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Abstract 

 
To curb the spread of contagious diseases and the recent polio outbreak in Nigeria, health departments must set up and 

operate clinics to dispense medications or vaccines. Residents arrive according to an external (not necessarily Poisson) 

Arrival process to the clinic. When a resident arrives, he goes to the first workstation, based on his or her information, the 

resident moves from one workstation to another in the clinic. The queuing network is decomposed by estimating the 

performance of each workstation using a combination of exact and approximate models. A key contribution of this 

research is to introduce approximations for workstations with batch arrivals and multiple parallel servers, for workstations 

with batch service processes and multiple parallel servers, and for self service workstations. We validated the models for 

likely scenarios using data collected from one of the states vaccination clinics in the country during the vaccination 

exercises. 

 

 
Keywords: Residents; polio; queuing network; servers; work station; processes; service; vaccination. 

 

1 Introduction 

 
The threat of an outbreak of contagious disease caused by untreated water or a natural occurrence, has prompted 

public health departments to update and enhance their plans for responding to such events. Especially in regions 
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that are densely populated such as the nation’s capital, state capitals and local government headquarters. In the 

worst-case scenario, terrorists could release a lethal virus, such as smallpox, into the general population or as a 

result of not well treated water supply which may result in the outbreak of “polio” popularly known as cripple 

disease.  

 

Polio invades the nervous system, and can cause total paralysis in a matter of hours. It affects children under five 

years through contaminated drinking water. The virus enters the body through the mouth and multiplies in the 

intestine. Initial symptoms are fever, fatigue, headache and vomiting. Other symptoms are stiffness in the neck 

and pains in the limbs. One in 200 infections leads to irreversible paralysis ‘usually in the legs’. Amongst those 

paralyzed, 5%-10% die when their breathing muscles become immobilized. Although polio paralysis is the most 

visible sign of polio infection, less than 1% of polio infections ever result in paralysis. Poliovirus can spread 

widely before cases of paralysis are seen. Poliovirus can travel from village to village and country to country, 

through un-immunized children. One unimmunized child can leave tens or hundreds more paralyzed for life. 

While polio exists anywhere, children everywhere are at risk. Although different responses are available, mass 

vaccination should be an effective policy [1]. 

 

In the case of Polio, every child below the age of six in the affected nation has to be vaccinated. For example, 

Okene town in Kogi state of Nigeria would need to vaccinate nearly 361,000 thousand people. To vaccinate so 

many people in a short period it would have to set up mass dispensing and vaccination clinics. Cities across the 

federal republic of Nigeria have to create plan for this type of response if polio and other infected diseases has to 

be reduced to the minimum possible level.  

 

Models of clinics are useful during the planning process. Two key clinic performance measures are the clinic 

capacity and the average time that a customer spends in the clinic (from arrival to departure), which we call cycle 

time ‘also known as flow time or throughput time’. Clinic capacity is important for verifying that the clinic can 

treat the affected population in the required time. Estimating cycle time is necessary to determine how much 

space to allow in the clinic for queues. From the clinic planning perspective, reducing queuing is important to 

reduce the number of residents in the clinic, since large numbers of people increase crowding, confusion, and the 

chance of chaos. 

 

While the study of queuing networks has resulted in numerous results, the need to model queuing networks with 

batch service processes performed by multiple parallel servers and self service stations led us to propose the 

model to be developed here. 

 

1.1 Inputs 

 
P = Size of population to be treated (patients)  

L = Time allotted for treatment (days) 

h = Daily hours of operation (hours per day) 

N = Number of clinics 

   = Number of staff at station i 

  = Mean process time at station i (minutes) 

   
 = Variance of mean service time at station i (minutes2) 

   = Processing batch size at station i 

    = Distance from station i to station j (feet) 

v = Average walking speed (feet per second) 

    = Routing probability from station i to station j 

  = Bus arrival size 

     =Aggregate batch arrival size to the station i 

   
 = inter-arrival time SCV at station 1 

 

Residents are the patients visiting the clinic for one treatments (Vaccination) or the other  

 

Where i is a natural number from 1 to I  
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1.2 Outputs 

 
TH’ = Required throughput (residents per minute) 

