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Abstract

In this paper, bivariate compound exponentiated survival function of the Lomax distribution is constructed
based on the technique considered by AL-Hussaini (2011). Some properties of the distribution are derived.
Maximum likelihood estimation and prediction of the future observations are considered. Also, Bayesian
estimation and prediction are studied under squared error loss function. The performance of the proposed
bivariate distribution is examined using a simulation study. Finally, a real data set is analyzed under the
proposed distribution to illustrate its flexibility for real-life application.

Keywords: Lomax distribution; bivariate distributions; compound exponentiated survival functions;, maximum
likelihood estimators; prediction; Bayes estimators; Monte Carlo simulations.

1 Introduction

Although bivariate extensions of univariate distributions are useful, it has not been applied in practice due to
shortage of inferential procedures caused by numerical complexity. Moreover, generalization of univariate
models is not straightforward in the sense that certain desirable properties may hold for more than one
multivariate model.
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One of the objectives of this paper is to construct a bivariate compound exponentiated survival function of the
Lomax (BCESFLO) distribution; based on the technique considered by AL-Hussaini [1] who constructed a class
of multivariate distributions. It could be useful in studying reliability maintainability of complicated systems.

This paper consists of six sections. In Section 2, construction of BCESFLO distribution based on the technique
proposed by AL-Hussaini [1], also some properties of the distribution are obtained. Maximum likelihood
estimation and prediction are considered in Section 3. In Section 4, simulation study and a data analysis are
presented to illustrate the theoretical results derived for ML estimation and prediction. In Section 5, Bayesian
estimation; for the unknown parameters, rf and hrf of BCESFLO distribution, are derived, also Bayesian
prediction is considered. Finally, a simulation study and a data analysis for the results of Bayesian estimation
and prediction are given in Section 6.

2 Construction of a Compound Exponentiated Survival of the Lomax
Distribution

Recently, in the statistical literature several methodologies of constructing bivariate and multivariate
distributions based on marginal and conditional distributions have been proposed see Arnold et al. [2,3], Kotz et
al. [4], Sarabia and Gomez-Deniz [5], Balakrishnan and Lai [6] among others.

Bivariate survival data arise when each study subject experiences two events. Examples include failure times of
paired human organs, kidneys, eyes, lungs, breasts and others, as well as first and second occurrences of given
disease. Moreover, bivariate survival data may consist of time to diagnosis or hospitalization and the time to
eventual death from a fatal disease. Moreover, it is appropriate to emphasize that in the medical literature the
paired organs of an individual are considered as a two-component system, which work under interdependency
circumstances. Specifically, in industrial applications these data types may come from system whose survival
depends on the survival of two similar components. For an example, the breakdown times of dual generators in
a power plant or failure times of twin engines in a 2-engine airplane are illustrations of bivariate survival data.
In fact, there are many bivariate distributions that can be employed for the analysis of paired data, see Kotz et al.

[4].

Regarding the bivariate Pareto distribution, we highlight that two bivariate Pareto distributions were suggested
by Mardia [7], which are called bivariate Pareto of the first kind and bivariate Pareto of the second kind. Arnold
[8] suggested a distribution of the fourth kind and presented three methods to derive this model. Moreover,
Muliere and Scarini [9] proposed a bivariate Pareto survival function which was characterized by Padamadan
and Nair [10] using the survival function of the marginal distributions.

In this section, two cases of the construction of the compound exponentiated survival function of the Lomax
(CESFLO) distribution, univariate and bivariate, are introduced.

2.1 Construction of the univariate compound exponentiated survival of the Lomax
distribution

AL-Hussaini [1] introduced the construction of a class of distributions by compounding the exponentiated

survival function (sf) with the gamma probability density function (pdf). The obtained class includes all

distributions with positive domain. Such domain could be the whole positive half of the real line or subset of it.

A particular class of such distributions is the univariate CESFLO distribution.

Next, we will obtain the univariate CESFLO distribution. Suppose that the random variable T has Lomax (LO)
distribution whose pdf and cumulative distribution function (cdf), are given, respectively, by

gt @) =a(1+t)"@D, t>0,a>0, @
and

Gta)=1—-1+)"%, t>0,a>0, )
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Using (1) and (2), we can define the following pdf and cdf, respectively, as follows:
q(tlB, @) = aB[(1 + £)"*]F~1(1 + £)~(@+D),

and

QB ) =1-[¢WIF =1-(1+t)"* , 3)
where t, B, @ > 0. From (3), it follows that the corresponding sf is
s(t|B, @) = (1 +t)~%B,

Now, using the idea proposed by AL-Hussaini [1], we will define the pdf of CESFLO distribution, f, as the
compounding of ¢ with the gamma pdf. That is,

f(tla a,b) = f F(tIBINB)AB,
0
where

a

I'(a)

T](ﬁ) = ﬁa_l exp(_bﬁ)r ﬁ' a'b >0, (4')

Notice that using the equality (1 + t)~*F = B+~

q
We can construct the following gamma density %xq*e‘”‘ with r=b+In(1+1¢t)77,

and g =a+1,
to ensure that the pdf of the CESFLO distribution is given by

ar «a a —(a+1)
f(t)zE[_] [1+;ln(1+t)] ,t>0,a, B >0. (5)

1+t
From (5) the cdf of CESFLO distribution can be written as
a —-a
Fi)=1- [1 +7In(1+ t)] .

The hazard rate function (hrf) corresponding to H(t) is

__J®
WO =1k
=22 E1 1+t)]_1
_b(1+t)[1+bn( '

The reversed hazard rate function (rhrf) is given by

a a
b+t
1- [1 +%ln(1 + t)]_a

[1 + %m(l + t)]_(aﬂ)

Ay (t) =

2.2 Construction of the bivariate compound exponentiated survival of the Lomax
distribution

Suppose that T; has LO distribution for i = 1, 2 with T; and T, are independent random variables.
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Again, using (1) and (2), we can define the following cdf and pdf

Q(tilB,a;, 6;) =1 —[(1 +t;)~%]%F

and
q(tlB, @i, 0;) = a;0,B[(1 + t,)~%]%F1(1 4 ¢)~(@+D)

for i = 1,2, respectively, where t;, a;, 6;, f > 0.

