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ABSTRACT

Aims/ Objectives: To develop a compartment based mathematical model, fit daily quarantine data
from Ministry of Health of Kenya, estimate individuals in latency and infected in general community
and predict dynamics of quarantine for the next 90 days.
Study Design: Cross-sectional study.
Place and Duration of Study: 13thMarch 2020 to 30th June 2020.
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Methodology: The population based model was developed using status and characteristic of
COVID-19 infection. Quarantine data up to 30/6/2020 was fitted using integrating and differentiating
theory of odes and numerical differentiation polynomials. Parameter and state estimates was
approximated using least square. Simulations were carried out using ode Matlab solver. Daily
community estimates of individuals in latency and infected were obtained together with daily
estimate of rate of enlisting individual to quarantine center and their proportions were summarized.
Results: The results indicated that maximum infection rate was equal 0.892999 recorded on
28/6/2020, average infection rate was 0.019958 and minimum 0.00012 on 26/6/2020.
Conclusion: Predictions based on parameters and state averages indicated that the number of
individuals in quarantine are expected to rise exponentially up to about 26,855 individuals by 130th
day and remain constant up to 190th day.

Keywords: COVID-19; reproduction number; quarantine; Lagrange polynomial; least square
approximation; infection rate.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 INTRODUCTION

Novel Coronavirus (2019-nCov) -infected
Pneumonia (NCIP), or simply COVID-19 was first
identified in Wuhan China, a city with eleven
million people on 29th December 2019 [1].
Covid-19 belong to a family of viruses called
coronavirus that affect the respiratory system.
According to [2], the coronavirus disease was
named COVID-19 by World Health Organization
(WHO) with collaboration with International
classification of Diseases(ICD). It spread mostly
from person to person. Most people with the
COVID-19 will experience mild to moderate
respiratory illness and recover without requiring
treatment. Older people or those with other
medical conditions like diabetes, cardiovascular
disease, chronic respiratory disease and cancer
are prone to serious illness.

A study done by Prof Nan-Shan Zhong’s team
found the clinical symptom’s of the virus included
fever (88.7%), cough (69.8%), fatigue (38.1%),
sputum production (33.4%), shortness of breath
(18.6%), sore throat (13.9%) and headache
(13.6%) [3].

Bentout et al (2020), investigated how Covid
19 epidermic would evolve with or without
interventions. They used Covid 19 data collected
upto 31st March 2020. They used the SIER
model. They also used the least square method
and the best fit curves that minimizes the sum
of square residues to estimate the parameters
and basic reproduction number R0 of the model.

They discussed the effects of the interventions
using numerical simulation. They found out that
R0 = 4.1 which implied that epidermic in Algeria
would occur in a strong way if intervention are not
implemented. The interventions had a positive
effect on the time delays of the epidermic peak.[4]

In Kenya the virus was detected on 13th March
2020, from a Kenyan who had traveled back
to the country on 5th march 2020 from United
States. The virus has spread exponentially since
then, and by the time of writing this paper, Kenya
had over 10,000 people infected with the virus.

Different techniques can be used to work
out numerical integration which include:
interpolation, undetermined coefficient and the
finite difference operator method. Lagrange
polynomial(Pnx), is used when dealing with
interpolation [5, 6, 7]. The Lagrange polynomials
offer a suitable alternative to solving the
simultaneous equations that result from requiring
the polynomials to pass through the data values.
This is a mostly suitable way to interpolate among
tabulated values with polynomials. The core
advantage of the Lagrange polynomial is that
the data may be unequally spaced. Another
advantage of the Lagrange formula is that it does
not depend on the order in which the nodes are
arranged. In the Newton formula, the divided
differences do have such a dependence [8].

Uniform and uniform mess points h(x), is fitted
into polynomial of the form Pnx =

∑n
k=0 Lk(x)fk,

where Pn(x) denotes an n-degree polynomial in
x.
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The commonly used method for approximating a
linear and non linear function (f) is the absolute
mean and least square approximation. This
method estimate the parameter by minimizing
the squared error from the difference between
the function (f) and the model [6, 9].

Roddam (2001) in their book describes how
one can learn about mathematical modeling of
infectious diseases. They considered epidermic
modeling using simple ideas of an epidermic in
a closed population. They also covered simple
concepts such as basic reproduction number,
incorporating age structure, spatial spread of
diseases and issues on contact or infection
transmission [10].

Mathematical models projects how infectious
diseases progress and predicts the possible
outcome of an epidemic for the purpose of
advising public health. These models use
assumptions or collected data together with the
knowledge of mathematics to find parameters to
be used in the infectious diseases models [11].

Mathematical modeling of infectious diseases
follow seven stages which are in fig. 1. [12].

Even if all stages in fig. 1. are important, it should
be noted that disease control models should
have a realistic validation. These validations
comes from comparison of model solutions and
predictions with certain data [13, 14].

