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ABSTRACT 
 

Lactoferrin (LF) is a protein that plays important roles in many diseases including diabetes mellitus 
(DM). DM is one of the most challenging health concerns of the 21

st
 century. At least 30% of the 

diabetic population is undiagnosed at any one time, so effective and early diagnosis is of critical 
concern. Several of the body’s chemicals, such as enzymes, electrolytes, and proteins, have been 
used as biomarkers in the diagnosis of diabetic diseases. Detection of LF is considered an 
important sign of type 2 diabetes (T2DM), due to its activity as an anti-inflammatory agent and in 
the down-regulation of pro-inflammation. LF is produced by glandular epithelial cells and 
neutrophils, and a decrease in its concentration is linked with the dysfunction of neutrophils in many 
diseases. Neutrophils are the first line of defence against pathogens that invade the human body 
during inflammation. Therefore, the health of neutrophils can be employed as a biomarker in the 
diagnosis of diseases such as diabetes. A decrease in LF concentrations in T2DM could result in 
increased levels of inflammatory markers that are associated with the inflammation activity. 
Increased understanding of the link between LF concentration and development of T2DM should 
improve early diagnosis and treatment outcomes.  
LF is identified through use of various techniques such as immunoassay, proteomics, and 
spectrometry. The aim of this review is to summarise each pathway and some of the most relevant 
LF biomarkers that may be used to monitor the development or progression of diabetes and its 
complications, and the link between levels of LF and neutrophil dysfunction in T2DM. Moreover, the 
objective of this review is to show the most common LF analysis that may be useful in the clinical 
diagnosis of T2DM and discuss to what extent this analysis method can be a tool for prognostic 
and diagnostic work. 
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1. INTRODUCTION 
 
Lactoferrin (LF, also known as lactotransferrin) is 
a protein that is produced and released by 
glandular epithelial cells and is detected in 
neutrophil secondary granules. LF is a functional 
glycoprotein with an estimated molecular weight 
of 80kDa and 690 amino acid residues [1,2]. It is 
found at high levels in human and bovine milk, 
and in smaller amounts in exocrine secretions 
(such as saliva, tears, sperm, vaginal fluids and 
gastrointestinal fluids) and cells (i.e. neutrophils, 
enterocytes and adipocytes) [3]. LF is a member 
of the glycoprotein family and has multifunctional 
properties. It plays an important role in the 
immune defence systems of the vaginal, 
stomach and ocular mucosa. When inflammatory 
stimuli are present, LF expression is enhanced in 
those areas, and this enhancement limits 
inflammatory cytokine production and the ability 
of lipopolysaccharide endotoxins to bind to 
inflammatory cells [4]. 
 
During infection, neutrophil secondary granules 
release increased amounts of LF at inflammatory 
sites to control the physiological homeostasis 
state [5]. LF is important in the physiological 
system and is used as a biomarker for many 
inflammatory diseases, including type 2 diabetes 
(T2DM). T2DM, also known as insulin-
independent diabetes, is linked to obesity and 
insulin resistance (IR) in the peripheral tissues 
[6]. T2DM begins to develop several years before 
it is diagnosed; according to the global guideline 
of the International Diabetes Federation, 
between 30% and 90% of T2DM patients are 
undiagnosed at any one time [7,8]. Improved 
understanding of the mechanism of action of 
T2DM will aid in the exploration of the marker 
that can lead to early diagnosis. The origin of the 
increased inflammatory activity in T2DM is 
virtually unknown, yet the first evidence of a 
connection between inflammation and diabetes 
was uncovered more than 100 years ago [9,10]. 
 