Let ¢ be defined by

2
0 (E; g) = 1_[ qt; 1B, ai,0,),
i=1

where t = (t;,t,) with t; > 0 fori=1,2 and p = (@, @y, 6,,6,, ) witha;,6;,8 > 0, fori = 1,2.

Again, using the idea proposed by AL-Hussaini [1] we will define pdf of BCESFLO distribution, f, as the
compounding of ¢ with  where 7 is given by (4). That is,

2
Fepa0) = [ ] acip.aoonas, ©)
0 =1

Next, we will derive the function, f (5 |8, a;, Hi). Observe that

1 (aj+1)
]_[f(t |al,9)—]_[e [+ e-eqe S

; 1 —(a;+1)
= p2 1_[ 0; %exp [Z 6; Bin((1 +t,)~)]. %
i=1 t

Substituting (7) and (4) in (6), one obtains

2
a;(1+ )@+ pa 2 —a

tlay, az, 6,0 =| |e- : a+1p=Blb=Ni, 0iIn((1+t)~ )] g

f(_l 1“2, V1 2) ] i (1+ti)_ai r(a) ﬁ ﬁ

Ia+2) [T (1 +¢)~ @t S
a a;
_ _| |<_) Z In(1 + t;)"%
I'(a) = b A+t

i=

Then the pdf in the bivariate case is
6, aq 0, ay
[t tlar, @z, 01,0,) = ala +1) T(l + tl) 7(1 + tz)
61 a; 0, ay ~(at2)
X [1 + { In(1+¢t)+ In(1+ tz)}] , 3

where t;, a;,60; > 0,fori = 1,2.

The contour plots of the joint pdf of BCESFLO distribution for different parameter values are presented in Fig. 1.
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Fig. 1. The contour plots of the joint pdf of BCESFLO distribution for different parameter values

(1.2) (a = 0.8,b = 0.8,a, = 0.8,a, = 0.8,6, = 0.8, = 0.8),
(1b)(a=15b=05a =2,a,=1,6, = 1,6, = 0.5),
(IC) (a = 1,b = 1,“1 = 1,a2 = 1,61 = 1,62 = 0.5),
and(1d) (@a=1,b=1,a,=1,a, =1,6, = 1,6, = 1).

On the other hand, the cdf of BCESFLO distribution is given by

t1 rt2
F(tll t2|a1’ ay, 61' 02) = f f(tlﬂ tZ) dtzdtl
0 0

t1 pto
-["[ a<a+1>[(‘91 1‘ft1 )(%

Lin(1+ t) +

[+ 5

1+ [1+{ (i +t,)
[1 +{ L in(1 + tl)}]
[1 +{ 2 In(1 + tz)}]_a,

—-a

1)

—(a+2)

ln(1 + tz)}] dt,dt,

—-a

s = ln(1+t2)}]

where t;, a;,6; > 0, for i = 1,2. Moreover, the marginal’s pdf and cdf of BCESFLO distribution can be written,

respectively, as
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—(a+1)

)[1+ ln(1+t)] i=12

ab;
f(tila;, 6;) =Tl(
and
F(t|a,,9)_1—[1+ ln(1+t)] i=12

where t;, a;,0; > 0, for i = 1,2, the joint reliability function (rf) of BCESFLO distribution is given by:
R(ty,t;) = p(Ty > tl'Tz >t)=1- F(t1) F(t) + F(tp tz)
[1 + { b }] , 1=1,2. 10)

where t;, a;,0; > 0, for i = 1,2. Also, the joint hrf of BCESFLO distribution can be defined as
_ft, ) 91 a; ) 0, ( a )
hts,t2) = R(t;,t;) ala+1) 1 +t,/)\ b \1+ t2

<[+ 557

}] L i=12. (11)

where t;, a;,0; > 0,fori = 1,2.

Just express that & is a decreasing function in t; and t, the probabilistic was clarified at the beginning of the
section. The contour plots of the joint hrf of BCESFLO distribution for different parameter values are presented
in Fig. 2.

(2.d)

2.¢)

Fig. 2. The contour plots of the joint hazard of BCESFLO distribution for different parameter values
(23) (a = 1.1,b = 2, a; = 1.5, a; = 2.2, 61 = 1.9, 92 = 3.1), (2.b) ( a= 1,b = 1, a; = 1, a, = 0.5, 61 = 0.5, 62 = 0.5),
(2¢)(@a=08b=08a, =08,a,=04,6, =04,0, =04),and 2d) (a=1,b=1a;=1,a, =16, =1,6, = 1).
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3 Maximum Likelihood Estimation
In this section, the ML estimation and prediction for the vector of the parameters

w = (a,b,ay,a,64,0,) of BCESFLO distribution will be considered.

3.1 Maximum likelihood estimation of the parameters

The likelihood function of BCESFLO distribution can be derived using the pdf in (8) directly, but compounding
of [T, f (ti | Q) and n(f) can be applied to make the ML estimation easier, hence

n
Ly, @, 01,02, 0,534, 6,8) = | [ £ty 01, 02,00,02,0,5,))

j=1
n

2
= 1_[[ f(tijla’paz'91:92~‘1'b'ﬁj)71(ﬁj)]
1

j=1 Li=

+

n n a+1 n .

- Hﬁ- ororalal ﬂu +t,)7t ﬂ (1+t,)"
[F(a)]n J 1Y2%1 42 1j -1 2j
j=1 j=1 7=

n

X exp —Z,Bj[ﬁlal In(1+ tlj) + 0,a,In(1 + tzj) + b] )
j=1
tij = (tilr vy tm),for‘i = 1,2, and ﬂj = (ﬁ1 , ...,ﬁn), (12)

where w = (a, b, ay, a,, 04, 8,). The log likelihood function is given by

5(@ ti, tz,ﬁ) =naln(d)—nlin (F(a)) +(a+1) Z ln(ﬁj) + nln(6;) + nln(6,)

j=1
n n
+nIn(a;) +nln(ay) —Zln(l-}- t;) —Zln(l +ty;)
j=1 j=1
n
- Z Bi[61a: In(1 + t,;) + 6,a,In(1 + t5;) + b] ¢, (13)

j=1

To obtain the ML estimators for the parameters, Equation (13) is differentiated with respect to the parameters.
Hence, the resulting non-linear system of likelihood equations are given below

9¢/da = nlnb — mp(a) + z In (8;),
=1

n
at/db = na/b — Z B;,
j=1

n
at/oa, =nj/a, — Zﬁjelln(l + tlj),
j=1
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n
9t/06, =n/0; — Z Biayin(1 +t,;),
j=1

n
0l/da, =n/a, — Z ﬁjezln(l + tzj),
=1
and
n
90/90, = n/6, — z Biayin(1+ty;),
=1

where (@) = I'(a)/T(a).

