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Abstract
Machine learning interatomic potentials (MLIPs) are routinely used atomic simulations, but
generating databases of atomic configurations used in fitting these models is a laborious process,
requiring significant computational and human effort. A computationally efficient method is
presented to generate databases of atomic configurations that contain optimal information on the
small-displacement regime of the potential energy surface of bulk crystalline matter. Utilising
non-diagonal supercell (Lloyd-Williams and Monserrat 2015 Phys. Rev. B 92 184301), an
automatic process is suggested for ab initio data generation. MLIPs were fitted for Al, W, Mg and Si,
which very closely reproduce the ab initio phonon and elastic properties. The protocol can be easily
adapted to other materials and can be inserted in the workflow of any flavour of MLIP generation.

1. Introduction

Modern approaches to material discovery and characterisation include the use of ab initiomodelling. While
well-established methods, such as density functional theory (DFT), reliably predict the electronic, mechanic
and thermodynamic properties of materials [1, 2], most of these techniques are limited by the fact that
computational effort scales asO(N3) or worse with the number of atoms (N). Although linear scaling
implementations of DFT exist [3, 4], large prefactors prevent efficient sampling of atomic configurations,
which are required, for example, to compute thermodynamic averages. In the past decade, data driven
approaches emerged as possible solutions to realise ab initio accuracy at an affordable computational cost,
even at large length and time scales [5, 6]. Surrogate models of the Born–Oppenheimer potential energy
surface (PES) can be generated in the form of (MLIPs) [7–10]. These are based on non-linear,
non-parametric regression of the PES, fitted using databases of atomic configuration and their associated ab
initio total energies and derivatives. Exploiting locality, or the nearsightedness of quantum mechanics [11],
fitting can be performed on configurations containing relatively few atoms, therefore keeping the
computational cost of generating the database affordable, while the resulting MLIP may be used in extended
systems. Machine learning techniques in atomic modelling have evolved into a mature field, with a broad
range of methods present, such as Schnet [12], MTP [13], ACE [14], NN [15], PhysNet [16] and Gaussian
approximation potential (GAP)[17], among others. While the underlying principles of MLIPs can vary
significantly, they all rely on carefully built databases that contain atomic configurations representative of a
wide range of atomic environment that are relevant to the intended purpose of the model.

Creating such databases of atomic configurations are time consuming, both in terms of human and
computational effort. Even though automated approaches, such as active learning [18, 19] can eliminate
human intervention to a large extent, ‘hand-crafting’ parts of the database is often necessary to include
specific configurations, such as various known crystalline polymorphs, defects or surfaces. Accurate
modelling of the elastic and vibrational properties of bulk crystals is crucial in numerous applications, such
as the finite temperature stability of different phases or defect formation energies. To provide targeted fitting
data for the phonon spectrum, samples from molecular dynamics calculations [20] or specifically perturbed
configurations [21] are employed routinely. In this work, we suggest a highly efficient approach based on
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non-diagonal supercells (NDSCs) introduced by Lloyd-Williams and Monserrat [22], which can be used to
automatically generate small atomic configurations that contain optimal information to fit the PES in the
small-displacement regime. As ab initio calculations only need to be performed on configurations containing
only a handful of atoms each, data generation is efficient. We used the GAP framework [23] to fit MLIPs of
bulk crystals of metallic and semiconducting elements representing different crystal structures. In our
benchmarks, we obtained highly accurate phonon dispersions and elastic properties when comparing to the
underlying DFT model.

2. Background

2.1. Gaussian approximation potential
The machine learned potential framework we use is GAP [8], although we emphasise that the database
generation workflow is easily transferable to other approaches. GAP can be formulated as a kernel based
method that predicts the total energy of a given configuration X= {R1,R2, . . .RI} as:

E(X) =
I∑
i

M∑
s

αsK(Ri,Rs) (1)

whereR represents an atomic environment, s is a summation over a set ofM representative environments,
each associated with a weight αs. The kernel function, K(R,R ′), may be regarded as a similarity measure
between two atomic environmentsR andR ′. In this work, we describe atomic environments using the
Smooth Overlap of Atomic Positions (SOAP)[24, 25] descriptor, where a given atomic neighbourhood
environment is initially characterised as a density:

ρi(r) =
∑
i ′

fcut(rii ′)e
−|r−rii ′ |

2/2σ2
atom (2)

where a Gaussian with a width of σatom is centred on each atom up to a specified cutoff radius, whereby
beyond this cutoff, f cut smoothly goes to zero. This density is then expressed in terms of radial and spherical
harmonics basis functions

ρi(r) =
∑
nlm

cinlmYlm(r̂)gn(r)

which are defined up to a specified complexity controlled by nmax and lmax andm=−l,−l+ 1, . . . l.
Rotationally invariant features are constructed from the power spectrum elements as

p̃i ≡
l∑

m=−l

ci∗nlmc
i
n′lm

which are normalised

pi = p̃i/|p̃i|.

Finally, we obtain an expression for our covariance evaluation between atomic neighbourhoods as

K(R,R ′) = δ2(p · p ′)ζ (3)

where δ and ζ are hyperparameters that control the energy scaling of the descriptor and smoothness of the
kernel, respectively.

To obtain the weights αs, we minimise the loss function

L=
N∑

n=1

[yn − ỹn]2

σ2
n

+
M∑
s,s ′

αsK(Rs,Rs ′)αs ′ (4)

where the quantity y can be the one of total energy, force or stress value of an atomic configuration, and σn is
a hyperparameter, related to the weight or importance of each data point. yn represents the reference ab initio
values, whereas ỹn is the GAP prediction of the total energy using equation (1) or the appropriate derivatives,
with respect to atomic coordinates or lattice deformations. This definition allows us to fit using the total
energy observations, as well as the forces on atoms and the virial stress for each configuration. The second
term in the loss function acts as a regulariser.
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In algebraic form, the minimisation of this loss function with respect to α yields

α= (KMM +KMNΣ
−1KNM)

−1KMNΣ
−1y

whereΣ contains a diagonal matrix containing the values of σn and y= [y1, . . . ,yN]. The kernel matrices K
contain all pairwise evaluations of kernel functions between atomic environments, whereM denotes the
representative set, and N refers to the reference database of atomic configurations.

2.2. Non-diagonal supercells
For an interatomic potential model to represent the PES near a stationary point, which in our case is the
perfect bulk crystal, it needs to reproduce the force constant matrix (FCM) of an extended system, formulated
as the Hessian of the Born–Oppenheimer total energy E with respect to Cartesian atomic coordinates

Φiαjβ =
∂2E

∂riα∂rjβ

where i, j denote atomic indices, and α, β represent Cartesian directions. Under the harmonic
approximation, the total energy is expressed as a Taylor expansion with terms higher than second order
truncated. Most MLIP approaches rely on the assumption of locality of the atomic interactions, i.e. for any
small number ε> 0 there exist an rcut such that all Φiαjβ < ε for |ri − rj|> rcut, corresponding to a truncated
FCM. It should be noted that MLIP frameworks can be extended to represent long-range, such as
Coulombic, interactions, but our current discussion is limited to the short-range term representing local,
i.e. covalent or metallic, bonding.

It is customary to express the elements of the FCM such that they are indexed by labels of the basis atoms
i and j within their primitive unit cells, and the displacement vector Rp that translates the two primitive unit
cells into each other:

Φiαjβ(Rp)≡ Φiαj′β

such that rj ′ = Rp + rj. Fitting MLIPs is ultimately data driven, therefore atomic configurations should
ideally contain information on as many elements of the truncated FCM as possible. As fitting data is most
commonly provided as atomic configurations with the corresponding ab initio total energies, forces, and
stresses, supercells capable of accommodating perturbations of distant atom pairs are highly desirable. A
common approach is to use supercells generated such that their shape is as closely cubic as possible, as an
attempt to include atom pairs isotropically. The lattice vectors as, bs, and cs of a supercell s are related to the
unit cell lattice vectors au, bu, and cu asas

bs
cs

=

S11 S12 S13
S21 S22 S23
S31 S32 S33

au
bu
cu


where elements of the supercell matrix Sij ∈ Z, and for a diagonal supercell (DSC) Sij = Siδij with Si ∈ Z+.
For example, generating DSC of the cubic unit cell of fcc or bcc crystals, or in case of hexagonal crystals,
using the orthorhombic unit cell is a convenient choice, as the unit cell lattice vectors are orthogonal.