Biomarkers can be used to help researchers to 
better grasp the origins of illness. Biological 
indicators include proteins, genetic and metabolic 
markers. Inflammatory biomarkers such as 
orosomucoid, tumour necrosis factor-α (TNF-α), 
transforming growth factor-β, vascular 
endothelial growth factor and monocyte 
chemoattractant protein-1, as well as oxidative 
stress markers such as 8-hydroxy-2-
deoxyguanosine, may be useful for the diagnosis 

or monitoring of diabetic complications. 
Biomarkers can also be employed in biological 
systems to identify, characterise and observe the 
expression of proteins. Protein biomarkers are 
extremely useful to predict long-term mortality in 
diabetic patients. New biomarkers can be found 
in tissues and/or biofluids (blood, serum, plasma 
and urine) [11]. Protein biomarkers have been 
identified in biofluids, tissues and cells, 
particularly in T2DM patients [12]. 
Apolipoproteins, such as apolipoprotein A1, the 
major component of plasma-bound high-density 
lipoproteins (HDLs), have been found useful as 
protein biomarkers [13]. 
 
Concentrations of LF in vivo vary according to 
the type and severity of the disease. Various 
analytical methods are available to measure 
these concentrations in order to screen for the 
presence of diseases such as T2DM, to evaluate 
their severity, to monitor their progress and to 
offer prognoses.Neutrophils are 
polymorphonuclear entities (PMNs) and 
phagocytic leukocytes that form the first line of 
defence against invading pathogens in the 
human body. During inflammation that is induced 
by tissue injury, they are also essential effector 
cells [14]. PMNs have roles in chemotaxis, 
attachment to the endothelium and foreign 
agents, phagocytosis and microbicidal activity. 
PMNs have the capacity to enter diseased 
tissues and destroy invading bacteria by 
producing a variety of harmful chemicals such as 
ROS, proteases and LF [15]. The Neutrophils are 
dysfunctional due to infection agents [16]. 
 
The aim of this review is to describe the potential 
of use of LF as a diagnostic biomarker for T2DM 
with neutrophil dysfunction and to consider 
several clinical chemistry analytical techniques 
that can be used to detect the level of LF in 
various biological samples. It also highlights the 
challenges involved. 
 

2. MECHANISMS OF TYPE 2 DIABETES 
MELLITUS 

 
T2DM is the world’s most prevalent and clinically 
significant metabolic disease. It has become a 
global epidemic and a huge healthcare burden in 
recent decades as the number of people with 
T2DM has increased. In 2013, there were an 
estimated 382 million T2DM patients worldwide 
[17], and by 2035, this figure is expected to 
increase to more than 590 million [18,19]. 
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Diabetes is a “metabolic disease of many 
etiologies defined by persistent hyperglycemia 
with disturbances in carbohydrate, lipid, and 
protein metabolism arising from abnormalities in 
insulin production, insulin action, or both”, 
according to the World Health Organization [20]. 
Development of T2DM is closely linked with 
hereditary variables such as decreased levels of 
insulin secretion and IR, as well as 
environmental factors such as obesity, lack of 
exercise, overeating, stress, inadequate calorie 
consumption, alcohol use, smoking and ageing 
[21]. 
 
Insulin is produced by β-cells, which first 
generate pre-proinsulin. During the maturation 
process, pre-proinsulin undergoes a structural 
change with the help of many proteins, 
culminating in production of proinsulin. After that, 
proinsulin is degraded into C-peptide and insulin. 
Insulin is retained in granules throughout 
maturation until insulin release is activated. The 
release of insulin is largely induced by a reaction 
to high blood-glucose levels. Other variables, 
such as levels of amino acids, fatty acids and 
hormones, can also cause insulin to be released. 
When blood-glucose levels rise, glucose 
transporter 2 is used primarily by β-cells to take it 
in. When glucose enters the cell, it causes the 
intracellular ratio of adenosine triphosphate to 
adenosine diphosphate (ATP/ADP) to rise and 
the ATP-dependent potassium channels in the 
plasma membrane to close. This process triggers 
glucose catabolism, which causes the membrane 

to depolarise and enables Ca
2+

 to enter the cell 
through voltage-dependent Ca

2+
 channels. 

Insulin exocytosis is triggered by an increase in 
intracellular Ca

2+
 concentration, which causes 

the priming and fusing of secretory insulin-
containing granules to the plasma membrane 
[22,23] (Fig. 1A). 
 