Setting the previous non-linear system of likelihood equations to zero and then solving numerically, the ML
estimates can be obtained. The invariance property of the ML estimators can be applied to obtain the ML
estimators for R(t,t,) and /(t,, t,) by replacing the parameters in (10) and (11) by their ML estimators as
given below

P PN

~ 0, @, 0, &,
R(toy, te2) = |1+ 5 In(1+ty) +—=

In(1+ toz)} ,

and

2(t01, tOZ) = d(d + 1) ATI< &1 ) ;( C’fz )
b \1+ty b \1+ty,

-2

A~

91 22} 92 az
x[1+ 5 In(1+ty,) + 5 In(1+ty,)

Hence the R(toq,to;2) and %(tyq, toz) can be calculated numerically.

3.2 Two-sample maximum likelihood prediction

Considering two- sample prediction, the two samples are assumed to be independent and drawn from the same
distribution. In univariate case, the density of the s-th order statistic in the future sample is used to obtain the
predictive pdf of the s-th ordered statistic. The first variable in the vector of bivariate distribution is the ordered
observation and the second variable is its concomitants, therefore the joint pdf of the ordered observations and
the concomitants is needed to obtain the joint predictive density function of future ordered observations and
their concomitants.

For a future bivariate sample of size m, the joint pdf of future s-th ordered observation and its s-th concomitant
denoted by (¥1(s:my Y2(s:m))s S = 1,2, ..., m, has the joint pdf which is given by (8) after replacing t; by ¥; (s.m)
and ¢, by ¥5(s.m)- For simplicity, it can be written as (}’1(5), yz(s)) instead of (yl(s:m)r J/z(s;m))~ Then the joint
pdf of (yl(s), yz(s)) can be derived as follows:

m! s-1 m-s
fs:m(yl(s)!yz(s);Q)=( sy Yasy @F Oasy va)] 1= FOnesy v20)

s=DIm—39)!
using binomial expansion to simplify the last term in the previous equation, one gets

- m-—s . j
[1-FOre v = 71:—05( j ) 1) [Faeep )]
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Thus, the joint probability density of (s, V2(s)) is

m-—s

fs:m(yl(s)! yZ(s);Q) = f(yl(s)! YZ(s)iQ) z Cm,s,j [F(yl(s)'yz(s))]s+ _1'
j=0

where w = (a,b, ay, @3,01,60;), and Y1), Y2(s), @ b, 1, @z, 04, 6, > 0, with

m!
Crns,j = (s—D!m—-s—-NIH!

-1y

Substituting f(ty, t;) given in (8) and F(t;,t,) in (9) after replacing t; by y; () and t, by y,(s) then, the joint
ML predictive pdf of the ordered observations and their concomitants is given by

fom(Vi(sy Yasys @un) =

2 & ) @
B Tz(_z)
b \1+ys b \1+yys

—(a+2)
X ln(l + yz(s))}]

(&)
1+ { 1b ln(l + yl(s)) +

X mzs Cin.s.j { [1 + {9 S In(1 +yis) i 1n(1 + yz(s))}]_a
j=0 B
—[1+ {8+ Y1(s))}] ~[1+ {2 m(1+ J/z(s))}]_a}s ” (14)

where ;) Va(s), @ b, &1, @3, 81,6, > 0.

The point predictors of the future ordered observations and their concomitants (Yl(s), Yz(s));
s =1,2,...,m, can be obtained as follows:

=B @)= [ e[ Oy @n)dvedie, (15)
Y1(s)=0 Ya(s)
and
Yy = EGragey; @) = j Yoo j F Oy Vacsy: Boas)dY15) 03657 (16)
Y2(s)=0 Yi(s)

=

where @y = (&, a, &2,91,92).

From (15) and (16), the ML point predictors ¥; and Y, cannot be obtained in closed form. Then, the joint point
predictors of the future ordered observations is

Yy, = E(Yl(s)ryz(s);QML) =f f Y1(s)372(s)f(y1(s)ryz(s);QML)dyZ(s)dyl(s)r
o Jo
which can be evaluated numerically.

4 Numerical Illustration

This section aims to clarify the theoretical results for both estimation and prediction on the basis of simulated
and real data set.
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4.1 Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented ML estimates
based on the generated data from BCESFLO distribution. The ML averages of the estimates of the parameters,
rf and hrf are computed. Moreover, confidence intervals (Cls) of the parameters, rf and hrf are calculated.
Simulation studies are performed using Mathematica 11 for illustrating the obtained results.

The steps of the simulation procedure are as follows:

a) For given values of w (where w = (a, b, @, @,,0,,0,)), random samples of size n are generated from
BCESFLO distribution.

b) For each sample size sort ¢;;s, such that (t11, t1), (t12, t22), o) (E1p E2)-

¢) Repeat the previous two steps N times, where N represents a fixed number of simulated samples.

e  For the number of the population parameter values the Newton-Raphson method can be used, the ML
averages and the Cls of the parameters are obtained. Also, the rf, hrf and their Cls are calculated using the

ML averages of the parameters.

e FEvaluating the performance of the estimates is considered through some measurements of accuracy. To
study the precision and variation of the estimates, it is convenient to use the estimated risk (ER)

_ Z{\Ll(estimator—true value)?
= S .

e ER

e  Simulation results of the ML estimates are displayed in Tables 1, 2, where N = 10000 is the number of
repetitions, samples of size (n=30, 50, 100), and the population parameter values are
(a=11,b=2,a;, =15,a, =2.2,0, =19,6, =3.1),
and (a = 0.6,b =1.2,a; = 0.79,a, = 1.1,6, = 0.95,6, = 1.55).

e Tables 1 and 2 present the ML averages, ERs, and Cls of the unknown parameters based. While Tables 3
and 4 display the ML averages, ERs and CIs of the rf and hrf for different values of time ty4, ty,. The ML
two-sample predictors are presented in Table 8.