Several researchers have modeled Covid 19
pandemic, considering different data fitting tools.
Babacar M. N., Lena T., and Diaraf S., (2020)
predicted the confirmed cases of Covid-19 by
machine learning, deterministic and stochastic
SIR models. From the parameters estimated
and fitted in the SIR model, they concluded that
pandemic in most countries would end within few
weeks and the hit of anti-pandemic would be in
mid-May [15].

The main objective of this paper is to propose
a Covid 19 model in Kenya,estimate the
parameters and use the parameters to find the
numerical simulations.

Fig. 1. Seven stages of modeling

2 MODEL ANALYSIS

2.1 Introduction
Our model involves person to person infection and has four human classes namely Susceptible (S),
Latent (N), Infected (I) and Quarantine (Q). All people in the country are susceptible. The N class
represent the individuals exposure to the virus and this can take 2-14 days. Infectious class involves
individuals who have symptoms of the coronavirus. Q are the individuals who are quarantine because
they have history of travel to countries with the virus or had contact with infected individuals or have
tested positive for coronavirus.

Table 1. gives the parameters of our model and their descriptions.
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Table 1. Parameters and their descriptions

Parameter Description
π1, π2, π3 Net immigration to S,N, I
β Effective contact rate
η Modification parameter
ω Rate of individuals developing Covid-19 symptoms
γ Rate of individuals joining quarantine
h Fraction of people to be quarantined
δ1, δ2 Death rate due to Covid-19 infection of I and Q
Θ Recovery rate of the individuals in the quarantined

We made the following assumptions;

• Individuals in quarantine are not infectious, since they are isolated and are under supervision.

• Any COVID-19 case in which Kenya Ministry of health is aware of is assumed to be in quarantine.

• Individuals in latency state (asymptomatic) in the community are assumed to be more than
those in infected state (symptomatic).

Our model is formulated using first order differential equations given in equation (1)

dS

dt
= π1S + θQ− λS,

dN

dt
= π2N + λS − (hγ + ω)N,

dI

dt
= π3I + ωN − ((1− h)γ + δ1)I

dQ

dt
= hγN + (1− h)γI − (θ + δ2)Q,


(1)

Where λ is the rate of the individuals joining the latent class N and it is given by

λ =
β(N + ηI)

P

.

2.2 Re-scaling the Model
The total population is given by P where

P = S(t) +N(t) + I(t) +Q(t). (2)

Dividing (2) by P we obtain;

1 =
S

P
+
N

P
+
I

P
+
Q

P
(3)

From equation (3) we can let

s =
S

P
, n =

N

P
, i =

I

P
, q =

Q

P
, t = t (4)

Substituting equation (4) into equation (3) and making s the subject we obtain s = 1− n− i− q. We
now substitute s into equation (1) to get the reduced equation (5)
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dn

dt
= π2n+ λ(1− n− i− q)− (hγ + ω)n,

di

dt
= π3i+ ωn− ((1− h)γ + δ1)i

dq

dt
= hγn+ (1− h)γi− (θ + δ2)q,


(5)

Where λ = β(n+ ηi).

2.3 Boundedness of the Model
Lemma 1. The feasible region Ω defined by the set

Ω =

{
(S,N, I,Q) ∈ R4

+ : 0 ≤ N(t) ≤ τ

µ

}
.

with initial data S > 0, N > 0, I > 0, Q > 0, is bounded for t ≥ 0.

Proof. Taking the sum of the the derivatives we obtain
dP

dt
= π1S + π2N + π3I − δ1I − δ2Q. (6)

If we let τ to represent the cumulative net migration times total population and µ to represent death
rate due to COVID-19 as a proportion of total population we obtain;

dP

dt
= τ − µP.

Integrating and taking the limit of P as t→ ∞ we obtain;

lim
t→∞

P (t) ≤ τ

µ
. (7)

Equation (7) implies that P (t) is bounded for all t ≥ 0 and P (t) ≤ τ
µ

.

2.4 Positivity of the Model
We prove that the variables S,N, I,Q remain positive for all time t ≥ 0.

Theorem 1. If all variables of the model equation (1) are non-negative and the initial conditions satisfy

{(S(0), N(0), I(0), Q(0)) ≥ 0} ∈ Ω,

then the solutions set {S(t), N(t), I(t), Q(t)} of the model system (1) is positive for all t ≥ 0.

Proof. Starting with the first equation in model system (1) we have
dn

dt
= −hγn+ λ− λn− λi− λq − ωn+ π2n (8)

The parameters π2 and λ are positive hence
dn

dt
≥ −hγn+ λn+ λi+ λq + ωn (9)

Dividing all through with n and integrating with respect to t we obtain

ln n ≥ −
∫ t

0

(hγ +
λi

n
+ λ+

λq

n
+ ω) + c1 (10)

Substituting the initial conditions n(0) we get

n(t) ≥ n(0)e
−

∫ t
0 (hγ+

λ(s)i(s)
n(s)

+λ(s)+
qλ(s)
n(s)

+ω)ds (11)
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2.5 Disease Free Equilibrium
The DFE point is the point where there is not disease in the population. It is the point where n = i =
q = 0. From equation (1) DFE represented by E0 =

{
S0, N0, I0, Q0

}
=

{
π1, 0, 0, 0

}
. From equation

(5), E0 =
{
0, 0, 0

}
.