  
 = Minimum staff at station i 

     = Wait to batch time at station i (minutes) 

      = Wait in batch time at station i (minutes) 

    = Cycle time at station i (minutes) 

TCT = Total average time in clinic (minutes) 

WIP = Average number of residents in clinic 

  = Batch arrival rate at station i (batches per minute) 

   
 = Inter-arrival time SCV at station i 

   
 = Process time SCV at station i 

   
 = Inter-departure time SCV at station i for process batches 

R= Clinic capacity (residents per minute) 

    = Average queue time at station i (minutes) 

   = Average time spent traveling to the next station after station i (minutes) 

   = Average queue length at station i 

  = Utilization at station i 

 

1.3 Equations 

 
The objectives of this research are to: 

 

(i) model a formula of the form 
                                    

     

  

  
 for wait in batch time (     ) at 

station i,   
 

        
 for steady state probability (  ) that all the servers at station i are busy in a given 

time,                 for average number of residents (  ) that wait in the batch at station i, To use 

the formula 
    

   
 for wait to batch time (     ) at station i. where                     are respectively 

Utilization at station i, the number of staffs at station i, processing time in (minutes), batch size (number 

of patients in group), processing rate (average time to process a batch in minuts) and average batch arrival 

size at station i (number of patients arriving in at a time), model a self service station as G/G/  queuing 

system  

(ii) use the modeled formula to calculate the average cycle time in all the stations from 1 to I before the final 

station I+1 which is the exit. 

(iii) use the result obtained at each station to calculate the average cycle time of patients in the mass 

dispensing and vaccination clinics. 

(iv) use the average cycle time obtained to estimate how many patients can wait in the `clinic at the same time 

and hence the planning for mass dispensing and vaccination clinic to vaccinate large population within a 

limited time to aid the reduction of polio and other infectious diseases to the minimum possible level. 

 

2 Literature Review 

 
Recent polio outbreak and other infectious diseases in Nigeria and other parts of the world have focused increase 

attention on the ability of state and local public health authorities to provide affected individuals and communities 

with rapid, reliable access to medications or vaccination. 

 

Series of works have been done on queuing network as well as application of queuing system in various 

organizations which includes application of queuing system in Ekiti state university health center [2], the effect 

of traffic burst in network queue [3], open queuing networks in heavy traffic [4], the Equations for batch inter-

arrival time [5], the Equation for individual arrivals to form a batch [6]. 

 
Fortunately, guidelines and standards provided by National Primary Health Care Development Agency 

(NPHCDA), National Emergency Management Agency (NEMA) or non-federal health organizations do exist to 

aid planners of the clinics in their work. Moreover, In order to design the best policy of managing the clinics and 
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give the personnel training under real working conditions, local governments sometimes run full-scale disaster 

simulations. During these exercises, the performance measures recorded there were used to build a computer 

simulation model and construct the several pieces of software and spreadsheets. These software packages along 

with their related tools are basically constructed based on the employment of statistics and operations research 

discipline called queuing theory which is mainly used to approximate the performance of the queuing networks 

like what we did in this paper as dispensing and vaccination clinics for polio reduction or eradication if possible. 

Since there is plenty of room for improvement in the currently available software tools, particularly with regard to 

their ability to adapt their models to a particular situation, the role of queuing network theory in updating the 

existing models as well as introducing the new queue approximations by utilizing more exact approaches is 

undeniable.  

 

2.1 Queuing Theory in general 
 
Queuing theory is generally considered a branch of operations research, and it is simply the science of waiting. 

Since jobs “stand in line” while waiting to be processed, waiting to move, waiting for parts, and so on. Queuing 

theory is a powerful tool for studying and modeling any system having a queue inside such as manufacturing, 

transportation, and telecommunication system.  

 

The theory enables mathematical analysis of several related processes, including arriving at the queue (arrival or 

input process), waiting in the queue (waiting process) and being served at the workstations (service process). 

Each workstation consists of units which provide service to the arriving entities such as jobs or customers. 