4.2 Example data set

In this example, a data set is analyzed from a Sankaran-Nair bivariate Pareto distribution [see Sankaran-Nair
(1994) and Sankaran and Kundu [11]]. The generated data set for n=30 is:

(0.252, 8.400), (1.105, 0.458), (0.427, 1.602), (12.491, 2.383), (0.260, 0.106), (0.240, 1.769), (4.888, 0.758),
(0.870, 0.572), (0.036, 0.254), (1.537, 0.023), (1.508,0.535), (0.239, 1.4120), (0.173, 0.011), (1.090, 1.278),
(6.002, 0.017), (0.897, 2.032), (0.690, 0.138), (1.883, 0.398), (0.960, 0.257), (0.561, 0.573), (5.370, 0.325),
(0.167, 0.260), (13.602, 0.364), (3.922, 0.938), (0.132, 0.547), (0.603,0.102), (0.226, 0.481), (0.143, 0.779),
(0.643, 0.071), (0.349, 1.586).

The Kolmogorov—Smirnov goodness of fit test is applied to check the validity of the fitted model. The p values
are given, respectively 0.808 and 0.393. The p values showed that the model fits the data very well. Table 5
displays the ML estimates and standard errors (Se) of the unknown parameters for the real data set. While
Tables 6 and 7 present the ML estimates, Se and CIs of the rf and hrf for different values of time tyq, ty,. Table
8 gives the ML two-sample predictors for the future observation.
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Table 1. ML averages, variances, estimated risks and 95% confidence intervals of the parameters
(N=10000,a=1.1,b=2,0y =1.5,0;, =2.2,0, =1.9,0, =3.1)

n Parameters Averages Var ER UL LL Length
a 0.9764 0.0010 0.0163 1.0393 0.9134 0.1259

b 1.7883 0.0030 0.0478 1.8963 1.6804 0.2159

30 a, 1.5112 9.6547e-06 0.0001 1.5173 1.5051 0.0122
a, 2.2207 0.00003 0.0005 2.2319 2.2095 0.0224

0, 1.9142 0.00002 0.0002 1.9219 1.9065 0.0154

0, 3.1292 0.00007 0.0009 3.1450 3.1134 0.0315

a 0.9951 0.00002 0.0110 1.0040 0.9861 0.0179

b 1.8199 0.00007 0.0325 1.8359 1.8038 0.0321

50 ay 1.5086 1.4879e-08 0.0001 1.5089 1.5084 0.0005
a, 2.2168 9.5819e-08 0.0003 22174 22162 0.0012

0, 1.9109 2.3872e-08 0.0001 1.9113 1.9106 0.0006

0, 3.1237 1.9025e-07 0.0006 3.1245 3.1228 0.0017

a 0.9969 1.7630e-06 0.0106 0.9996 0.9944 0.0052

b 1.8235 5.2811e-06 0.0312 1.8279 1.8189 0.0090

100 oy 1.5089 1.4657e-9 0.0001 1.5089 1.5088 0.0002
0y 2.2167 1.0896e-08 0.0003 2.2169 2.2166 0.0004

01 1.9112 2.3517e-09 0.0001 19113 19111 0.0002

0, 3.1236 2.1634e-08 0.0005 3.1239 3.1233 0.0006

Table 2. ML averages, variances, estimated risks and 95% confidence intervals of the parameters

(N =10000,a =0.6,b=1.2,a; =0.79,a, = 1.1,6, = 0.95,0, = 1.55)

n Parameters Averages Var ER UL LL Length
a 0.9567 0.0005 0.1277 1.0020 09113 0.0908
b 1.7614 0.0018 0.3169 1.5254 1.6791 0.1647
30 a, 1.5235 9.5511e-07 0.5983 1.5254 1.5216 0.0038
a, 2.2370 7.6043e-06 1.29277 2.2424 2.2316 0.0108
0, 1.9298 1.5324e-06 0.9599 1.9322 1.9273 0.0049
0, 3.1521 0.00002 2.5668 3.1598 3.1445 0.0152
a 0.9425 1.2119e-06 0.1173 0.9447 0.9404 0.0043
b 1.7359 3.3451e-06 0.2872 1.7395 1.7323 0.0072
50 a, 1.5232 9.6456e-07 0.5978 1.5251 1.5212 0.0038
a, 2.2376 3.2349¢-08 1.2941 2.2379 2.2372 0.0007
0, 1.9293 1.5476e-06 0.9591 1.9318 1.9269 0.0049
0, 3.1529 6.4230e-08 2.5694 3.1534 3.1525 0.0009
a 0.9411 5.4548e-07 0.1164 0.9426 0.9397 0.0029
b 1.7335 1.5400e-06 0.2846 1.7359 1.7311 0.0049
100 a, 1.5238 4.0737e-07 0.5988 1.5251 1.5226 0.0025
a, 22382 1.0435e-09 1.2955 2.2383 2.2381 0.0001
0, 1.9302 6.5359¢-07 0.9608 1.9317 1.9286 0.0032
6, 3.1538 2.0718e-09 2.5723 3.1539 3.1537 0.0002
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Table 3. ML averages, relative absolute biases, variances, estimated risks and 95% confidence intervals of

the reliability and hazard rate function
(N = 10000,a = 11,b = 2,(11 = 1.5,“2 = 2.2,01 = 1.9,02 = 3.1,t01 = Z,toz = 3)

n rfand hrf  Averages RAB Var ER UL LL Length
30 R(to1,tez)  0.0756 0.2194  0.00002 0.0001 0.0831 0.0681 0.0150
h(toq,to2) 0.0051 0.1669  5.7242¢-08 0.0016 ~ 0.0055  0.0046  0.0009
50 R(to1,tez)  0.0761 0.2178  0.00001 0.0001 0.0831 0.0691 0.0140
h(toq,to2) 0.0051 0.1666  5.2811e-08 0.0016  0.0055  0.0046  0.0009
100 R(to1,te2)  0.0759 0.2160  0.0000 0.0001 0.0826  .06880  0.0138
h(toq, to2) 0.0050 0.1654  5.0551e-08 0.0015  0.0055 0.0046  0.0009