Atoms need to be displaced in the supercell before computing the ab initio total energy and its
derivatives. George et al [21] suggested using randomly perturbed atomic coordinates as well as the
displacement of a single atom in the supercell. Randomising displacements with a certain amplitude is
expected to result in force observations that are dominated by terms containing the largest elements of the
FCM, as the α component of force of atom imay be approximated as

fiα ≈−
∑
jβ

Φiαjβ(rjβ − rjβ,0) (5)

where rj,0 denotes the equilibrium position of atom j in the supercell. Since fitting of MLIPs assumes some
degree of uncertainty on each observation as described in section 2.1, such dominance may have detrimental
effect on the quality of the fit as small contributions will be indistinguishable from noise. More terms in
equation (5), corresponding to larger supercells, is expected to aggravate the situation, leading to poor fit of
small elements of the FCM. Alternatively, the displacement of a single atom along a Cartesian direction
results in the resolution of each individual element of the FCM, but such configurations contain highly
correlated atomic environments and cannot be regarded as realistic examples of configurations sampled
from finite temperature simulations. Samples from finite temperature simulations, such as molecular
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dynamics, are an optimal solution, but only if the sampling uses a sufficiently similar PES to that of the ab
initiomodel, otherwise the configurations will be practically equivalent to those generated by randomisation.
The computational cost of the ab initio reference calculations when using DSC scales as (S1 S2 S3)3 if using
plane-wave DFT, therefore the size of the supercell, and the representable elements of the FCM is severely
limited.

Lloyd-Williams and Monserrat [22] demonstrated that perturbations that require a DSC constituting
S1 × S2 × S3 primitive cells, may be represented by a NDSC with no more than the least common multiple of
S1, S2, and S3 number of primitive cells. Lloyd-Williams and Monserrat suggested this method to sample the
vibrational modes in the Brillouin zone (BZ) of a crystal uniformly on an N×N×N grid. When computing
the FCM using finite differences, DSC of the size N×N×N are needed, whereas if using NDSCs, only
supercells of size up to N are required. Even though more NDSCs have to be typically considered, each
individual calculation incurs significantly less computational cost, while the process can benefit from trivial
parallelisation. Overall, significant reductions in the computational cost associated with ab initio phonon
dispersion calculations can be realised, and also allows one to consider more dense sampling of the BZ.

2.3. Phonon dispersion
With the force constants determined under the harmonic approximation, one method for finding the
frequency of the allowed vibrational modes q ∈ BZ is done via finding the eigenvalues of the dynamical
matrix D(q) whose elements are obtained via Fourier-transforming the mass-weighted FCM as

Diαjβ(q) =
1

√
mimj

∑
Rp

Φiαjβ(Rp)e
−iq·Rp (6)

wheremi andmj are the masses of atoms i and j. The square root of the eigenvalues at each q vector are the
phonon frequencies. Negative eigenvalues result in imaginary frequencies, corresponding to dynamically
unstable modes, along which displacements result in lowering the energy. As customary, we represent such
imaginary frequencies as negative numbers on our phonon dispersion plots.

3. Methodology

3.1. Density functional theory calculations
The underlying ab initio calculations that were used to train the interatomic potentials as well as benchmark
them was preformed using the plane-wave DFT code, CASTEP[26]. On-the-fly ultrasoft pseudopotentials
[27] were generated for Mg, Al, Si, and W with the respective valence electronic structure: 2 s22p63 s2, 3
s23p1, 3 s23p2, and 5 s25p64f146 s25d4. In all instances a generalized gradient approximation [28]
exchange-correlation functional was used. The plane-wave energy cutoff (Ecut), density of the electronic BZ
sampling of a Monkhorst-Pack grid [29] (k-spacing) and the self-consistent field energy tolerance for
convergence was set for each system to find a converged result on the total energy and derivative quantities.
Geometry optimisations were then performed for all systems to find the relaxed lattice parameters for a given
fixed crystal symmetry. The specific DFT parameter set and primitive cell information found from the
geometry optimisations are presented in table 1.