Hence we find the reproduction number of the model. We use the second generation matrix as in
[16, 17] to find the reproduction number R0. The reproduction number represent the number of
secondary infection one individual transmit in the population. The reproduction number is found by
identifying the largest eigenvalue from the matrix FV −1 where matrix F represent new infection and
matrix V represent transfer of new infections. We let ψ1 = hγ, ψ2 = (1 − h)γ and ψ3 = θ + δ2 so
that equation (5) becomes:

dn

dt
= π2n+ λ(1− n− i− q)− ψ1n− ωn,

di

dt
= π3i+ ωn− ψ2i− δ1i

dq

dt
= ψ1n+ ψ2i− ψ3q,


(12)

Matrices F and V are given by:

F =

(
β βη
0 0

)
V =

(
ω − π2 + ψ1 0

−ω −π3 + δ1 + ψ2

)
F.V −1 =

( β
ω−π2+ψ1

+ ηωβ
(ω−π2+ψ1)(−π3+δ1+ψ2)

βη
−π3+δ1+ψ2

0 0

)
The largest eigenvalue of FV −1 is given by

R0 =
βηω

(δ1 + ϕ2 − π3) (ω + ϕ1 − π2)
+

β

ω + ϕ1 − π2
(13)

2.6 Endemic Equilibrium Point
This is the point E∗ when the disease persists in the community. To find the EEP we equate the
second and the third equation of equation (5) to zero then solving in terms of n to obtain:

i∗ = − n∗ω

π3 − δ1 − ψ2

q∗ =
n∗

(
ψ1 − ψ2ω

−δ1−ψ2+π3

)
ψ3

Substituting i∗ and q∗ into the first equation of (5), with λ∗ = β(n∗ + ηi∗), we obtain:

A2n
∗2 +A1n

∗ +A0 = 0 (14)

Where

A2 = −β (ψ3 (δ1 + ω − π3) + ψ1 (δ1 + ψ2 − π3) + ψ2 (ψ3 + ω)) (δ1 + ηω + ψ2 − π3)

ψ3 (δ1 + ψ2 − π3) 2

A1 = − βηω

−δ1 − ψ2 + π3
+ β − ψ1 − ω + π2

A0 = 0
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Writing A2 and A1 in term of R0 and letting Ω1 = −π2 + ω + ψ1 and Ω2 = −π3 + δ1 + ψ2 we get:

A2 = −Ω1R0

ψ2Ω2
((ψ2 + ψ3)ω + (ψ1 + ψ3)Ω2)

A1 = R0 − 1

Clearly A2 < 0 when R0 > 0 and n∗ = −A1
A2

< 0 when R0 > 1 from equation (14), hence there is
no endemic point for this model when R0 < 1. We have only one nonzero endemic point which is
positive when A1 > 0 and R0 > 1.

Lemma 2. A unique endemic equilibrium point E∗ exist and is positive when R0 > 1

3 PARAMETERIZATION

3.1 Parameter Estimation
The total population of Kenya was 47, 564, 300 according to census of 2019 [18]. Therefore P =
47, 564, 300. Government of Kenya keep records information of individuals it is aware of their whereabouts
and status. It is assumed that such individuals cannot transmit COVID-19 because they are in
quarantine. The recovery rate of individuals, using data from [19], in quarantine is obtained by:
Θ = ToatalRecovery

TotalInfected
which is plotted as below in fig. 2b. The disease induced death rate of individuals

in quarantine, is obtained by: δ2 = ToatalDeath
TotalInfected

, which is plotted in fig. 2a.
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Fig. 2. Recovery and death rate

Mean values of Θ and δ2 obtained in Table 3. were substituted in discrete quarantine equations as
below,

dln q(t)
q(0)

dt
= hγ

n(t)

q(t)
+ (1− h)γ

i(t)

q(t)
− (0.189353 + 0.033786) (15)

Parameters (γ, h) and State variable estimation n(t) and i(t) are estimated from differential equation
using Lagrange polynomials and least squares method. Note that

q(t) =
Total infectives

Population of Kenya(P )

Initial time at 13/3/2020 was considered as t = 0 and 30/6/2020 considered as t = 108. Using Matlab
software and the data from [19], we obtained the following polynomial and its approximate numerical
differentiation.

ln
q(t)

q(0)
≈ −3.8× 10−7t4 + 9.7× 10−5t3 − 0.0088t2 + 0.37t− 0.14 (16)
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This equation (16) is of the 5th degree and the norm of residue is 1.3188 We get the first derivative of
equation (16) to obtain;

dln
q(t)

q(0)
≈ −3.8× 4× 10−7t3 + 3× 9.7× 10−5t2 + 0.0088t+ 0.37 (17)

Equation (15) was fitted using least square approximation in excel and with the following conditions;

• 0 ≤ h ≥ 1; On assumption that the government of Kenya has equal chance of putting
individuals in latent state and infectious state in quarantine center.