Table 4. ML averages, relative absolute biases, variances, estimated risks and 95% confidence intervals of

the reliability and hazard rate functions

(N = 10000,a = 06,b = 1.2,“1 = 0.75,“2 = 1.1,01 = 095,02 = 1.55,t01 = Z,toz = 4')

n rfand hrf  Averages RAB Var ER UL LL Length
30 R(to1,to2) 0.0524 0.8323 1.2496e-08 0.0226  0.0527  0.0522  0.0004
h(to1, to2) 0.0014 0.1493 5.0258e-10 0.0009  0.0016  0.0013 0.0003
50 R(to1,to2) 0.0522 0.8321 1.8122e-09 0.0224  0.0525 0.0523 0.0002
h(to1,to2) 0.0013 0.1386 1.8525e-10 0.0006  0.0015 0.0012  0.0003
100 R(to1,to2) 0.0520 0.8320 1.7635e-09 0.0221 0.0521 0.0519  0.0002
h(to1, to2) 0.0011 0.1382  2.5761e-12 0.0002  0.0012  0.0010  0.0002

Table 5. ML estimates and standard errors of the parameters for the real data set

Parameters Estimates Se
a 0.9952 0.0109
b 1.8246 0.0307
a, 1.5123 0.0002
a, 2.2275 0.0008
0, 1.9156 0.0002
0, 3.1387 0.0015
Table 6. ML estimates and standard errors of the reliability and hazard rate functions for the real data
set
rf and hrf Estimates Se
R(toq,to2) 0.0727 0.0001
h(to1, to2) 0.0052 0.0044
Table 7. ML estimates and standard errors of the reliability and hazard rate functions for the real data
set
rf and hrf Estimates Se
R(to1, to2) 0.0654 0.0001
h(to1, to2) 0.0034 0.0038
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Table 8. ML predictors and bounds of the future observation under two-sample prediction
n=30,a=0.3,b=0.50;, =0.7,0, =2,0;, =1.9,0, =3.1)

n Vis) Estimates UL LL Length
7 Y1) 0.0068 0.0448 0.0000 0.0448
Yacs) 0.1141 0.3374 0.0147 0.3227
15 Y1cs) 0.0295 0.0452 0.0001 0.0451
Yacs) 0.2062 0.3563 0.0113 0.3450
18 Y1) 0.4845 2.1960 0.0222 2.1738
Vas) 0.6831 1.3169 0.2638 1.0532

4.3 Concluding remarks

1. It is noticed, from Tables 1 and 2 that the ML averages are very close to the population parameter values
as the sample size increases. Also, ER is decreasing when the sample size is increasing. This is indicative
of the fact that the estimates are consistent and approaches the true parameter values as the sample size

increases.
2. The lengths of the CIs of the parameters become narrower as the sample size increases.
3. The ML averages for the rf and hrf perform better as the sample size increases. Also, ER is decreasing

when the sample size is increasing.

4. The length of the CI for the first future order statistic is smaller than the length of the CI for the last
future order statistic [Tables 8 and 9].

5. The ML interval includes the estimates (between the LL and UL).

S Bayesian Method

In this section Bayesian estimation and prediction for the vector of parameters w = (a, b, @y, a5, 0;,0,) of
BCESFLO distribution will be studied.

5.1 Bayesian estimation

AL-Hussaini and Ateya [12] estimated the parameters under a squared error loss (SEL) function using Tierney-
Kadane’s [13] approximation form. Iliopoulos et al. [14] considered bivariate gamma distribution for estimating
the unknown parameters based on SEL function. Chadi et al. [15] estimated the parameters and the mean time
between failures of a bivariate exponential model under various loss functions, namely SEL, absolute error,
DeGroot, LINEX and Entropy loss functions. Lin et al. [16] obtained the estimators for the parameters of
Moran-Downton bivariate exponential distribution based on complete and Type-II censoring. Independent
gamma priors were assumed for scale parameters and beta distribution for correlation parameter. Pradhan and
Kundu [17] derived the estimators for the parameters of the Block and Basu bivariate Weibull distribution.

Considering (a, b), (@4, 60,) and (a,, 8,) are independent, a prior density function of
w = (ar br aq, 91; ay, 92) is given by

”(Q) = m1(a, b) my(ay, 61) m3(az, 0,), (17)

where the first prior is

m,(a, b) = my,(a|b) m,(b), Assuming that m; ~Gamma(cy, b) and 7,,~Gamma(c,, c3),
which is more suitable and easier to do the calculations.
the second prior is
1, (e, 01) = Ty, (@1|01) 72,(0,), Assuming that m,; ~Gamma(c,, 6,) and m,,~Gamma(cs, cg),
which is more suitable and easier to do the calculations.
and the third prior
3(ay, 0,) = m31(a,|0,) m3,(0,), Assuming that w3, ~Gamma(c,, 0,) and 73,~Gamma(cg, ¢y),
which is more suitable and easier to do the calculations.
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The three priors can be written as

7T1(a: b) < bcl+cz—1ac1—1e—b(c3+a)' (18)

my(ay, 6;) o 91+ g i gm0 (coran), (19)
and

m3(az, ;) o 0,77 g7 e 02(covar), (20)

Bayes’ Theorem for probability distributions is often stated as:
Posterior « Likelihood X Prior.

Now, substituting from (18)-(20) in (17) and using the likelihood function in (12), then the posterior density
function will separate into three posteriors, which are

1
pnatei+oa—1 o n
m;(a, b|ty, ty, B) X —————=— 1_[[)’] a"lexp |—b Z Bitestall, 21)
(f(@)" =
5 (ay, 04ty t5, B)
n n
9f4+05+"_1a1€4+"_1 1_[(1 +t;) exp|—6, Z aBiin(1+1ty;)+ce+ay, (22)
j=1 =
and
m3(ay, 921|t1: tz:/’? X
+egtn— +n— -
9,7 T g [17.. (1 + )" exp[—Hz X ap; ln(l + tzj) + cq + az] , (23)

where t; = (tig, ..., ti), fori = 1,2, and f; = (B, ..., By).
By using (21)-(23), hence the posterior density function is given by

" (wlty, 65, B) & 75 (a, blty, t5, B) w3 (@, 04 |ty, by, B) T3 (az, 05 t1, 2, B) (249)
where w = (a,b, ay, 04, @3, 65), t; = (tig, ..., ti) and B; = (By, ..., Bn)-

The Bayes estimators, w(gyy are the posterior means under SEL function

wESE) =E(w|ty, t;) = J o’ (g|t1, tz,,[?)dg,

[2)
wESE) can be evaluated numerically to obtain the Bayes estimates for the parameters.