The elements of the FCM for the phonon dispersion calculations at the ab initio level were determined
using the finite difference method [30] as implemented in CASTEP, corresponding to a 4× 4 × 4 grid in the
BZ. A displacement of 0.05 Å from the ideal lattice site was used, and phonon dispersion curves were
computed along high symmetry lines using Fourier interpolation.

3.2. Database generation
Our aim is to investigate a protocol that produces database configurations targeted to fit vibrational
properties of crystalline materials in a computationally optimal way. We suggest basing the workflow on
NDSCs, which can represent long-range perturbation of crystalline order using the configurations that
contain the fewest possible atoms.

To construct a database that can explores displacements around the pristine crystal geometry
corresponding to an N×N×N supercell of the primitive unit cell, we generated NDSCs using the FORTRAN
90 program by Lloyd-Williams and Monserrat [22] which contain supercells formed of up to N primitive
unit cells, where those cells related by symmetry are already eliminated. The NDSC configurations therefore
contain information about the vibrational modes corresponding to a N×N×N phonon q-vector grid. In
addition, we introduced deformation of the cells by homogeneous scaling of the cell vectors to capture
isotropic compression and expansion. To capture the response of atoms displaced from ideal lattice sites
within the different NDSC configurations, copies were made where atoms were randomly displaced via a
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Table 1. DFT parameter set (planewave cutoff energy, spacing of the k-point sampling of the BZ and tolerance of the self-consistent
iterations) used to perform ab initio data generation and benchmark comparison and the geometry optimised lattice information for
each system.

Mg Al Si W

DFT:
Ecut (eV) 520 800 400 600
k-spacing (Å−1) 0.012 0.010 0.030 0.015
SCF tol. (eV) 10−11 10−11 10−11 10−10

Lattice:
Structure hcp fcc dia. bcc
a (Å) 3.198 2.856 3.867 2.756
c (Å) 5.179 — — —

Table 2. GAP hyperparameter set for each system, and associated data used for training. Virial stresses (Nvirial = 6Nenergy) and atomic
forces (Nforce = 3Natoms) was also included on all configurations. Primitive cell vectors from a geometry optimisation using each
potential are also presented.

Mg Al Si W

GAP:
rcut (Å) 8.0 10.0 6.0 6.0
nmax 8 10 8 8
lmax 6 8 6 6
σatom (Å) 0.5 0.5 0.5 0.5
Regularisation:
∆F 10−2 10−2 10−2 10−2

σmin
F (eVÅ−1) 10−3 10−3 10−3 10−3

∆V 10−2 5× 10−3 10−2 10−2

σmin
V (eV) 10−3 5× 10−4 10−3 10−3

Amount of Data:
Natoms 4276 1683 3300 1550
Nenergy 1004 850 936 836
Lattice
Structure hcp fcc dia. bcc
a (Å) 3.194 2.856 3.867 2.757
c (Å) 5.181 — — —

normal distribution with standard deviation of 0.10 Å. Finally, to inform the fitting procedure on how the
PES responds to anisotropic cell deformations, random shearing was applied on the NDSC configurations.
The lattice vectors, contained in L were transformed by a symmetrical strain matrix, ε, as:

Lrand. = (I+ ϵ)L

where I is the identity matrix and each entry of the strain matrix is sample from a uniform distribution,
ϵij ∼ U(−0.01,0.01), such that ε is symmetric.

To investigate the transferability of the proposed workflow for database generation using NDSC, four
different crystal structures were considered: hexagonal close-packed (hcp) Mg, diamond (dia) Si,
body-centred cubic (bcc) W and face-centred cubic (fcc) Al. The NDSCs were generated were commensurate
with a 4 × 4 × 4 grid sampling of the vibrational BZ of the relaxed primitive cell of each system. All
configuration manipulations were done through the Atomic Simulation Environment [31].