• n ≥ i; On assumption that individuals latent state are likely to be more than individuals in
infectious state. Note that n and i are simple fractions which lie from 0 and 1.

• All state variables and parameters are non-negative.

Fig. 3. was obtained after fitting q(t) in the model to the observed data with time using least square
approximation method. The total sum of least square was 2.54656x10−9
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Observed data Predicted q

Fig. 3. Fitting q in the model to the observed data

Fig. 4c and Fig. 4d are plotted using h values and γ values from Table 2. We used excel software
to plot these graphs which represent the fraction of people to be quarantine (Fig. 4c) and the rate of
individuals joining quarantine (Fig. 4d).

(c) h values (d) Gamma values

Fig. 4. h and gamma values
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Table 2a. Estimated state variables and parameters

Date h Gamma n i Observed data Predicted q Least Square

3/13/2020 0.48875 0.00006 0.00013 0.00012 0.37000 0.37000 8.8377E-14

3/14/2020 0.49412 0.00007 0.00011 0.00010 0.35269 0.35269 1.5958E-13

3/15/2020 0.49483 0.00007 0.00011 0.00010 0.33595 0.33595 2.0991E-14

3/16/2020 0.49487 0.00012 0.00017 0.00016 0.31978 0.31978 8.0312E-14

3/17/2020 0.49456 0.00012 0.00017 0.00016 0.30416 0.30416 5.0819E-15

3/18/2020 0.48991 0.00018 0.00025 0.00023 0.28909 0.28909 2.7603E-15

3/19/2020 0.49933 0.00017 0.00025 0.00022 0.27455 0.27455 1.2232E-13

3/20/2020 0.50156 0.00017 0.00024 0.00022 0.26054 0.26054 3.0129E-13

3/21/2020 0.49680 0.00016 0.00024 0.00022 0.24705 0.24705 7.5442E-14

3/22/2020 0.51701 0.00023 0.00034 0.00031 0.23406 0.23406 2.2529E-14

3/23/2020 0.56870 0.00023 0.00034 0.00031 0.22158 0.22158 1.3837E-13

3/24/2020 0.73686 0.00028 0.00040 0.00038 0.20959 0.20959 1.2857E-13

3/25/2020 0.79161 0.00029 0.00041 0.00038 0.19808 0.19808 9.5356E-15

3/26/2020 0.54558 0.00038 0.00038 0.00038 0.18704 0.18704 3.3802E-14

3/27/2020 0.50971 0.00034 0.00042 0.00039 0.17647 0.17647 7.736E-14

3/28/2020 0.73080 0.00035 0.00044 0.00043 0.16635 0.16634 2.7506E-15

3/29/2020 0.68156 0.00034 0.00046 0.00046 0.15667 0.15667 2.9288E-20

3/30/2020 0.78779 0.00036 0.00049 0.00049 0.14743 0.14743 2.2671E-14

3/31/2020 0.89191 0.00038 0.00051 0.00050 0.13862 0.13862 1.5037E-13

4/01/2020 0.82607 0.00041 0.00062 0.00044 0.13023 0.13023 5.4659E-14

4/02/2020 0.81156 0.00049 0.00078 0.00041 0.12224 0.12224 3.0573E-13

4/03/2020 0.73838 0.00050 0.00082 0.00039 0.11465 0.11465 1.456E-13

4/04/2020 0.68769 0.00050 0.00084 0.00039 0.10746 0.10746 1.824E-14

4/05/2020 0.60047 0.00057 0.00099 0.00037 0.10065 0.10065 6.7265E-15

4/06/2020 0.62729 0.00057 0.00098 0.00042 0.09420 0.09420 2.4529E-13

4/07/2020 0.78403 0.00065 0.00104 0.00042 0.08813 0.08812 2.772E-14

4/08/2020 0.85254 0.00070 0.00112 0.00042 0.08240 0.08240 1.5781E-13

4/09/2020 0.87191 0.00069 0.00110 0.00038 0.07702 0.07702 1.2396E-15

4/10/2020 0.93016 0.00075 0.00125 0.00039 0.07198 0.07198 4.1349E-14

4/11/2020 0.57137 0.00106 0.00095 0.00076 0.06726 0.06726 6.554E-13

4/12/2020 0.49238 0.00107 0.00100 0.00079 0.06286 0.06286 1.8452E-14

4/13/2020 0.50994 0.00126 0.00115 0.00088 0.05877 0.05877 6.3713E-14