According to recent research, β-cell dysfunction 
in T2DM may be mediated by a complicated 
network of interactions between the environment 
and numerous biochemical processes that occur 
in the cell. Excessive eating, as with obesity, is 
associated with hyperglycaemia and 
hyperlipidaemia, which promote IR and chronic 
inflammation [24]. The β-cells are subjected to 
toxic factors such as inflammation, inflammatory 
stress, metabolic/oxidative stress and amyloid 
stress under these conditions. These toxic 
factors can cause loss of islet integrity owing to 
genetic susceptibility differences [25,26]. Excess 
amounts of free fatty acids (FFAs) and 
hyperglycaemia stimulate the apoptotic unfolded 
protein response pathways, resulting in β-cell 
malfunction. Obesity-related lipotoxicity, 
glucotoxicity and glucolipotoxicity induce 
metabolic and oxidative stress, which lead to β-
cell death [26,27]. Furthermore, prolonged high 
levels of glucose enhance proinsulin biosynthesis 
and the development of islet amyloid 
polypeptides in β-cells, as well as an increase in 
production of reactive oxygen species (ROS) [27] 
(Fig.1B). 

 

 
 

Fig. 1. β-cells in healthy circumstances (A) and during dysfunctional processes (B). Diagram 
adapted from Galicia-Garcia et al. [28] 
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3. THE ROLE OF INFLAMMATION IN 
TYPE 2 DIABETES MELLITUS 

 
The first evidence of a connection between 
inflammation and diabetes was discovered over 
a century ago. The role of inflammatory 
processes in the development and progression of 
T2DM has received greater attention than it has 
in type 1 diabetes due to an important 
mechanism. Increases in levels of inflammatory 
markers have been seen in seemingly healthy 
people who subsequently acquire T2DM. This 
finding suggests that inflammation starts early in 
the period of reduced glucose tolerance and prior 
to T2DM diagnosis [24,29,30]. 
 

IR has long been thought to be a key factor in the 
pathophysiology and progression of T2DM. IR 
begins prior to the onset of T2DM, when β-cell 
breakdown and insulin insufficiency result in 
decreased glucose tolerance. Several elements, 
including genetics and environmental effects, 
obesity, and other diseases associated with 
chronic inflammation or infection, have been 
related to the development of IR in people with 
impaired glucose tolerance and T2DM [24]. 
 
Fig. 2 shows how inflammation develops in 
T2DM, as described by Donath and Shoelson 
[29]. Overeating causes levels of blood glucose 
and FFAs to rise, and this leads to metabolic 
stress in various tissues. This stress triggers the 
production of a variety of pro-inflammatory 

cytokines and chemokines. Immune cells are 
drawn in, and this process contributes to tissue 
inflammation [24,29,30]. 
 
IR is linked primarily to a variety of pro-
inflammatory and/or oxidative stress mediators, 
including pro-inflammatory cytokines such as 
interleukins (ILs) 1β and 6, and TNF-α, as well as 
a variety of chemokines and adipocytokines 
[31,32]. These pro-inflammatory cytokines can 
cause systemic insulin sensitivity and glucose 
imbalance as they directly increase IR in 
adipocytes, muscle cells and hepatic cells. 
Increased levels of these pro-inflammatory 
cytokines cause the liver to generate and release 
C-reactive protein, plasminogen activator 
inhibitor-1, amyloid-A, 1-acid glycoprotein and 
haptoglobin. These proteins first appear in the 
early stages of T2DM, and their blood levels 
grow as the disease progresses [33]. 
 
Several studies have revealed the occurrence of 
various inflammatory responses in β-cells and 
peripheral tissues. These studies report that IL-β 
is a master pro-inflammatory mediator that 
activates a plethora of other pro-inflammatory 
cytokines and chemokines. Once inflammation is 
triggered, it has a negative impact on β-cells in 
pancreatic islets, resulting in decreased insulin 
production. Similarly, IL-β plays a critical role in 
the induction of inflammation in peripheral 
tissues, which contributes to the development of 
IR in these tissues [34,35]. 