3.3. FittingMLIPs
We used the GAP framework to generate MLIPs, but we stress that any other similar fitting approaches
would benefit equally. For all models presented here we select 1400 sparse points through a CUR
decomposition [32] and set δ = 2eV and ζ = 4. Further GAP hyperparameters and details on the training
data set are specified in table 2. For the Al Bain path model developed, additional data was included to
capture the bcc phase and the half-way point on the Bain path as described by equation (7). This GAP was
trained on 3751 atomic environments, for a total of 1455 target energies, using 1400 sparse points selected
via CUR decomposition. For the minimal data case on fcc Al, 74 atomic environments (24 target energies)
constituted the training set for the NDSC model, whereas 65 atomic environments (2 target energies) were
considered for the DSC model. In the minimal data GAP for fcc Al, both the NDSC and DSC contained the
geometry optimised primitive cell.
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Based on the work of George et al [21], we employed adaptive regularisation, via adjusting the
hyperparameter σ as described by the loss function in equation (4). In addition to scaling σ corresponding to
force components of the data, we implemented a similar adjustment algorithm for virial stress components.
Throughout this work we use a constant regularisation on the total energy predictions while the element wise
viral regularisation and component wise force regularisation are implemented as

σn

energy 0.001 eV
force ∆F|Fi| if∆F|Fi|> σmin

F

σmin
F else

virial ∆V|Vαβ | if∆V|Vαβ |> σmin
V

σmin
V else

introducing σmin to define a minimum value for the regularisation and∆ to scale the value for each
component of the corresponding quantity. The choice of regularisation parameters are summarised in
table 2.

The FCM elements of the developed MLIPs were calculated using the finite difference method [30] using
the phonopy package [33]. We calculated phonon frequencies along the high symmetry lines suggested by
Setyavan and Curtarolo [34], and determined the phonon density of states based on a 40× 40× 40q-vector
grid.

4. Results

Having fitted a series of GAP models for W, Al, Si and Mg using databases consisting of NDSC
configurations, we evaluated the accuracy of each model by comparing its vibrational and elastic properties
to DFT values. Our reference DFT calculations show good agreement with the literature [21, 33, 39–42].
Overall, we find that all fitted models show excellent performance in our benchmarks. The summary of
geometric and elastic parameters predicted by the GAP models, and comparisons to DFT results is presented
in table 3. Excellent agreement with DFT may be observed across all our test systems, with the root mean
squared error (RMSE) on phonon modes below 0.5 THz.

We fitted a reduced model for Si that only contained the primitive unit cell configurations, in order to
study the role of different elements of the database. Tabulated results in table 3 show excellent agreement of
elastic constants for both models. As the elastic moduli are related to the slope of the acoustic phonon modes
near the Γ-point [43], portions of the dispersion of phonon modes are also in good agreement for the
minimal model, as shown in figure 1. However, at phonon modes corresponding to intermediate
wavelengths the agreement for the minimal model is poor, confirming that deformed unit cells provide
information to the GAP fitting about the elastic behaviour of a given material, but larger supercells are
required to inform the fitting procedure on the full FCM. Indeed, adding NDSC configurations to the
database, we recover the phonon dispersion across the BZ accurately.

The GAP model reproduces the elastic and vibrational properties of bcc W and fcc Al to a great accuracy,
as shown in figure 2 and table 3. We note that for W the largest error compared to DFT in the phonon
frequencies is at the H point, together with a discrepancy in the curvature along the P−H direction. Since
the phonon mode at H corresponds to displacing oppositely the two atoms located on neighbouring corners
of the cubic cell, the corresponding elements of the FCM can be regarded as well represented in our database.

To illustrate the efficiency gains realised when using NDSC configurations in the training set, we compare
the phonon dispersion curves corresponding to two GAP models, constructed to emphasise the advantage of
using configurations consisting of fewer atoms. The two models were based on two separate databases, both
of which required the same amount of computational time to calculate the ab initio reference energies, forces
and virial stresses. To generate the first database, we used DSC of size commensurate with the desired q-point
sampling, where only a single atom is displaced from its ideal lattice site, as suggested by George et al [21].
The other database contained NDSC configurations generated using the workflow described in section 3.2,
such that the same amount of computational effort was needed to compute the ab initio data as for the DSC.
The comparison of the phonon dispersion of the two models is presented in figure 3.

The model fitted on NDSC configurations performs noticeably better, with phonon modes in close
agreement with the ab initio reference data. On the other hand, while the model fitted with DSCs captures
some of the phonon branches, it predicts unphysical dynamical instabilities in fcc Al. While models fitted
using databases based on DSC configurations are expected to achieve the accuracy of those based on NDSC
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Table 3. Comparison of elastic constant predictions for NDSC GAP developed for each system, the underlying DFT calculations and
experiment. GAP∗ refers to the reduced model in Si that does not contain NDSC configurations.