4/14/2020 0.62185 0.00135 0.00128 0.00095 0.05498 0.05498 1.5861E-13

4/15/2020 0.82097 0.00130 0.00129 0.00093 0.05147 0.05147 1.1464E-13

4/16/2020 0.99993 0.00124 0.00129 0.00090 0.04825 0.04825 9.3668E-14

4/17/2020 0.99929 0.00126 0.00141 0.00088 0.04531 0.04530 9.5985E-14

4/18/2020 0.99608 0.00129 0.00151 0.00085 0.04262 0.04262 9.9179E-14

4/19/2020 0.99287 0.00129 0.00154 0.00082 0.04019 0.04019 8.2823E-14

4/20/2020 0.99633 0.00129 0.00162 0.00081 0.03800 0.03800 7.0229E-14

4/21/2020 0.99489 0.00133 0.00171 0.00079 0.03605 0.03605 5.8198E-14
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Table 2b. Estimated state variables and parameters (continued.....)

Date h γ n i Observed data Predicted q Least Square

4/22/2020 0.99406 0.00130 0.00175 0.00076 0.03432 0.03432 6.384E-14

4/23/2020 0.67440 0.00172 0.00160 0.00114 0.03281 0.03281 1.1922E-13

4/24/2020 0.80036 0.00170 0.00163 0.00111 0.03151 0.03151 5.4683E-14

4/25/2020 0.99463 0.00166 0.00165 0.00107 0.03041 0.03041 1.3066E-13

4/26/2020 0.99362 0.00168 0.00174 0.00106 0.02950 0.02950 1.0493E-12

4/27/2020 0.99460 0.00171 0.00183 0.00104 0.02877 0.02876 2.0918E-15

4/28/2020 0.99276 0.00173 0.00189 0.00104 0.02821 0.02821 8.9699E-15

4/29/2020 0.99311 0.00178 0.00204 0.00102 0.02781 0.02781 1.6154E-12

4/30/2020 0.99219 0.00180 0.00213 0.00099 0.02756 0.02756 1.7643E-13

5/01/2020 0.97389 0.00182 0.00218 0.00102 0.02746 0.02746 7.9083E-14

5/02/2020 0.97562 0.00180 0.00236 0.00094 0.02750 0.02750 1.1262E-12

5/03/2020 0.97363 0.00183 0.00246 0.00088 0.02766 0.02766 3.4777E-13

5/04/2020 0.55024 0.00258 0.00205 0.00150 0.02794 0.02794 1.2258E-13

5/05/2020 0.52157 0.00254 0.00220 0.00162 0.02833 0.02833 5.8815E-13

5/06/2020 0.81488 0.00242 0.00225 0.00150 0.02881 0.02881 3.5327E-12

5/07/2020 0.98053 0.00234 0.00226 0.00145 0.02939 0.02939 1.4355E-13

5/08/2020 0.98008 0.00231 0.00235 0.00139 0.03004 0.03004 9.5781E-14

5/09/2020 0.97166 0.00242 0.00257 0.00137 0.03077 0.03076 3.8244E-12

5/10/2020 0.96763 0.00243 0.00270 0.00134 0.03155 0.03155 1.2763E-12

5/11/2020 0.96496 0.00246 0.00277 0.00133 0.03239 0.03239 5.1377E-14

5/12/2020 0.95785 0.00254 0.00293 0.00131 0.03328 0.03328 3.8602E-13

5/13/2020 0.95808 0.00253 0.00300 0.00130 0.03420 0.03420 9.6388E-12

5/14/2020 0.95918 0.00252 0.00304 0.00121 0.03515 0.03514 1.9962E-12

5/16/2020 0.61501 0.00337 0.00269 0.00187 0.03611 0.03611 1.5664E-13

5/17/2020 0.52631 0.00336 0.00284 0.00207 0.03708 0.03708 3.5501E-14

5/18/2020 0.70072 0.00332 0.00295 0.00198 0.03805 0.03804 3.8511E-13

5/19/2020 0.98449 0.00311 0.00303 0.00172 0.03900 0.03900 1.1654E-12

5/20/2020 0.98502 0.00300 0.00322 0.00166 0.03994 0.03994 1.267E-12

5/21/2020 0.98673 0.00291 0.00342 0.00156 0.04085 0.04085 5.0359E-15

5/22/2020 0.98793 0.00287 0.00353 0.00150 0.04172 0.04172 3.2047E-13

5/23/2020 0.99259 0.00331 0.00306 0.00202 0.04254 0.04254 8.2125E-14

5/24/2020 0.99265 0.00326 0.00315 0.00193 0.04331 0.04331 5.3047E-14

5/25/2020 0.97754 0.00321 0.00337 0.00184 0.04401 0.04401 3.9437E-14

5/26/2020 0.99377 0.00311 0.00351 0.00184 0.04463 0.04463 1.2789E-17
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Table 2c. Estimated state variables and parameters (continued.....)