 

 
 

Fig. 2. How inflammation develops in T2DM. Diagram adapted from Donath et al. [29] 
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TNF-α has been identified as a key cytokine that 
is implicated in IR. TNF-α has metabolic effects 
in peripheral tissue as it alters the expression of 
genes involved in lipolysis and lipogenesis, which 
results in a rise in FFA concentrations. Higher 
levels of hepatic gluconeogenesis and IR in 
skeletal muscle are linked with increased FFA 
levels. This increase in FFAs is also linked with 
insulin hypersecretion, which can lead to a 
reduction in insulin secretion capacity [36]. TNF-
α plays an essential role in insulin signalling 
system as it inhibits activity of the insulin receptor 
tyrosine kinase in adipocytes, which leads to 
decreased phosphorylation and activation of 
insulin receptor substrate-1 and so limits cell 
responsiveness to insulin. TNF-α has also been 
linked to a reduction in the expression of genes 
that encode proteins that produce insulin 
receptor substrates [37]. 
 
Ageing is linked to higher amounts of IL-6 in the 
blood, which can be linked with increased IR 
[38]. The process by which IL-6 triggers IR is 
complex and multifaceted. It not only stops non-
oxidative glucose from being metabolised, but it 
also inhibits the activity of lipoprotein lipase, 
which raises triglyceride levels in the blood [39]. 
Furthermore, the presence of IL-6 activates the 
cytokine signalling suppressor, which may inhibit 
the activation of cytokine-mediated insulin 
receptor transcriptional factors [40]. As a result, 
IL-6 is considered a critical biomarker for IR 
development. 
 

4. NEUTROPHILS AS BIOMARKERS IN 
DM 

 
Interactions with the vascular endothelium 
regulate neutrophil migration from the circulation 
to the site of inflammation. Primed neutrophils 
actively manufacture and release cytokines, 
chemokines, leucotrienes and prostaglandins, 
and present antigens, by virtue of their vast 
numbers inside inflammatory tissue, which leads 
to local generation of inflammatory mediators. In 
response to a variety of stimuli, including TNF-α, 
neutrophils have been demonstrated to 
manufacture and release IL-8 [41,42]. Activated 
neutrophils have also been shown to produce IL-
1, IL-6, IL-12, TNF-α and oncostatin M, all of 
which can stimulate the activity of neutrophils 
and other immune-system cells [43]. It is 
important to find out where various neutrophil 
phenotypes are made during severe 
inflammation events. Neutrophil cell-surface 
markers or their derivatives can be employed as 
biomarkers in disease diagnosis. Chronic 

inflammation is a feature of T2DM, which 
involves humoral components as well as several 
kinds of white blood cells, such as mononuclear 
and PMN leukocytes. The development of T2DM 
has been linked to an increase in neutrophil 
count and phagocytic dysfunction. This is related 
to the well-known theory that oxidative stress, 
which is generally created by neutrophil activity, 
causes diabetes problems [44]. 
 

T2DM is now recognised as an inflammatory 
condition that is associated with IR and abnormal 
endothelial vascular reactivity. Insulin has been 
shown to have a substantial regulatory influence 
on the functional activities of immune cells 
[45,46]. Insulin's priming effect on PMN activity 
can be viewed as the body creating a wide 
defence to support the major immunological 
response to antigen exposure, and this response 
is aided by meal intake [47]. Insulin sensitivity 
declines with age, and this situation adds to the 
immune system's age-related deterioration, 
particularly after meal consumption [46]. 
 

PMN function is influenced by the conditions 
caused by T2DM, age-related IR, diet and 
lifestyle. In human and animal models of 
diabetes, abnormalities in neutrophil adhesion, 
chemotaxis, phagocytosis, ROS generation and 
microbicidal activity have been reported [48,49]. 
The occurrence of hyperglycaemia reduces the 
activity of glucose-6-phosphate dehydrogenase 
(G6PD) and glutaminase enzymes, while it 
increases the activity of phosphofructokinase 
[48]. Reduced G6PD activity impairs the 
development of the pentose-phosphate pathway 
as well as neutrophil activities [50].Even when 
the subject’s glycaemic index is incorrect, insulin 
enhances neutrophil phagocytosis and ROS 
generation. This finding suggests that insulin has 
a direct effect on neutrophils [48]. Furthermore, 
increased levels of circulating FFA and 
triacylglycerol promote IR as well as neutrophilic 
inflammation [51,52]. 
 