E.C B C11 C12 C13 C33 C44 C66

Mg
GAP 36.2 65.6 20.7 22.4 63.6 17.4 22.1
DFT 36.5 64.2 20.2 23.7 64.7 17.1 20.9
Expr [35]. 36.9 63.5 25.9 21.7 66.5 18.4 18.8
Al
GAP 77.5 109.2 61.7 — — 31.9 —
DFT 77.6 106.9 62.9 — — 33.3 —
Expr. [36] 82.0 116.3 64.8 — — 30.9 —
Si
GAP 88.6 152.4 56.7 — — 72.4 —
GAP∗ 89.7 155.8 56.7 — — 72.8 —
DFT 88.6 152.7 56.6 — — 73.3 —
Expr. [37] 99.1 167.5 64.9 — — 80.2 —
W
GAP 306.4 510.5 204.3 — — 136.9 —
DFT 306.3 512.8 203.0 — — 135.9 —
Expr. [38] 314.7 533.9 205.1 — — 163.3 —

Figure 1. Phonon dispersion and density of states calculations by GAPs trained using a minimal database only containing
deformed primitive unit cells (red) and the full database containing NDSC configurations (blue). Reference DFT values are
shown as black dashed lines.

configurations [20, 21, 40], the computational cost of plane-wave DFT calculations scales unfavourable for
the former strategy.

To establish how the performance and accuracy of our MLIP models benefit from increasing the amount
of training data, we fitted a series of GAP models for Al, using different size random subsets of the NDSC
data. We present our learning curves as a series of phonon dispersion diagrams in figure 4, showing two
approaches: (a) keeping the set of representative atomic environments (or sparse points, setM in
equation (1)) constant across the models, using the representative set selected from atomic environments in
the largest data set; (b) selecting representative atomic environments from each of the fitting subset. As
expected, increasing the data size leads to significant but diminishing improvements the accuracy of the
model, measured as RMSE of the predicted phonon dispersion against the ab initio benchmark. However, it
is interesting to observe that when the sparse points, which represent basis functions in the GAP framework,
are selected from atomic environments not necessarily present in the training configurations, the accuracy is
markedly improved even when using the same fitting targets. Therefore we suggest that GAP models may be
improved by adding atomic configurations that do not need ab initio data associated with them, in order to
increase the set of sparse points. The advantage of this approach is that significantly less computational effort
is needed to generate the expensive ab initio data and it is possible to make improvements without the need
to calculate additional target quantities at the DFT level.

We were also interested in studying how NDSC configurations may assist fitting the PES at stationary
points other than minima. Aluminium at ambient conditions is dynamically unstable in the body-centred
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Figure 2. GAP models trained using NDSC structures (blue) versus commensurate DFT (black dashed) phonon dispersion
calculations for bcc W (top panel) and fcc Al (bottom panel) with corresponding density of states.

Figure 3. GAPs for Al based on NDSC (blue line, 66.1 CPU hours) and diagonal supercell (red line, 60.1 CPU hours) data as
compared against underlying DFT (black dashed line) for a minimal amount of data.

cubic form, although at extreme pressures the bcc phase becomes energetically favourable [44]. We have
collected training configurations along the Bain path that connects the bcc and fcc phases of Al. The lattice
vectors of primitive unit cells were described as body-centred tetragonal,

L=

−a/2
a/2

c/2
a/2 −a/2

c/2
a/2

a/2 −c/2

 (7)

where the rows of L represent the cell vectors, and a and c change as

a= a0(1− η+ 2
1/3η)
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Figure 4. Left and right: Phonon dispersion curves of fcc Al GAP models (blue) compared to the DFT reference (black dashed).
The set of training configurations increases from the top to the bottom, with the number of training configurations (i.e. total
energy targets) displayed as blue bars (with numbers) on the centre panel. The orange bars represent the number of representative
(sparse) points, as selected from a CUR decomposition, in each of the GAP models, and the green bars show the RMSE of the
phonon frequencies in THz units.

