the Baum-Welch 
algorithm (Expectation-Maximization procedure) 
to obtain the estimated values of the transition 
matrix 𝐴 and emission matrix 𝐵. 
 
Initially 𝐴 and 𝐵 were initialized at random, then 
their values were repeatedly updated up to 1000 
iterations. The Expectation step and the 
Maximization step are the first two steps in each 
updating iteration. 

 
3.13 Expectation Step 

 
Since the transition matrix 𝐴 and emission matrix 

𝐵  are known, we then make use of the 
expectation step to compute the following: 

 
𝛾[𝑡, 𝑠] = 𝑃(𝑠𝑡 = 𝑠|𝑄, 𝐴, 𝐵)                  (29) 

 
𝜉[𝑡, 𝑠 ′, 𝑠] = 𝑃(𝑠𝑡−1 = 𝑠 ′, 𝑠𝑡 = 𝑠|𝑄, 𝐴, 𝐵)        (30) 

 
𝛾[𝑡, 𝑠] counts how many times does the 𝑡𝑡ℎ states 
of the hidden sequence of Lassa fever state 

equal 𝑠  and 𝜉[𝑡, 𝑠 ′, 𝑠]  counts how many time 

(𝑠 ′, 𝑠) happens at the (𝑡 − 1)𝑠𝑡  step and the 𝑡𝑡ℎ 

step in the hidden sequence of Lassa fever, both 

up to normalization by a partition function. 𝛾[𝑡, 𝑠] 
and 𝜉[𝑡, 𝑠′, 𝑠] can be referred to as the pseudo 

counts. 

 
Given the partial joint probabilities: 

 
𝛼[𝑡, 𝑠] =  𝑃(𝑞1, 𝑞2, … , 𝑞𝑡 , 𝑠𝑡 = 𝑠|𝐴, 𝐵)  

  
𝛽[𝑡, 𝑠] =  𝑃(𝑞𝑡+1, 𝑞𝑡+2, … , 𝑞𝑇|𝑠𝑡 = 𝑠, 𝐴, 𝐵) 
   

then 𝛾[𝑡, 𝑠] and 𝜉[𝑡, 𝑠 ′, 𝑠] can be computed as 

follows: 
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𝛾[𝑡, 𝑠] = 𝑃(𝑠𝑡 = 𝑠|𝑄, 𝐴, 𝐵)   
    

 =
𝑃(𝑠𝑡 = 𝑠|𝑄, 𝐴, 𝐵)

𝑃(𝑄|𝐴,𝐵)
    

      

=
𝛼[𝑡,𝑠]∙𝛽[𝑡,𝑠]

∑ 𝛼[𝑡,𝑠′]∙𝛽[𝑡,𝑠′]
𝑠′

                 

𝜉[𝑡, 𝑠 ′, 𝑠] = 𝑃(𝑠𝑡−1 = 𝑠 ′, 𝑠𝑡 = 𝑠|𝑄, 𝐴, 𝐵)  

      

=
𝑃(𝑠𝑡−1=𝑠′,𝑠𝑡=𝑠|𝑄,𝐴,𝐵)

𝑃(𝑄|𝐴,𝐵)
    

      

=
𝛼[𝑡−1,𝑠]∙𝐴(𝑠′ ,𝑠)∙𝛽[𝑡,𝑠]

∑ 𝛼[𝑡,𝑠′]∙𝛽[𝑡,𝑠′]
𝑠′

          (31)

     

3.14 Maximization Step 
 

With 𝛾[𝑡, 𝑠]  and 𝜉[𝑡, 𝑠′, 𝑠]  obtained from the 

expectation steps, we then make use of the 
maximum likelihood estimator to derive the 

updated values for the parameters 𝐴  the 

transition matrix and 𝐵, the emission matrix, in 

the maximization step as follows: 
  

�̂�(𝑠 ′, 𝑠) =
𝑁𝑜 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑠′

𝑁𝑜 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑠′
=

∑ 𝜉[𝑡,𝑠′,𝑠]𝑇−1
𝑡=1

∑ ∑ 𝜉[𝑡,𝑠′,𝑠′′]𝑇−1
𝑡=1𝑠′′

                    (32) 

 

�̂�(𝑠, 𝑜) =
𝑁𝑜 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑖𝑣𝑒𝑛 𝑠

𝑁𝑜 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛𝑦𝑡𝑖𝑚𝑒𝑠 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑖𝑣𝑒𝑛 𝑠
=

∑ 1[𝑜𝑡=𝑜]𝛾[𝑡,𝑠]𝑇
𝑡=1

∑ 𝛾[𝑡,𝑠]𝑇
𝑡=1

                  (33) 

 

4. RESULTS 
 

4.1 Data 
 
The dataset for this study were obtained from the 
weekly Lassa fever outbreaks report on the 
National Centre for Disease Control and 
prevention (NCDC) website for the period 
between the 7th January 2021 and 29th January 

2023, spanning 108 weeks. The fields for the 
dataset were: suspected, confirmed, probable 
and death cases. 
 