Changes in immune-cell activity may explain why 
the T2DM and older populations suffer infections 
more frequently than other people. Research has 
demonstrated that treatment of hyperglycaemia 
with insulin can lead to restoration of diabetic 
patients' impaired PMN functioning. Glucose 
intake and glycogen metabolism in PMNs are 
both insulin-dependent, despite the fact that 
PMNs do not require insulin in order to absorb 
glucose. Following insulin therapy, insulin 
receptor expression has been found to be linked 
to PMN chemotaxis in both young and old 
individuals. In insulin-resistant and elderly 



 
 
 
 

Alhalwani; JPRI, 33(58A): 377-390, 2021; Article no.JPRI.79892 
 
 

 
382 

 

people, antimicrobial protein synthesis in PMNs 
is altered, and it is reduced in all humans after 
intravenous endotoxin injections under 
hyperglycaemic conditions [15]. Elgazar-Carmon 
et al. (2008) discovered that a high-fat diet 
caused significant neutrophil recruitment to intra-
abdominal adipocyte tissue; this recruitment 
peaked after three to seven days and 
subsequently faded. The researchers theorised 
that neutrophil recruitment was necessary to 
kickstart the inflammatory response to high-fat 
meals. These neutrophils may produce chemotactic 
factors, which enable macrophage infiltration and 
the continuation of an inflammatory state in 
adipose tissue. This chronic inflammatory 
infiltration is preceded by a short, acute infiltration 
of inflammatory molecules that are dominated by 
neutrophils, according to a well-established para-
digm in systemic inflammatory processes [53]. 
 

5. NEUTROPHIL DYSFUNCTION IN TYPE 
2 DIABETES: SPECIFIC MARKERS 

 

In patients with IR or T2DM, levels of 
antibacterial neutrophil proteins such as LF, 
bactericidal/increasing permeability protein (BPI) 
and α-defensins are decreased. The decreased 
antibacterial ability of neutrophils that occurs in 
T2DM patients has been found to correspond 
with the circulating levels of these proteins [54]. 
 

BPI is a 55kDa cationic protein that is found in 
the azurophilic granules of neutrophils. Plasma 
BPI concentration has been found to be 
negatively related to metabolic indices and 
directly correlated with insulin sensitivity and 
levels of HDLs [55,56]. 
 

Human α-defensins are peptides that contain 29-
35 amino acids and have high arginine content. 
In seemingly healthy Caucasian males, 
significant positive correlations have been found 
between concentrations of plasma α-defensin, 
insulin sensitivity, nonatherogenic lipid profile 
and vascular function [57,58]. 
 

Furthermore, numerous investigations have 
shown that development of T2DM is linked to a 
change in neutrophil functioning (lower 
bactericidal ability and higher neutrophil count) 
[59-61]. 
 

6. LACTOFERRIN AS A DIAGNOSTIC 
MARKER FOR TYPE 2 DIABETES 
DISEASES 

 

LF levels in the body are elevated during 
development of an infection or an inflammatory 

disease, which means that LF can be used as a 
biomarker for inflammatory disorders. The 
presence of LF also reduces inflammation as it 
interacts with macrophages and limits the 
production of inflammatory cytokines by cells in a 
similar way to other anti-inflammatory cytokines, 
according to several studies [62]. Scientists have 
made many attempts to improve their 
comprehension of the role of LF in the 
maintenance of human health [63]. 
 