Date h γ n i Observed data Predicted q Least Square

5/27/2020 0.99462 0.00299 0.00373 0.00166 0.04518 0.04518 3.2351E-14

5/28/2020 0.99671 0.00297 0.00392 0.00161 0.04563 0.04563 2.8704E-13

5/29/2020 0.55547 0.00113 0.01192 0.00938 0.04597 0.04597 6.9983E-14

5/30/2020 0.60495 0.00112 0.01298 0.00940 0.04621 0.04621 1.0832E-13

5/31/2020 0.62198 0.00113 0.01316 0.00943 0.04632 0.04632 1.5776E-13

6/01/2020 0.63308 0.00114 0.01325 0.00947 0.04631 0.04631 4.129E-13

6/02/2020 0.64160 0.00119 0.01311 0.00947 0.04616 0.04616 1.0187E-12

6/03/2020 0.64822 0.00132 0.01273 0.00945 0.04586 0.04586 7.5668E-13

6/04/2020 0.65131 0.00146 0.01210 0.00947 0.04540 0.04540 8.1045E-14

6/05/2020 0.65175 0.00167 0.01101 0.00954 0.04478 0.04478 8.3397E-14

6/06/2020 0.64992 0.00212 0.00988 0.00963 0.04399 0.04399 1.0498E-13

6/07/2020 0.65202 0.00229 0.00965 0.00932 0.04301 0.04300 1.0309E-13

6/08/2020 0.65403 0.00251 0.00965 0.00931 0.04183 0.04183 1.1682E-13

6/09/2020 0.65676 0.00263 0.00948 0.00908 0.04045 0.04045 1.1289E-13

6/10/2020 0.66080 0.00282 0.00956 0.00897 0.03887 0.03887 1.2228E-13

6/11/2020 0.66595 0.00295 0.00956 0.00877 0.03706 0.03706 1.2212E-13

6/12/2020 0.11119 0.00248 0.03660 0.00853 0.03502 0.03502 1.8592E-13

6/13/2020 0.15701 0.00274 0.01637 0.00999 0.03274 0.03274 1.452E-14

6/14/2020 0.19134 0.00252 0.02119 0.01007 0.03022 0.03022 1.1653E-13

6/15/2020 0.21881 0.00235 0.02483 0.01014 0.02744 0.02744 1.0959E-13

6/16/2020 0.22837 0.00230 0.02610 0.01038 0.02439 0.02439 1.6866E-13

6/17/2020 0.26471 0.00206 0.03053 0.01041 0.02107 0.02106 2.6872E-13

6/18/2020 0.27918 0.00209 0.03225 0.01057 0.01746 0.01746 1.5037E-13

6/19/2020 0.28104 0.00213 0.03260 0.01093 0.01356 0.01356 5.1935E-13

6/20/2020 0.28404 0.00207 0.03321 0.01158 0.00935 0.00935 7.3114E-14

6/21/2020 0.29150 0.00195 0.03392 0.01270 0.00484 0.00484 1.1657E-13

6/22/2020 0.29742 0.00191 0.03487 0.01354 0.00000 0.00000 6.8686E-14

6/23/2020 0.28114 0.00192 0.03371 0.01552 -0.00517 -0.00517 1.1846E-13

6/24/2020 0.29667 0.00163 0.03591 0.01972 -0.01067 -0.01067 1.2246E-13

6/25/2020 0.36014 0.00107 0.04907 0.03099 -0.01653 -0.01653 6.6441E-13

6/26/2020 0.00010 0.67306 0.00006 0.00006 -0.02274 -0.02274 4.4667E-15

6/27/2020 0.00943 0.00661 0.08153 0.00535 -0.02931 -0.02932 2.3408E-14

6/28/2020 0.01488 0.00410 0.46890 0.00278 -0.03627 -0.03627 3.9346E-13

6/29/2020 0.00172 0.00005 0.83190 0.83190 -0.04361 -0.04361 3.1913E-13

6/30/2020 0.00000 0.12088 0.00032 0.00032 -0.05134 -0.05134 6.4196E-13
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Table 3a. Summary of recovery and death rate per day