The incidence case count of suspected, 
confirmed and death cases of Lassa fever in 
Nigeria from January 2021 to January 2023 are 
described in Table 2. 
 

Table 2 reveals that there was an average of 130 
suspected cases of LF in Nigeria between 2021 
and 2023, with a minimum of 29 and a maximum 
of 560 reported. With a mean of about 18 
confirmed cases, the number of confirmed cases 
ranged from 0 to 137.  A mean of about 3 deaths 
occurred during the study period; the number of 
fatalities ranged from 0 to 21. The summary 
indicates that there were relatively many 
suspected cases and fatalities, but only a small 
number of them were either confirmed or likely 
cases. This could mean that identifying all cases 
of the disease or making an accurate diagnosis 
would be difficult. 
 
The times series representation of the data is 
given : 
 

The plot shows a clear seasonal pattern in the 
incidence of Lassa fever, with the highest 
number of cases occurring from December 
through February and the lowest number of 
cases occurring between June and August.       
This pattern is consistent across all three    
trends - suspected cases, confirmed cases, and 
deaths. 
 

The figure also shows a significant peak in the 
number of confirmed cases in the recent time, 
which is most pronounced in January 2023. This 
peak coincides with the highest number of 
suspected cases, which is also reflected in the 
trend for death cases, although to a lesser 
extent.

 

 
 

Fig. 1. Time Series plot of weekly incidence of LF cases in Nigeria between 2021 and 2023 
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Table 2. Descriptive statistics of lassa fever cases in Nigeria between 2021 and 2023 
 

Statistic Suspected Confirmed Deaths 
Min 29.00 0.00 0.00 
1st quart 72.75 5.00 0.00 
Median 103.50 9.00 1.00 
Mean 130.06 17.56 2.63 
3rd quart 145.25 17.25 3.00 
Max 560.00 137.00 21.00 

 

 
 

Fig. 2. Graphical representation of transition probability matrix 
 
The initial state probability shows a 0.924 
(92.4%) probability of starting at the susceptible 
state, 0.076 (7.6%) probability of starting on the 
infected state and the probability of starting at 
recovery state could be 0. 
 
The transmission matrix obtained from the 
solution to the transition of the SIR model is as 
given in Table 4: 
 
From the transition matrix, if the current state is 
infected, there is a 0.960 probability of staying 
infected, a 0.04 probability of moving to the 
recovery state, and a 0 probability of moving to 
the susceptible state. 
 
The emission matrix B is given in Table 5 as: 
 

Table 3. Initial state probabilities 
 

Susceptible Infected Recovered 

0.924 0.076 0.000 

 
Table 0 . Transition probability matrix 

 

 Susceptibl
e 

Infected  Recovered 

Susceptible 0.019 0.981 0.000 
Infected 0.000 0.960 0.040 
Recovered 0.480 0.000 0.520 

𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠), ∀ 𝑠′, 𝑠 ∈ 𝑆 

Table 5. Emission probability matrix 
 

 Decreasing Steady Increasing 
Susceptible 0.563 0.000 0.437 
Infected 0.377 0.101 0.522 
Recovered 0.478 0.130 0.391 

𝑃(𝑄𝑡 = 𝑞|𝑆𝑡 = 𝑠) ∀ 𝑠 ∈ 𝑆, 𝑞 ∈ 𝑄 
 

The stable state probability defined b y π × A is 

recorded as [0.017 0.979 0.0034]. There is a 
98% chance of continuing in the infected state. 

 
4.2 Decoding the Most Likely Hidden 

Sequence using Viterbi Algorithm 
 
The Viterbi algorithm was applied to the HMM to 
infer the most likely sequence of hidden states 
given the observed sequence. The resulting 
sequence of hidden states which provides an 
estimate of the underlying process that 
generated the observed data is given below: 
 
[1] "Susceptible" "Infected" "Infected" "Infected" 
"Infected" "Infected" "Infected" 
[8] "Infected" "Infected" "Infected" "Infected" 
"Infected" "Infected" "Infected" 
[15] "Infected" "Infected" "Infected" "Infected" 
"Infected" "Infected" "Infected" 
[22] "Infected" "Infected" "Infected" "Infected" 
"Infected" "Infected" "Infected" 
[29] "Infected" "Infected" 

0

0.2

0.4

0.6

0.8

1

Susceptible Infected Recovered

Susceptible

Infected

Recovered
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Fig. 3. Graphical Representation of Emission Probability Matrix 
 

 
 

Fig. 4. Comparison of actual hidden sequence to predicted hidden sequence 
 
To obtain the proportion of predicted hidden 
sequence that tallies with the actual data, we 
use: 
 

Sum(HMM_statesdataL$States)/length(dataL$St
ates)   [1] 0.6422018 
 

By comparing the predicted hidden sequence to 
the actual data, we recorded a 0.648 value, 
which means that 64.8% of the hidden states 
was responsible for the observations. 
 