Videm et al. (2007) reported that when a person 
who displayed traditional risk factors for coronary 
artery disease was infected with Chlamydia. 
pneumoniae, coronary artery disease would 
develop only if monocytes/macrophages and 
neutrophils were activated. According to this 
study, increased concentrations of LF but not of 
myeloperoxidase are linked with the occurrence 
of severe coronary artery stenosis [64]. 
Furthermore, both at baseline and after a fat 
overload, circulating concentrations of LF have 
been reported to be negatively correlated in 
extremely obese individuals with postprandial 
lipaemia and production of oxidative stress 
markers (e.g., catalase and glutathione 
peroxidase) and C-reactive protein [65]. 
 
According to recent studies, LF can be utilised as 
a biomarker in the detection of inflammatory 
bowel disease (IBD) [66], Alzheimer's disease 
(AD) [67] and dry-eye disease (DED) [68]. 
Clinical grading systems and endoscopy have 
traditionally been used to diagnose IBD. 
However, both these methods are costly and 
show limited accuracy. Previous research has 
suggested that faecal levels of LF might be 
useful biomarkers to predict the development of 
IBDs [69]. As PMN neutrophils degranulate 
during intestinal inflammation, secondary 
granules are produced. LF is a key component of 
secondary granules, and therefore LF 
concentration increases in cases of IBD. In cases 
of Crohn's disease (CD) and ulcerative colitis 
(UC) in children, the levels of faecal LF have 
been reported to be greater than those in control 
participants (7.3g/g), although the diagnostic 
efficacy of this protein in UC patients is reported 
to be better than in CD patients [70]. 
 
It is difficult to diagnose AD early in its 
development. Current tactics involve combining 
the techniques of positron emission tomography 
and magnetic resonance imaging to assess the 
levels of tau and amyloid proteins in the 
cerebrospinal fluid [71]. There have been 
attempts to create a rapid and cost-effective 
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diagnostic method. Research in AD 
pathophysiology suggests that bacterial and viral 
infections may induce onset of the disease and 
lead to a weakened innate immune system [72]. 
Saliva is considered the body's first line of 
defence against infection because it contains 
numerous antimicrobial proteins. Some reports 
have linked oral infections to the development of 
AD [73]. LF is an essential defence component of 
saliva due to its particular antibacterial 
properties. Therefore, the measurement of 
salivary LF levels may offer a diagnostic method 
for the early detection of AD. González- Sánchez 
et al. (2020) measured levels of salivary LF in 
order to diagnose prodromal AD and to study the 
relationship between salivary LF levels and 
cerebral amyloid-β. The results showed that 
salivary LF levels did not decrease in other 
dementias, such as frontotemporal dementia, 
and that reduced levels of LF could be attributed 
to the disruption of hypothalamic function due to 
early hypothalamic amyloid-β accumulation [67]. 
 
DED, a common ocular surface disease of 
multifactorial aetiology, causes many symptoms 
and visual impairment, sometimes with ocular 
surface damage [74]. DED is currently diagnosed 
through use of several tests such as evaluation 
of the tear osmolarity, the Schirmer tear test and 
the phenol red thread test [75]. However, these 
methods are of low accuracy and can be easily 
affected by environmental factors. The presence 
of LF in the tear film plays a key role in the 
avoidance of ocular diseases because of its 
unique antimicrobial and anti-inflammatory 
activities [76]. Some recent research has 
confirmed that the concentrations of LF in tears 
are significantly different between patients with 
DED and controls [67,77]. 
 
A 1995 study discovered that mesencephalon 
samples that had been obtained by autopsy from 
eight patients with histologically confirmed 
Parkinson’s disease (PD) showed a higher 
content of the LF receptor than samples taken 
from 13 people with no known history of 
psychiatric or neurological disorders. This finding 
kicked off research into a link between levels of 
LF and the pathogenesis of PD [78]. Additional 
examination of the mesencephalon cellular 
distribution revealed significant levels of LF in a 
wide population of neurons in the substantia 
nigra (SN) of control individuals. In comparison 
with control instances, individuals with PD 
exhibited greater LF levels in the surviving 
neurons of the SN, according to quantitative 
analyses. The researchers concluded: “Further 