These units are usually called servers and can be either people or machines. A queuing system combines the 

components that have been considered so far: an arrival (input) process, a queue, and a service process. For the 

arrival process, in most cases, the arrival process is the product of external factors. Therefore, the best way, one 

can do is to describe the arrival process in terms of random variables which can represent either the number of 

arrivals during a time interval or the time interval between successive arrivals. For a queue, the possible queuing 

discipline can be First-In First-Out (FIFO), Last-In First Out (LIFO), Highest Priority In First Out (HPIFO), 

Shortest Process Time (SPT), Earliest Due Date (EDD), or any of a host of priority schemes. In many situations 

customers in some cases get priority in service over others. 

 

3 Methodology 

 
As part of developing and testing the queuing models, we will use simulation discrete-event models of queuing 

systems in various ways such as validation and experimentation. Discrete-event simulation models carried out in 

this study were all created by Rockwell Software’s Arena 7.0 ® is a simulation software available on 

https://www.rockwellautomation.com. 

 

One of the most important performance characteristics that queuing theory is used to describe is the time a 

customer or job spends waiting to find an idle server. To cover all of the cases, we have to find an 

approximation that satisfy the cases with general arrival and process distribution in which we have multiple 

servers working in parallel to serve several customers at once. [7] proposed an approximation for this queuing 

time for G/G/m, with   representing the number of servers, given in Equation 1 below. Moreover,   
  and   

  

respectively represent inter-arrival time and service time variability (SCV) when m=1, this equation reduces to 

G/G/1 approximation. The G/G/m approximation for queuing time is:  

 

     (
  
    

 

 
)
        

      
  …………………………………………………………………...……. (1) [7] 

 

To analyze batch arrivals, we study queuing systems in which customers arrive at a station in batches but are 

processed as individuals. There are two ways of handling them. The first method of un-batching is to treat them 

as individuals arriving in a process with an extremely high SCV; the arrival variability of individuals out of a 

batch is given below,  

 

   
  =      

 
+       ………………………………………………………………..……….…. (2) [5] 

 

Where the processing time SCV is     
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To explain Wait in Batch Time WIBT more, since there are k items in the batch, the items have different delays 

while awaiting their turn at service. The first item served from a batch has no additional delay due to waiting for 

others from the same batch, while the second item serviced waits for the first item; the third item waits for the 

first two selected items, and so on. 

 

     =  
    
   

  
 

 

 
 

 

   
     ……….……………………………………………………………….....… (3) 

 

 WIBT = 
      

 
 …………………….……………………………………………………………….… (4) 

 

These Equations are for a queuing system with a fixed size arrival batch size and a single server with individual 

service process (G/G/1). 

 

The approximation for WIBT must be adjusted to accommodate a station with multiple servers, again by scaling 

the mean service time. 

 

      (
  
    

 

 
)
        

       
  …………………………………..……………………...……………...…. (5)  

 

     
      

  
……………………………………………………..……………………………….… (6) 

 

To demonstrate the accuracy of this approximation, it is compared to an equivalent simulation model. The 

results of the simulation for confidence interval 95% are given in Table 1, along with the values obtained using 

the new approximation for both portions of the waiting time. The magnitude of error between the two is given as 

a percentage of the simulation value which Arena calculated for each of the performance measures. 

 

3.1 Complete Queuing Modeling Framework for the Clinics 

 

The throughput required to treat the population in the given time is    
 

     
 . If residents arrive individually, 

the user specifies the arrival variability   
 . Else, the individual resident arrival variability is given as    

  
       

 

All arriving residents go to the first station. We calculate the arrival rates for the other stations based on the 

routing probabilities: 

 

   =  
         

               
   

  

 

At each station after the first, we calculate arrival batch size based on the process batch size of the previous 

stations: 

 

    =  
         

   
     

 

   
         

  

 

We use station arrival rates to determine the minimum staff at each station: 

 

       
    

   
 

 

We then use user-selected staff levels    to calculate station utilization: 

 

    = 
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We calculate the variability of arrivals, processes, and departures from each station: 

 

    
  =       

           
     

  

   
    

 

    
   

  
 

  
  

 

    
                  

   
   

 

  
    

  
 

   
    

      

 

The average time spent waiting at station i depends upon the arrival and process batch sizes; denotes time 

waiting for service, while       represents time waiting in arrival batches and       represents time waiting 

to form a process batch. 