Figure 5. GAP (blue) trained using NDSC structures compared to commensurate DFT (black dashed) phonon dispersion
calculations for in Al, where the lattice was transformed from the stable fcc structure (bottom) to the dynamically unstable bcc
structure (top) along the Bain path.

9
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Figure 6. Relative error of elastic constants of GAP models of Mg (blue), Al (orange), Si (green) and W (red) compared to DFT
results.

Figure 7. Errors of elastic constants of GAP models of Mg relative to DFT values in the hcp crystal structure. GAP models were
fitted using static force and virial regularisation (orange bars and figures) and adaptive force and virial regularisation (blue bars
and figures), as described in section 3.3.

c=
a0√

1− η+ 2
1/3η

with 0⩽ η ⩽ 1, such that the volume of the cell |detL| is conserved. With this definition, the cases η= 0 and
η= 1 correspond to the bcc and fcc lattices, respectively. We fitted a GAP model based on perturbed NDSC
configurations that were generated using primitive unit cells at η = 0,1/2and1. We benchmarked the phonon
dispersion curves obtained with our model considering intermediate η values, as shown in figure 5. We
found excellent agreement with DFT overall, with instabilities at the N-point reproduced highly accurately.

We have also included a non-cubic crystalline system, magnesium, in our benchmarks, whose ground
state structure at ambient condition is hexagonal close packed. Using NDSC configurations to train a GAP
model, we find excellent agreement between the GAP and the ab initio phonon dispersion curves.

While accurate phonon spectra on acoustic modes near the Γ-point indicate that the elastic properties of
the crystal are well represented [43], it is insightful to directly examine the numerical values of the elastic

10
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Figure 8. GAPs trained using NDSC (blue) with component-wise regularisation as informed by the force on each atom and virial
stress on each configuration compared to a model where the regularisation is set to a constant value (red line) as well as DFT
(black dashed) phonon dispersion curves.

constants of the MLIP models for additional benchmarking purposes. Table 3 and figure 6 summarise the
elastic moduli computed at the relaxed geometries both using DFT and the GAP models, showing excellent
agreement with up to 6% error.

We illustrate the effect of adaptive regularisation of individual virial stress components, introduced in
section 3.2, by comparing two Mg GAP models, one of which uses a static regularisation of 0.01 eV for each
virial component, while the other employing the adaptive scheme. As shown in figure 7, some of the elastic
constants are only reproduced to an error of up to 7%, while introducing the adaptive virial regularisation,
accuracy is significantly improved across all elastic constants without any deterioration of the quality of the
phonon dispersion curves depicted in figure 8.

5. Conclusions

In conclusion, we explored a computationally efficient approach using the NDSC method introduced by
Lloyd-Williams and Monserrat to generate database configurations for fitting MLIP models based on ab
initio data. We found that NDSC configurations provide sufficient data to fit MLIPs reproducing the FCM
near stationary points of bulk crystalline materials, while costing significantly less computational effort than
DSCs. We have also suggested an adaptive scheme to regularise virial stress components of ab initio databases
and demonstrated improvements of the elastic behaviour of MLIPs. The procedure described in this work
can be fully automated and integrated into existing database generating workflows, allowing to save
computational cost or include a greater variety of representative structures, realising savings on cost and
carbon emissions associated with high-performance computations, or improved quality MLIPs. While we
only used random perturbations of the atomic and lattice coordinates to sample out of equilibrium
configurations, the computational advantage of using NDSCs in the ab initio calculations still holds if other
sampling strategies, such as molecular dynamics, are used. We also envisage further use of NDSC
configurations in databases used to inform models for alloy materials, as an addition or alternative to semi
quasi-random structures, where the substitution of elemental species may be regarded as alchemical
perturbations.

6. Software and data availability

All ab initio training data and the scripts used to generate the configurations are made available in a
dedicated repository [45]. We used the QUIP software package with the GAP plugin [46], available under the
General Public License and the Academic Source License, respectively. The Atomic Simulation Environment
[47] was used to manipulate atomic configurations and we employed the phonopy package [48] to calculate
the phonon dispersion curves of the GAP models. Our workflow greatly benefited from using GNU
parallel[49].
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