The Bayes estimators of the R(t,t,) and h(t;, t,) can be obtained using (10), (11) and (24), respectively, as
given below

Rsg(to1, to2) = E(R(top toz)'Q) = j R(to1, tox) " (Qltop toz)d% (25)

@

and
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hsg(toq, to2) = E(h(t01’toz)|ﬁ) = j h(tor, to2) T° (Qltop toz)dﬁ- (26)

w

Equations (25) and (26) can be calculated numerically to obtain the Bayes estimates of the parameters, 1f and hrf
based on SEL function.

5.2 Bayesian prediction

The joint pdf of (}’1(5), yz(s)) has the form as given in (14), and hence the joint Bayes predictive density of the
ordered observations and their concomitants is given by

wwor vl = [ [ [ | [ | 1010 v:l0) @lyiss) dadb dasdasdeae,. @)
0O 0 0 0O 0 O

Substituting (14) and (24) in (27), yields the joint Bayes predictive density of (}’1(5): yz(s)) as

h(Y1sy Vas)l@) = f f f f f f L1,1;1,1s dadb da,da,dd,do,
0O 0 0 0 0 O

where
I = (a+1Dar na+cy+cy=3gCatis+n Catn gCrtcgtn \cr4n
—(F(a))n 1 1 2 2
I, = e—[b(E}LlBj+c3+a)+01(cﬁ+a1)+92(09+a2)](1 + yl(s))—l (1 n YZ(s))_l;
0, a; 0, a, ~(a+2)
I3 = [1 +{ b ln(l + Jﬁ(s)) + 5 ln(l + yz(s))}] ,
n -1, -1/, a+1
- n o p.,T% n .92
oo ([T ) ([Toon ) ([T ctomsir sesorst
j=1 j=1 j=1
and

8, ay -

m-—s
6; a
= Gy {1 + [ P (L4 ya9) + =52 1+ v
j=0

_[1 +{elba1 In(1 +y1(s))}]_a - [1+{92b“z zn(1+y2(s))}]_a}s+j_1- (28)

where yl(S)’ yz(s), a, b, a, Ay, 91, 62 > 0.

The Bayes point predictors of the future ordered observation and their concomitants (}’1(5), YZ(S)),
s =1,2,...,m,under SEL function can be obtained as follows:

Yig = E(iolw) = [ 10 Jy A1) Y20 @) A2y @Y s), (29)

and
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Yop = E(ya)|w) = f Yacs) f h(Y1) Y20 @)dY1(5)@Y2s), G0
0 0

where Y1), V2(s), @ b, 1, @, 81,6, > 0.

From (29) and (30), the Bayes point predictors Y;5 and Y,p cannot be obtained in closed form. The joint Bayes
points predictors of future ordered observation is

Yig,Yos = E(¥i(s) Ya(s)| @) =J f ViYoo) f V1) Vo) |0)dy1(5)dVas) - 31)
0 0

6 Numerical Illustration

This section aims to investigate the precision of the theoretical results of Bayesian estimation and prediction
based on the simulated and real data set.

6.1 Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented Bayes estimates
based on generated data from BCESFLO distribution. Bayes averages of the estimates for the parameters, rf and
hrf are computed. Moreover, credible intervals of the parameters, rf and hrf are calculated, Bayes point
predictors for a future observation from BCESFLO distribution are computed for the two-sample case. All
simulation studies are performed using R programming language.

Simulation algorithm

A. In similar manner to the steps used in Subsection 4.1, different samples can be generated.
B. The Bayes estimates of a, b, a4, a,, 8, and 6, are obtained by following the steps:

1. Assuming the population parameters and the sample size n.

2. Generate random samples with different sizes (30, 50, and 100) from the population distribution under
study.

3. Repeat Step 2, N times, where N =10000.
4. o isan estimate of w, and is given by w* = %Z]N:l W]
5. The ER of w*, over the N samples is given by
1N . 2
ER(w*) = sz:1(m]- — u)) .
ER(a*),ER(b*),ER(a;), ER(a3), ER(A;) and ER(63).
In the case of two-sample Bayesian prediction

1. Assuming the population parameters and the sample size n.

2. Generate a bivariate random sample of size n, say (T;,Y;), (T,, Y,) as shown in the beginning of this
algorithm.
Follow steps in Subsection 5.2.
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3. The underlying population in Tables 10 and 11 displays the averages estimates, ERs and variances of
the Bayes case based on sample of different sizes n, and N=10000 repetitions with informative prior.
The generated population parameters are
(a=06,b=080a, =11,a, =1.5,06, = 12,0, =1.7)
and (a = 2.5,b = 0.67,04 = 3,a;, = 2.5,0;, = 7.4,0, = 5.1),
the given vector of hyper parameters is

(cq, =0.1,¢c, =0.2,c3 =0.3,c4 =0.4,¢c5 =0.5,¢c4 =0.6,c;, =0.7,cg = 0.8,c = 0.9).

e Tables 12 and 13 present the Bayes averages, ERs and credible intervals of rf and hrf for different
values of the time ty4, £y, based on informative priors.

e The Bayes two-sample predictors under informative priors are presented in Tables 18 and 19.
e  Considering the two-sample prediction and using informative prior, in Tables 18 and 19 the hyper
parameters are

(cq, =0.1,¢c, =0.2,c3 =0.3,¢c, =0.4,c5 = 0.5,¢c, =0.6,c;, = 0.7,cg = 0.8,co = 0.9),

the population parameters are (a = 0.6,b = 0.8, = 1.1,a, = 15,6, = 1.2,0, = 1.7)
and (a = 1.5,b = 0.55,a; = 5.8,a, = 3.5,0, = 3.5,0, = 2.5).

6.2 Example data set
The data set is given in Subsection 4.2 and analyzed to illustrate the theoretical results of Bayesian estimation
and prediction. Tables 14- 17 present the Bayes averages and ERs, of the estimates of the parameters, rf and hrf,

for the real data set under informative prior. Bayes predictors and Se of the future observation are given in Table
19.