research will be required to understand whether 
LF serves as an iron scavenger and may 
represent a protective factor, or whether it 
promotes excessive iron buildup leading to 
oxidative injury in susceptible neurons” [79]. Two 
recent investigations separately showed that LF 
might be useful as a non-invasive PD marker, 
after they discovered that the levels of LF in the 
saliva and tears of PD patients were higher than 
those in the same biofluids of the control group 
[80,81]. Salivary and lacrimal LF levels could be 
acceptable as PD markers since they are simpler 
to collect than blood samples and, more 
importantly, the amounts of LF in both exocrine 
secretions are substantially larger than the levels 
of oligomeric alpha-synuclein. This compound is 
widely utilised as a marker despite its high 
prevalence in red blood cells, low concentration 
in biological fluids and contradictory meta-
analysis results, which limit its utility in PD 
diagnosis [82]. 

 
Several studies have shown that LF regulates 
the production of inflammatory cytokines in a 
similar way to other anti-inflammatory cytokines. 
LF has been found to reduce β-cell damage by 
decreasing production of TNF-α, IL-1β, IL-6 and 
IL-8 in human mononuclear cells (in vitro) while it 
increases IL-10 and IL-4 production (in vivo) [83]. 

 
7. CORRELATION OF LF ANALYSIS 

WITH INSULIN RESISTANCE AND 
TYPE 2 DIABETES STUDIES 

 
The observation that there was a negative 
connection between concentrations of circulating 
LF and of fasting glucose [84,85] and that there 
was a positive correlation between levels of 
circulating LF and insulin sensitivity [85] sparked 
research into the role of LF in glucose 
metabolism changes. It is possible that LF has a 
direct impact on IR in peripheral organs [86]. 
Mohamed et al. (2018) discovered that glucose 
metabolism in diabetic children was changed 
compared with that in their control counterparts 
and that the diabetic youngsters showed a two-
fold increase in LF levels [87]. The increased 
levels of LF helped weight loss by improving 
insulin action and increasing the activity of the 
fuel-sensing protein [65]. 

 
8. NEUTROPHIL DYSFUNCTION AND LF 

PRODUCTION 
 
In a broad sense, LF is an acute-phase protein 
that functions as an "alarmin". Alarmins form a 
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Table 1. Selected studies of quantitative measurements of LF in T2DM patients 
 

Study Sample 
type 

Analytical 
method 

Conclusions Reference 

LF concentrations in tears and tear secretion rates were 
measured in normal and diabetic individuals. 

Tears ELISA There was no link between the amount of LF in the tears of the diabetic subjects and the 
length of time they had been diabetic, and there was no variation in the amount of LF in 
normal tears vs. diabetic tears. 

[97] 

Diabetic and diabetic with retinopathy patients randomly 
selected for study of tears. 

Tears SDS-PAGE Tear film was decreased more in diabetic subjects than in normal subjects. [98] 

In hamsters in which diabetes was induced with streptozotocin, 
the levels of salivary antibacterial agents such as lysozyme, 
lactoperoxidase and LF were measured. 

Saliva Gel electro-
phoresis 

Ratio of LF to total protein in the hamsters was about twice that of the control hamsters. 
Insulin therapy restored 73% and 74% of the activity of lysozyme and lactoperoxidase, 
respectively, and the ratio of LF to total salivary protein returned to normal levels. 

[99] 

The connection between circulating LF, LF gene 
polymorphisms, dyslipidaemia and vascular reactivity in male 
humans with glucose intolerance was examined. 

Plasma ELISA With IR and T2DM, the concentration of circulating LF was reduced. Fasting triglyceride 
concentration, body-mass index, waist-to-hip ratio, and fasting glucose levels were all 
shown to be inversely associated with levels of LF, whereas HDL cholesterol concentration 
was found to be directly related. 

[84] 

In a Caucasian population, the association between circulating 
LF and chronic inflammation-associated IR was investigated 
according to glucose tolerance level. 

Plasma ELISA LF levels in the blood were found to be substantially lower in patients with impaired 
glucose tolerance compared with healthy people. It was possible that LF was involved in 
persistent low-level inflammation and IR. 