4.3 Estimating the Parameters of the 
Model 

 

The Baum-Welch algorithm was applied to the 
HMM that we created to obtain the estimated 
values for the parameters of the model. These 
values were crucial for comprehending the 
HMM's behavior and making predictions based 
on the symbols that had been observed. The 
estimated values for the transition and emission 
matrices are presented in the sections that 
follow: 
 

The general HMM is represented by the 
equation: 
 

𝜃 = {𝜋, 𝐴, 𝐵}   

After 1000 algorithms of the Baum-Welch 

algorithm, the estimated HMM �̂� = {�̂�, �̂�, �̂�}  has 
the following values: 
  

�̂� = {1.000, 0.000, 0.000} 

 
The initial probability vector in this instance has 
values of (1, 0, 0), indicating that there are no 
individuals in the infected or recovered states at 
the start of the system and that all individuals are 
in the susceptible state. 

 
This interpretation is in line with the SIR model, 
according to which the disease could only start in 
a state that is susceptible. In this instance, the 
estimated initial probability vector suggests that 
everyone is susceptible to the disease at the 
start of the disease outbreak, as there are neither 
infected nor recovered individuals. 
 

Table 6. Estimated Transition Probabilities 
Lassa Fever infections 

 

 Susceptible Infected Recovered 

Susceptible 0.915 0.0085 0.000 
Infected 0.476 0.515 0.001 

Recovered 0.646 0.289 0.006 
𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠), ∀ 𝑠′, 𝑠 ∈ 𝑆 

0

0.2

0.4

0.6

Decreasing Steady Increasing

Susceptible

Infected

Recovered
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From Table 6, the estimated probability of 
staying in the susceptible state would be very 
high at 91.5%, while the estimated chances of 
transitioning from the susceptible state to the 
infected state also would be very low at 0.85% of 
the chances. The estimated probability of staying 
infected state would relatively be more than half 
at 51.5% of the chances. 
 
The probability of observing the emission-
infected individuals, given that the HMM is in the 
decreasing state is 0.690, while the probability of 
observing recovered, given that the HMM is in 
the increasing state is 0.024.s 
 

5. DISCUSSION AND CONCLUSION 
 
This study surveilled the occurrence and state 
transmission of Lassa fever using HHM model in 
Nigeria. The time plot showed a peak period of 
Lassa fever during the dry season between 
January and March and the lowest number of 
confirmed cases was estimated during the 
raining season between June and August. 

Furthermore, we used the SIR model to define 
the hidden states of the hidden Markov model 
(HHM) and thereby computed the transition 
probability matrix of the hidden model. The 
transition probability matrix after estimation 
showed a 98% chance of transitioning to the 
infected-state from being susceptible and                 
also gave a 96% chance of staying in infected-
state. 
 
The HMM was then applied to the observations 
from the Lassa fever dataset, which was 
available from January 2021 to January 2023 on 
the Nigeria Centre for Disease Control and 
Prevention (NCDC) website. The model then 
depicted the most likely hidden sequence of viral 
Lassa fever given the observation of the 
confirmed cases of the disease. The result 
showed that the hidden sequence was 
responsible of 65% of the observed states. The 
stable state probability was estimated at 97.9% 
probability of transitioning to the infected state, 
and 1.7% chance of transitioning to the 
susceptible state [18]. 

 

 
 

Fig. 5. Graphical Representation of Estimated Transition Probabilities 
 

 
 

Fig. 6. Graphical Representation of the Estimated Emission Probabilities 
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Table 7. Estimated emission probabilities 
 

 Decreasing Steady Increasing 

Susceptible 0.000 0.998 0.002 
Infected 0.690 0.288 0.307 
Recovered 0.659 0.317 0.024 

𝑃(𝑄𝑡 = 𝑞|𝑆𝑡 = 𝑠) ∀ 𝑠 ∈ 𝑆, 𝑞 ∈ 𝑄 
 

Conclusively, this research work has 
demonstrated the effectiveness of using HMM to 
surveil the occurrence of Lassa fever in Nigeria. 
Our analysis of Lassa fever data in Nigeria 
showed that the HMM model was able to 
accurately capture the dynamics of prediction of 
disease transmission process, showing the most 
probable state of infection and thereby proving to 
be a valuable tool for public health officials to 
track and respond to outbreaks of the disease in 
question. 
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