6.3 Concluding remarks
In our study we observe the following

The variance of the estimates is inversely proportional to the sample size and that the variance of an estimate
tends to zero as the sample size tends to infinity.

The lengths of the Cls of the parameters become narrower as the sample size increases.

The Bayes averages for the rf and hrf performs better as the sample size increases. Also, ER is decreasing when
the sample size is increasing.

It is interesting to notice that if the variables of the prior density are independent and if the likelihood function
factors out with respect to these variables, then the variables of the posterior given data are also independent.

That if T(wy, ..., 0p) = [[; m(w;) and if Lo, ...,wk|§) =115, L(wi|§) , then T (wy, ...,wk|§) o<
(w4, ...,wk)L(wl, ...,wk|§) = [T, m(w;) L(wi|§)
= T, (04 ]t) = (@4t ..., wi]t) ,

are independent, the analysis will be easier.

The likelihood function of BCESFLO distribution can be derived using the pdf in (8) directly but compounding
of [T, f(t; | 9) and n(B) can be applied to make the ML estimation easier. The results become better as the
informative sample size gets larger. In all cases, the simulated percentage coverage is at least 95%.
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Table 9. Bayes averages, relative absolute biases, estimated risks and 95% credible intervals for the

parameters of BCESFLO
(N =10000,a =0.6,b=0.8,a;, =1.1,a; =1.5,0, =1.2,0, =1.7)
n Parameters Averages RAB ER UL LL Length
30 a 0.60059 9.9478e-04 4.6360e-07 0.6012 0.5986 0.0026
b 0.8007 0.0008 8.9479¢-07 0.8019 0.7992 0.0028
a, 1.0985 1.3765e-03 2.8541e-06 1.1002 1.0973 0.0029
a;, 1.4993 0.0015 3.9345¢-06 1.2030 1.1998 0.0032
0, 1.2018 0.0005 8.7362e-07 1.5004 1.4982 0.0021
0, 1.7015 0.0009 3.7897e-06 1.7037 1.6998 0.0039
50 a 0.5998 0.0004 4.4439¢-07 0.6006 0.5982 0.0024
b 0.7996 4.5745e-4 6.5481e-07 0.8008 0.7982 0.0026
a, 1.0997 0.0003 3.6181e-07 1.1001 1.0978 230.00
a, 1.5002 9.6223e-03 1.7531e-06 1.2023 1.1996 0.0027
0, 1.2011 1.1497e-04 3.7496e-07 1.5012 1.4989 0.0024
0, 1.7006 3.6611e-04 8.0349¢e-07 1.7016 1.6994 0.0021
100 a 0.5997 5.3088e-04 2.3494e-07 0.6004 0.5988 0.0017
b 0.7999 7.8312e-05 3.9512e-07 0.8009 0.7986 0.0024
a, 1.0999 4.1095e-05 2.9580e-07 1.1007 1.0986 0.0022
a, 1.5001 6.3095e-04 8.3359e-07 1.2002 1.1982 0.0019
61 1.1992 3.4961e-05 3.2374e-07 1.5007 1.4988 0.0019
0, 1.6996 2.1334e-04 4.4509e-07 1.7006 1.6985 0.0021

Table 10. Bayes averages, relative absolute biases, estimated risks and 95% credible intervals for the
parameters of BCESFLO
(N =10000,a =2.5,b=0.67,a; = 3,0, = 2.5,0; = 7.4,0, = 5.1)

n Parameters Averages RAB ER UL LL Length
a 2.5014 0.0005 2.6580e-06 2.5024 2.4994 0.0029
b 0.6710 0.0015 2.0137e-06 0.6724 0.6694 0.0029
30 a, 3.0017 0.0005 4.5668e-06 3.0044 2.9998 0.0045
a, 2.5017 0.0007 3.9767e-06 2.5029 2.4998 0.0030
0, 7.3985 0.0006 3.2725e-06 7.4001 7.3970 0.0020
0, 5.1023 0.0004 7.0838e-06 5.1039 5.0998 0.0041
a 2.4991 0.0003 1.0481e-06 2.4999 2.4978 0.0020
b 0.6709 0.0013 1.8134e-06 0.6720 0.6695 0.0025
50 a, 3.0007 0.0002 1.1669¢e-06 3.0025 2.9982 0.0043
a, 2.4984 0.0001 3.0778e-06 2.4999 2.4971 0.0028
0, 7.4008 0.0001 9.0744e-07 7.4016 7.3995 0.0020
0, 5.1013 2.6363e-04 2.5136e-06 5.1029 5.0996 0.0033
a 2.4994 2.1057e-04 6.5731e-07 2.5002 2.4984 0.0018
b 0.6698 2.5083e-04 4.2225e-07 0.6710 0.6686 0.0023
100 a, 3.0001 6.5163e-05 9.1350e-07 3.0015 2.9974 0.0041
a, 2.5003 5.7028e-05 1.3608e-06 2.5010 2.4993 0.0016
0, 7.4004 1.4222e-04 3.3561e-07 7.4023 7.4005 0.0018
0, 5.0988 0.0002 1.5726e-06 5.0997 5.0975 0.0021
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Table 11. Bayes averages, relative absolute biases, estimated risks and 95% credible intervals for the
reliability and hazard rate functions of BCESFLO
(N = 10000,a = 06,b = 0.8,“1 = 1.1,(12 =1. 5,91 = 1.2,92 = 1.7,t01 = Z,toz = 4')

n rf and hrf Averages RAB ER UL LL Length
30 R(to1,to2) 0.2886 0.0006 5.4372e-07 0.2897  0.2874  0.0024
h(toq, toz) 0.0032 0.4062 6.6236e-06 0.0055  0.0012  0.0042
50 R(to1,to2) 0.2881 0.0011 3.3358e07 0.2888  0.2868  0.0019
h(to1, to2) 0.0055 0.0387 2.8049e-07 0.0063  0.0042  0.0022
100 R(to1,to2) 0.2884 6.3252e-05 1.2286e-07 0.2890  0.2877  0.0014
h(to1, tos) 0.0055 2.6847e-02 2.7532e-07 0.0062  0.0043  0.0019