 

         
     

 

   
     

 

        
   
     

 

 
   

 
 
        

        
  

  

  
                   ………………………..………….…… (7) 

 

        

   
 

  
    

 

 
  

 
 
        

      
  

  

  
                  …………………..…………………...... (8) 

 

        
    

   
………………………………………………………………………..……………… (9) 

 

        
          

   
 ………………………………………………………………….………………. (10) 

 

The average time spent traveling to the next station after station i depend upon the routing probabilities and the 

average walking speed: 

 

      
 

   
       
   
      

 

The cycle time at station i is 

 

     =                  

 

We weight the station cycle times by their arrival rates to calculate the total average time in clinic: 

 

 CT = 
 

  
      
 
    

 

Other statistics we calculate include clinic capacity, the average queue length at each station, and the average 

clinic WIP: 

 

 R =             
    

    
  

  

WIP =       

            
 

3.2 The new Approach to WIBT and the Equations 

 
As an important point, we should say that the Equation extracted in this section is applicable for the scenarios in 

which the arrival batch sizes is larger than the number of servers.  
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We will use the following notation: 

  

   = Number of staff at station i 

   = Mean process time at station i (minutes) 

    = Batch arrival rate at station i (batches per minute) 

     = Average batch size of all batches that come to station i 

   = Utilization at station i 

      = Steady-state probability of having n residents in station i. 

   = Steady-state probability of all of the servers at station i being busy 

Xi = Average number of residents that wait in the batch at station i. 

WIBTi =Average wait in batch time at station i (minutes) 

 

We can estimate the wait-in-batch-time for multiple servers by referring to the previous equations as follows: 

 

        
          

   
 …………………………………………………………….….………………….. (11) 

 

As we will see, this is not a good approximation, so we will derive a new Equation for the wait-in-batch-time. 

To do so, we start by calculating the following terms: 

 

   
         

  
  

  

            
    

       
    
     

 

It will be useful to note the following 

 

            
    
         

 
    

               

 

If, when the batch arrives, the number of residents, who are already in the system, is greater than or equal to the 

number of servers, all of the servers are busy, so the batch waits in the queue. Eventually, the batch is at the 

head of the queue and one of the servers completes a resident. Then the batch opens, one resident begins service 

without waiting in batch, and all of the others wait in the batch. If, when the batch arrives, the number of 

residents, who are already in the system, is less than the number of servers, one or more servers are idle, so the 

batch opens and one or more residents begin service immediately. From this we estimate    as follows:  

 

                                     
 
    

    
    =                            

=                
 

Thus         residents go to server immediately. For them, WIBT is equal to zero. 

 

Assuming that the servers, when busy, complete a resident every 
  

  
 minute, the first resident of those remaining 

must wait-in-batches for 
  

  
 minutes. The second waits for 

   

  
 minutes, and so forth. The last resident in the batch 

waits for 
    

  
 minutes. Then we can estimate the average wait-in-batch-time as follows: 

 

      
 

    
 

   

  

  
    

        

     

  

  
 = 

                                    

     

  

  
 ……………………… (12) 

 

 It is obvious that in addition to batch size  , number of servers   and at a given time   as shown by [6]. The 

above Equation considers other parameters like station utilization    and the steady state probability that all the 

servers are busy    at a given time and this will give a good result as will be applied to our clinic model. 

 

To obtain the relationship between           we estimate    Following Shore [8] and dropping the station 

subscript for the moment, we let       be the mean number of customers in the system and       be the mean 

number of customers in the corresponding GI/G/1 queue having the same traffic intensity. 
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 …………….......……………………………………………… (13)  

 

            
  
 

    
  
   
     

 

 
 …………………………...…...………....………………………… (14) 

 

Shore [8] shows that                              
 

From this, we extract     
 

        
 . Since this is not affected by the arrival variability, we will use this result 

for our batch arrival case. Going back to the original notation, we have  

 

    
 

        
 …………………………….………………………………………………………. (15) 

 

4 Results and Discussion 

 
Table 1. Experiment with exponentially distributed process times 

 