Date Death rate δ2 Recovery rate Θ

3/13/2020 0.00000 0.00000
3/14/2020 0.00000 0.00000
3/15/2020 0.00000 0.00000
3/16/2020 0.00000 0.00000
3/17/2020 0.00000 0.00000
3/18/2020 0.00000 0.00000
3/19/2020 0.00000 0.00000
3/20/2020 0.00000 0.00000
3/21/2020 0.00000 0.00000
3/22/2020 0.00000 0.00000
3/23/2020 0.00000 0.00000
3/24/2020 0.00000 0.00000
3/25/2020 0.00000 0.00000
3/26/2020 0.03226 0.00000
3/27/2020 0.03226 0.00000
3/28/2020 0.02632 0.00000
3/29/2020 0.02381 0.00000
3/30/2020 0.02000 0.00000
3/31/2020 0.01695 0.00000
4/01/2020 0.01235 0.00000
4/02/2020 0.02727 0.00000
4/03/2020 0.02459 0.00000
4/04/2020 0.02381 0.00000
4/05/2020 0.04225 0.00000
4/06/2020 0.03797 0.00000
4/07/2020 0.03488 0.04070
4/08/2020 0.03911 0.06704
4/09/2020 0.03804 0.06522
4/10/2020 0.03704 0.11640
4/11/2020 0.03665 0.12565
4/12/2020 0.04061 0.12690
4/13/2020 0.04327 0.19231
4/14/2020 0.04000 0.23556
4/15/2020 0.04701 0.22650
4/16/2020 0.04472 0.21545
4/17/2020 0.04962 0.22901
4/18/2020 0.05185 0.24815
4/19/2020 0.04982 0.24555
4/20/2020 0.04730 0.25000
4/21/2020 0.04620 0.27393

36



Ngari et al.; ARRB, 35(10): 25-42, 2020; Article no.ARRB.60626

Table 3b. Summary of recovery and death rate per day (continued)

Date Death Rate δ2 Recovery Rate Θ

4/22/2020 0.04375 0.25938
4/23/2020 0.04167 0.27976
4/24/2020 0.04082 0.28571
4/25/2020 0.03944 0.29577
4/26/2020 0.03857 0.31405
4/27/2020 0.03743 0.33155
4/28/2020 0.03906 0.33594
4/29/2020 0.04293 0.36364
4/30/2020 0.05109 0.36496
5/01/2020 0.05353 0.36983
5/02/2020 0.05161 0.35054
5/03/2020 0.04898 0.35306
5/04/2020 0.04486 0.34019
5/05/2020 0.04475 0.32702
5/06/2020 0.04778 0.32455
5/07/2020 0.04670 0.32528
5/08/2020 0.04622 0.31895
5/09/2020 0.04762 0.35565
5/10/2020 0.04857 0.35857
5/11/2020 0.05035 0.36224
5/12/2020 0.05427 0.38128
5/13/2020 0.05541 0.37467
5/14/2020 0.05762 0.36364
5/16/2020 0.06024 0.36265
5/17/2020 0.05637 0.35287
5/18/2020 0.05482 0.36842
5/19/2020 0.05192 0.37175
5/20/2020 0.04859 0.35569
5/21/2020 0.04509 0.33814
5/22/2020 0.04307 0.32730
5/23/2020 0.04195 0.31879
5/24/2020 0.04201 0.31549
5/25/2020 0.03966 0.31260
5/26/2020 0.03858 0.30045
5/27/2020 0.03739 0.27736
5/28/2020 0.03585 0.26020
5/29/2020 0.03553 0.25100
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Table 3c. Summary of recovery and death rate per day (continued)

Date Death Rate δ2 Recovery Rate Θ

5/30/2020 0.03337 0.24576
5/31/2020 0.03262 0.24363
6/1/2020 0.03414 0.23850
6/2/2020 0.03392 0.23841
6/3/2020 0.03339 0.24955
6/4/2020 0.03333 0.25299
6/5/2020 0.03193 0.25990
6/6/2020 0.03192 0.30346
6/7/2020 0.03036 0.30213
6/8/2020 0.02970 0.32635
6/9/2020 0.02944 0.32151
6/10/2020 0.02877 0.33872
6/11/2020 0.02862 0.33966
6/12/2020 0.02905 0.35219
6/13/2020 0.02893 0.35320
6/14/2020 0.02866 0.34864
6/15/2020 0.02817 0.34505
6/16/2020 0.02720 0.34404
6/17/2020 0.02646 0.33457
6/18/2020 0.02748 0.34273
6/19/2020 0.02721 0.35437
6/20/2020 0.02702 0.35418
6/21/2020 0.02595 0.33931
6/22/2020 0.02606 0.35022
6/23/2020 0.02585 0.35985
6/24/2020 0.02497 0.35017
6/25/2020 0.02452 0.34491
6/26/2020 0.02476 0.34430
6/27/2020 0.02426 0.33316
6/28/2020 0.02356 0.32471
6/29/2020 0.02326 0.32520
6/30/2020 0.02325 0.32030
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3.2 Infection Rate or Incidence Rate
Infection rate or simply the incidence rate of any disease is the probability of an infection occurrence or
risk of an infection in a given sample of individuals or population [20]. When an infection is transmitted
to new individuals, it reproduces itself hence the use of reproduction number to explain infection rates.
The formula for infection rate according to [20] is

Rate of infection =
No of infection

Population at risk

The number of infection in our model represent the total confirmed cases of positive Covid-19 (n
and i) and the population at risk is the total population tested for Covid-19 or under surveillance
(Susceptible). From model formulation, one assumption was that the individuals in quarantine are
non-infectious. The infection rate is presented below in Fig. 5. From the estimates of this study,
maximum infection rate was equal 0.892999 recorded on 28/6/2020, average infection rate was
0.019958 and minimum 0.00012 on 26/6/2020.
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Fig. 5. Infection rate of Covid-19