Table 12. Bayes averages, relative absolute biases, estimated risks and 95% credible intervals for the
reliability and hazard rate functions of BCESFLO
(N = 10000,a = 15,b = 0.55,“1 = 5.8,“2 = 3.5,01 = 3.5,02 = 2.5,t01 = Z,toz = 3)

n rf and hrf Averages RAB ER UL LL Length
30 R(to1,t02) 0.0035 0.7896 5.5620e-06 0.0061 0.0009 0.0052
h(toq,to2) 0.0472 0.0402 4.2526e-06 0.04841 0.0449 0.0034
50 R(to1,to2) 0.0025 0.2684 4.1521e-07 0.0031 0.0014 0.0017
h(toq,to2) 0.0441 0.0268 2.5180e-06 0.0453 0.0429 0.0024
100 R(to1,to2) 0.0019 0.0051 1.4099¢-07 0.0026 0.0009 0.0016
h(to, to2) 0.0456 0.0059 2.8211e-07 0.0464 00447 0.0017

Table 13. Bayes estimates and standard errors for the parameter of BCESFLO

Parameters Estimates Se
a 0.6013 0.0009
b 0.8001 0.0008
a, 1.1025 0.0009
a, 1.5003 0.0008
0, 1.2003 0.0007
0, 1.6999 0.0004

Table 14. Bayes estimates and standard errors for the parameters of BCESFLO

Parameters Estimates Se
a 1.5018 0.0014
b 0.5510 0.0005
a, 5.8005 0.0007
a, 3.5027 0.0008
0, 3.5027 0.0014
0, 2.4978 0.0013

Table 15. Bayes estimates and standard errors for the reliability and hazard rate functions of BCESFLO

rf and hrf Estimates Se
R(toq,t02) 0.2897 0.0004
h(toq, to2) 0.0035 0.0008

Table 16. Bayes estimate and standard errors for the reliability and hazard rate functions

n rf and hrf Estimate Se
30 R(ty1,to2) 0.0029 0.0009
h(to1, toz) 0.0461 0.0005
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Table 17. Bayes predictors, relative absolute biases, estimated risks and 95% credible interval of the
future observation
(N =10000,a=0.6,b=0.8,a; =1.1,a, =1.5,0, =1.2,0, = 1.7)

n s Vi) Averages RAB ER UL LL Length
| S1s)  3.9999 2773105 5.0017¢-07 40009 3.9982  0.0026

$2) 70003 4.0064¢-05  3.5349-07 7.0011 69989  0.0021

30 $1) 40003 6.6825¢-05  8.0271e-07  4.0015 3.9986  0.0029
12 92 6.9982 25996e-04  3.7367¢06  6.9994 6.9968  0.0026

" $1e) 40009 0.0002 1.6289¢-06  4.0022  3.9992  0.0031

$2)  6.9981 0.0003 5.1302e-06  7.0001 69959  0.0042

| $1 40005 1.1660e-04  4.6721e-07  4.0013  3.9993  0.0019

929 7-0000 2.0907¢-06  1.6751e-07  7.0006 6.9989  0.0017

50 i) 40007 1.6923¢-04  1.0526e-06  4.0016 3.9989  0.0027
12 $as) 6999 8.2851e-05  5.9514e-07  7.0004 69983  0.0020

" 1) 40014 0.0004 3.2526e-06  4.0028 3.9998  0.0030

92 7-0008 0.0001 1.5965¢-06  7.0024  6.0024  0.0033

| S 39997 6.9537¢-05  2.9892¢-07  4.0006 3.9989  0.0017

92y 7-0004 51594e-05  2.9367¢-07  7.0009 69994  0.0016

100 1) 3.9997 8.0968¢-05  3.7275¢-07  4.0005 3.9983  0.0022
12 92y 70014 2.0482e-04  2.4549¢-06  7.0023 69996  0.0027

" S 40002 5.7244e-05  7.7567¢-07  4.0016 3.9983  0.0032

92y  6.9985 2.1164e-04  3.8607¢-06  7.0005 6.9964  0.0041

Table 18. Bayes predictors, relative absolute biases, estimated risks and 95% credible intervals of the
future observation
(N =10000,a =1.5,b = 0.55,&; = 5.8,a, = 3.5,0, = 3.5,0, = 2.5)

n s Vs Averages RAB ER UL LL Length
1 Vi) 39986 0.0003 3.1005¢-06  4.0007 3.9982  0.0025

92y 70008 1.1791e-04 1.1019¢-06  7.0016  6.9991  0.0026

30 12 Y1y 39983 4.3381e-04 3.2831e-06  3.9993  3.9957  0.0036
o) 69994 7.2306¢-05 1.6241e-06  7.0013  6.9969  0.0043

18 Vi) 39978 5.4197¢-04 6.6847¢-06  3.9999  3.9956  0.0043

o) 70022 0.0003 7.1597¢-06  7.0041  6.9994  0.0048

1 Vi) 39997 7.5194¢-05 3.0675¢-07  4.0005 3.9989  0.0017

o) 70002 2.6742¢-05 2.5213¢-07  7.0011  6.9990  0.0021

50 12 Y1y 40001 2.7094¢-05 4.2356e-07  4.0010 3.9986  0.0024
o) 69983 0.0002 3.5432¢-06  6.9999  6.9971  0.0029

18 91y 40008 0.0002 1.0349¢-06  4.0018  3.9993  0.0025

o) 70023 3.3174¢-04 7.4926e-06  7.0049 69995  0.0054

1 Vi) 39997 8.631¢-05 3.667%-07  4.0004 3.9989  0.0015

o) 69999 1.5412¢-05 2.2928¢-07  7.0006 69988  0.0019

100 12 Y1) 40007 0.0001 1.0153¢-06  4.0019  3.9995  0.0024
92y 6.9989 0.0001 1.8428¢-06  7.0003  6.9975  0.0028

18 Yiey 39996 9.3514¢-05 1.1006e-06  4.0010 39979  0.0031

oy 70027 3.9138¢-04 9.4936e-06  7.0048  6.9999  0.0049
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Table 19. Bayes predictors and standard errors of the future observation

S Vi) Estimate Se

1 91(s) 3.9999 0.0005
Yacs) 7.0009 0.0006

12 106 3.9993 0.0007
Vacs) 7.0021 0.0007

18 106) 3.9987 0.0008
Ya(s) 7.00248 0.0019
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