Scenarios Batch Size Mean Inter-arrival  

Time (mins) 

Mean Processing 

Time(mins) 

Number Of 

servers 

E-5-1-99 

E-5-1-95 

E-5-1-90 

E-5-1-80 

E-5-1-50 

5 

5 

5 

5 

5 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.0333 

0.0333 

0.0333 

0.0333 

0.0333 

1 

1 

1 

1 

1 

E-5-3-99 

E-5-3-95 

E-5-3-90 

E-5-3-80 

E-5-3-50 

5 

5 

5 

5 

5 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

3 

3 

3 

3 

3 

 

Table 2. Result for experiment with exponentially distributed process times 

 

Scenario WIBT from 

simulation 

(mins) 

WIBT from 

Equation (11) 

(mins)  

Relative error,  

Equation (11) 

WIBT from 

Equation (12)  

(mins)  

Relative error, 
Equation (12) 
 

E-5-1-99 

E-5-1-95 

E-5-1-90 

E-5-1-80 

E-5-1-50 

0.0667 

0.0667 

0.0667 

0.0667 

0.0667 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

0.050% 
0.050% 
0.050% 
0.050% 
0.050% 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

0.050% 
0.050% 
0.050% 
0.050% 
0.050% 

E-5-3-99 

E-5-3-95 

E-5-3-90 

E-5-3-80 

E-5-3-50 

0.0660 

0.0660 

0.0600 

0.0600 

0.0480 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

1.010% 
1.010% 
11.111% 
11.111% 
38.889%  

0.0663  

0.0649  

0.0630  

0.0590  

0.0453  

0.475% 

1.720% 
4.959% 
1.748% 
5.717% 

 

Table 3. Experiment with gamma distribution process times and 1 server 

 
Scenarios Batch Size Mean Inter-arrival 

Time (mins) 

Mean Processing 

Time (mins) 

Number Of 

servers 

G-5-1-99 

G-5-1-95 

G-5-1-90 

G-5-1-80 

G-5-1-50 

5 

5 

5 

5 

5 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.3333 

0.3333 

0.3333 

0.3333 

0.3333 

1 

1 

1 

1 

1 
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Scenarios Batch Size Mean Inter-arrival 

Time (mins) 

Mean Processing 

Time (mins) 

Number Of 

servers 

G-20-1-99 

G-20-1-95 

G-20-1-90 

G-20-1-80 

G-20-1-50 

20 

20 

20 

20 

20 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.0083 

0.0083 

0.0083 

0.0083 

0.0083 

1 

1 

1 

1 

1 

 

Table 4. Result for experiment with gamma distribution process times and 1 server 

 
 Scenario WIBT 

From 

Simulation 

(Mins) 

WIBT  

From  

Equation 11  

(Mins)  

Relative 
Error 
Equation 

11 

WIBT  

From  

Equation 12 (Mins) 

Relative 
Error 
Equation 12 

G-5-1-99 

G-5-1-95 

G-5-1-90 

G-5-1-80 

G-5-1-50 

0.0665 

0.0665 

0.0665 

0.0665 

0.0665 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

0.251% 
0.251% 
0.251% 
0.251% 
0.251% 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

0.251% 
0.251% 
0.251% 
0.251% 
0.251% 

G-20-1-99 

G-20-1-95 

G-20-1-90 

G-20-1-80 

G-20-1-50 

0.0790 

0.0790 

0.0790 

0.0790 

0.0790 

0.0792  

0.0792  

0.0792  

0.0792  

0.0792  

0.211% 
0.211% 
0.211% 
0.211% 
0.211% 

0.0792  

0.0792  

0.0792  

0.0792  

0.0792  

0.211% 
0.211% 
0.211% 
0.211% 
0.211% 

 

Table 5. Experiment with gamma distribution process times and 3 server 

 

Scenarios Batch Size Mean Inter-arrival 

Time (mins) 

Mean Processing 

Time(mins) 