[85] 

The goal of this study was to see how well levels of 
myeloperoxidase and LF, two neutrophil degranulation 
products, predicted long-term risk of fatal ischaemic heart 
disease in patients with T2DM and in healthy people. 

Serum ELISA There was no significant difference in LF levels between T2DM patients and controls. [100] 

Concentrations of LF were measured in T2DM patients 
compared with non-diabetic controls. 

Serum ELISA Levels of LF were greater In T2DM patients than in control participants. [101] 

The concentrations were measured of protective factors in the 
saliva of individuals with T2DM who had decompensated. 

Saliva ELISA In decompensated T2DM patients, salivary LF levels were significantly lower than in the 
control group. 

[102] 

LF was studied as a biochemical marker in individuals with 
T2DM and in those with T2DM and peripheral neuropathy 
(diabetic nerve pain, DNP). 

Serum ELISA T2DM patients showed significantly higher serum LF levels when compared with the 
control group, whereas those with DNP showed highly significant increases when 
compared with both the control and T2DM groups. LF was likewise favourably associated 
with levels of HbA1c in the T2DM group and negatively with Fe in the DNP group. 

[103] 
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small family of proteins that are produced by 
neutrophils in response to infection. They play a 
key role in the modification of immune reactivity 
in response to a pathogenic encounter or clinical 
insult [88,89]. 
 

LF is expressed and stored in secondary 
granules by neutrophil leukocytes, which make 
up more than half of all white blood cells. LF is 
produced in the blood during neutrophil 
activation, which occurs at the initial stages of 
attachment to the activated endothelium. Its 
concentration can reach 200mg/l (compared with 
around 1mg/l under normal conditions), 
especially in inflamed tissues. Microglial cells, 
which function as resident macrophages in the 
brain, also produce LF when the brain is inflamed 
[90]. In a confined area, LF as an alarmin 
develops conditional connections between 
neutrophils and dendritic cells [88]. 
 

The innate system's armoury that is used to 
establish microbial balance in mucosal fluids 
includes LF, released immunoglobulin A and 
defensins [91]. LF is a multifunctional molecule 
due to its tendency to interact with microbial and 
target host-cell surfaces and its high affinity for 
ferric iron. This affinity deprives bacteria of the 
free iron they require to flourish [92]. The 
antibacterial properties of neutrophilic LF, which 
is generated in high concentration in infected 
tissues and is probably linked to the             
chromatin fibril matrix released by neutrophils 
(neutrophil extracellular traps), are comparable 
[93]. 
 

9. METHODS OF BIOANALYSIS OF LF IN 
DIABETES PATIENTS 

 

Various bioanalytical techniques have been used 
to measure levels of LF in biological samples. 
One of the most popular, due to its specificity 
and sensitivity, is enzyme-linked immunosorbent 
assay (ELISA). It is a quantitative, highly 
accurate, fast technique that can detect 
molecules in ng/ml concentrations. ELISA can be 
used to detect the binding of analyte and specific 
antibodies [94]. ELISA techniques have been 
reported in many studies of LF levels in DED, 
Crohn’s disease and diabetes [95-97]. Table 1 
highlights the evidence that is shown in selected 
studies and which supports the existence of a 
relationship between levels of indicators of 
neutrophil dysfunction (LF) and T2DM. The table 
also includes references to LF testing 
techniques. According to the findings shown in 
the table, T2DM is associated with decreased LF 
production and/or secretion in neutrophils. 

10. CONCLUSION 
 
LF is a protein that plays an important role in 
inflammation. In many studies, it has been found 
to play a key role in the development of T2DM. 
Due to neutrophil dysfunction, LF levels usually 
affect clinical diagnosis. ELISA techniques have 
been used widely to detect the concentrations of 
LF in diabetic patients due to their high sensitivity 
and selectivity. However, use of other techniques 
such as LC-Ms/Ms and proteomics should be 
considered to improve the analysis and 
understanding of LF activity and quantity in 
diabetes. 
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