4 SIMULATION AND DISCUSSION

Table 4. Min, Max and average values of h,γ, n and i

Parameter/variable Min value Max value Average value
Θ 0 0.381275441 0.230174042
δ2 0 0.060240964 0.032827283
h 3.10847× 10−07 0.999927126 0.671306343
γ 4.76914× 10−05 0.673061064 0.008914713
n 5.99067× 10−05 0.831896392 0.019320105
i 5.98555× 10−05 0.831896392 0.01124545

4.1 Simulation
We use Matlab inbuilt solver ode45 to perform our simulation. We consider the equation of the
quarantine individuals in our simulations. Equation (16) in which its right hand side was transformed
through numerical differentiation as polynomial equation in equation (17), was fitted using the recorded
data in Ministry of health data in wordometer. Note that E in the table 2a. to table 2c, means ten raised
to the power of the number given. Minimum, maximum and averages values of Θ, δ2, h, γ, n and i
obtained are summarized below in table 4.
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Equation (18) is an initial value problem. Date 30/06/2020 was considered as the initial conditions of
the model with q(0) = 0.00013384. The parameter values in table 4 were chosen through inspection
in such a way that they can produce maximum, average and minimal simulation of q.

4.2 Discussion
Fitting of the daily observed data to the model yielded Fig. 3 with total sum of least square error being
4.16669× 10−11. This indicated the model fitted well to observed data and therefore can be used for
prediction.

Predictions in Fig. 5. were based on possible combination of parameters and state variables to yield
maximum, minimum or average possible value of q.

Clearly, through inspection of equation

dq

dt
= hγn+ (1− h)γi− (θ + δ2)q, (18)

we note that during data fitting n was set to be greater than I therefore maximum q is obtained on
following conditions: maximum h, γ, , n and i and minimum Θ, δ2. Hence minimum q is obtained on
following conditions: minimum h, γ, n and i and maximum Θ, δ2.

100 120 140 160 180 200

Time t (in days)

-2

0

2

4

6

8

10

12

14

P
op

ul
at

io
ns

10-5 Prediction of Minimum q

X: 129.6
Y: 7.229e-08

(e) Predicted q based on minimum

100 120 140 160 180 200

Time t (in days)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

P
op

ul
at

io
ns

10-4 Prediction of q based on averages

Steady State

X: 135.3
Y: 0.0005646

(f) Predicted q based on averages

108 108.2 108.4 108.6 108.8 109 109.2 109.4 109.6 109.8 110

Time t (in days)

0

0.2

0.4

0.6

0.8

1

1.2

P
op

ul
at

io
ns

Prediction based on Maximum possible q

Feasible Region of solutions

X: 109.8
Y: 1.011

(g) Predicted q based on maximum

Fig. 5. Predicted values for q
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The result obtained in Fig. 5e. using possible
minimum prediction of q yielded unrealistic
results because it indicated that all individuals
would clear from quarantine by 130th day. The
result obtained in Fig. 5f. using averages
in prediction of q indicated that individuals
in quarantine would continue to rise up to
0.0005646 by 136th day and thereafter remains
constant. Note that from subsection 2.2, n ≥ 1
is not feasible in this model because 0 ≤ n ≤ 1.
The result obtained in Fig. 5g. using possible
maximum prediction of q, that is q = 1 when P =
q, yielded unrealistic results because it indicated
that all individuals would be in quarantine by
110th day.

5 CONCLUSION

a In the section (2), we described the model, re-
scaled the equations,got the boundedness
and positivity of the model and analyzed
the DFE AND EEP of the model.

b In the section 3, we estimated the parameters
of our model. We got the recovery rate
and death rate of Covid 19 (table 3). We
also estimated the parameters h, γ, state
variables n, i Observed data , predicted
data and least square (table 2). We also
estimated the maximum, minimum and
averages of infection rate of Covid 19.

c In the section 4, we used matlab solver ode45
to estimate minimum and average values
of h, γ, n, i (table 4).

The total number of infected is expected to rise
exponentially up to about 26,855 individuals by
130th day and remain constant up to 190th day.

Ministry of Health recorded total COVID-19
cases is not a true picture on the ground, we
are far much more than that. A case in point
on 30/6/2020 where total cases were 6366 on
ministry website. On same date our model
estimation of individuals in latency and infectious
state in community were 15,390 and 15390.
There is a total of 30780 cases not yet traced.

The result from best model fit indicated daily
variability in parameters and state estimates.
This variability makes it difficult to precisely
predict dynamics using deterministic model.

Future studies should consider stochastic
models. Also further studies should be
considered for estimation of parameters of
infected individuals and the exposed individuals
and model analysis.
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