Number Of 

servers 

G-5-3-99 

G-5-3-95 

G-5-3-90 

G-5-3-80 

G-5-3-50 

5 

5 

5 

5 

5 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

3 

3 

3 

3 

3 

G-20-3-99 

G-20-3-95 

G-20-3-90 

G-20-3-80 

G-20-3-50 

20 

20 

20 

20 

20 

0.1684 

0.1754 

0.1852 

0.2083 

0.3333 

0.0250 

0.0250 

0.0250 

0.0250 

0.0250 

3 

3 

3 

3 

3 

 

Table 6. Result for experiment with gamma distribution process times and 3 server 

 

 Scenario WIBT 

From 

Simulation 

(Mins) 

WIBT  

From  

Equation 11  

(Mins) 

Relative 
Error 
Equation 11 

WIBT  

From  

Equation 12  

(Mins) 

Relative 
Error 
Equation 12 
 

G-5-3-99 

G-5-3-95 

G-5-3-90 

G-5-3-80 

G-5-3-50 

0.0660 

0.0643 

0.0621 

0.0576 

0.0429 

0.0667  

0.0667  

0.0667  

0.0667  

0.0667  

1.010% 
3.681% 
7.354% 
15.741% 
55.400% 

0.0663  

0.0649  

0.0630  

0.0590  

0.0453  

0.475% 

0.878% 
1.409% 
2.346% 
5.491% 

G-20-3-99 

G-20-3-95 

G-20-3-90 

G-20-3-80 

G-20-3-50 

0.0787 

0.0779 

0.0770 

0.0750 

0.0688 

0.0792  

0.0792  

0.0792  

0.0792  

0.0792  

15.068% 
5.556% 
2.814% 
1.626% 
0.593% 

0.0729  

0.0729  

0.0729  

0.0729  

0.0729  

5.956% 
2.803% 
5.328% 
6.422% 
7.373% 
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From the simulation model we could calculate the average wait-in-batch-time of residents. We also used 

Equation 11 and Equation 12 to estimate the average wait-in-batch-time. Tables 3, 5, and 7 show the respective 

results of each scenario in Tables 2, 4 and 6. The table lists the average wait-in-batch-time from the simulation 

model, the estimate from Equation 11, and the estimate from Equation 12. Also listed are the relative errors for 

the estimates. We see that Equation 12 provides a much better estimate than Equation 11 when compared to the 

simulation result. 

 

4.1 Result tables for clinic performance measures 

 
The clinic capacity is determined by bounds set by each station’s capacity and the relative arrival rates: 

R=             
      

    
  Because of the stochastic routing, the clinic’s total cycle time is a weighted sum of the 

station cycle times: TCT=
 

  
      
 
    

 

The average number of residents in the clinic follows from Little’s Law: WIP=      

 

Table 7. Capacity for mass dispensing and vaccination clinic station 

 

Work Station Station Capacity 

(Residents/min) 

Relative throughput Bound on Clinic 

Capacity Residents/min) 

Triage 19.293 1.000 19.293 

Symptoms Room 2.473 0.048 51.849 

Holding Room 0.789 0.032 24.905 

Registration 65.844 0.973 67.659 

Education 10.000 0.973 10.276 

Screening  5.219 0.973 5.363 

Consultation 1.592 0.255 6.249 

Vaccination 4.908 0.958 5.123 

  

Table 8. Comparison of total cycle time for the clinic 

 

Scenario Arrival rate to 

the clinic 

(residents/min) 

Total cycle time 

from simulation 

Total cycle time 

from clinic 

mathematical 

model and formula 

Percentage 

error % 

1 10.00 16.65 16.78 0.79% 

2 9.09 11.96 12.83 7.30% 

3 8.00 10.26 9.80 4.48% 

4 6.67 9.34 9.17 2.32% 

5 5.00 8.76 8.67 1.07% 

6 3.33 8.50 8.42 0.95% 

7 2.50 8.41 8.34 0.84% 

8 2.00 8.37 8.30 0.91% 

 

5 Conclusion 

 
The overall goal of this study has been to provide public health emergency preparedness and response planners 

with mathematical models that can help them to estimate the important performance measures such as total 

waiting or cycle time in the mass dispensing and vaccination clinic. With this information, planners become 

better informed when they have to make decisions regarding staff placement, POD layout, and other relevant 

concerns. Hence the reduction of polio or complete eradication if possible will cease to be a herculean task. 
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