
British Journal of Mathematics & Computer Science
4(5): 674-684, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Weak RIP and Its Application to Compressed Sensing

Hiroshi Inoue∗1

1Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan.

Original Research
Article

Received: 01 October 2013
Accepted: 14 November 2013
Published: 03 December 2013

Abstract
The first purpose of this paper is to give a sufficient condition under which A obeys the weak RIP
and to evaluate the solution of CS using this result. The second is to show that when an m × n
random matrix A satisfies the isotropy property: E

(
A{k}A

?
{k}
)

= I for every row vector A{k} of A,
Ã ≡ A√

m
always obeys the weak RIP with high probability and it is applicable to the CS theory.
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property, Sparse approximation, Sparse signal recovery, Weak restricted isometry property.

1 Introduction
This paper introduces the theory of compressed sensing (CS). CS theory asserts that one can recover
certain signals and images from only a few samples or measurements. Here, we consider

y = Ax, x ∈ Rn, (1.1)

where A is an m × n matrix. Our goal is to reconstruct x ∈ Rn with good accuracy. We are
interested in the ill-posed problem when m < n. It is known that when x is sparse, or approximately
sparse, and A obeys the restricted isometry property (RIP), one can accurately reconstruct x from
the measurements y = Ax. In fact, the solution x? to the optimization problem

min
x̃∈Rn

‖ x̃ ‖1 subject to y = Ax̃ (1.2)

recovers x exactly, where ‖ · ‖1 is the l1 norm. Furthermore, we extend this method to noisy recovery.
Suppose we observe

y = Ax + z, (1.3)
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where z is an unknown noise term. In this context, we consider reconstructing x as the solution x?

to the optimization problem

min
x̃∈Rn

‖ x̃ ‖1 subject to ‖ y −Ax̃ ‖2≤ ε, (1.4)

where ε is an upper bound on the size of the noisy contribution and ‖ · ‖2 is the l2 norm.

Definition 1.1. A matrix A satisfies the RIP of order s if there exists a constant δ with 0 < δ < 1
such that

(1− δ) ‖ a ‖22≤‖ Aa ‖22≤ (1 + δ) ‖ a ‖22 (1.5)

for all s-sparse vectors a. A vector is said to be s-sparse if it has at most s nonzero entries. The
minimum of the above constants δ is said to be the isometry constant of A and is denoted by δs.

The condition (1.5) is equivalent to requiring that the matrix ATSAS has all of its eigenvalues
in [1 − δs, 1 + δs], where AS is the m × |S| matrix composed of these columns for any subset S of
{1, 2, · · · , n}. Here |S| is number of elements of S. It has been shown that l1 optimization can recover
an unknown signal in noiseless case and noisy case under various sufficient conditions on δs or δ2s.
For example, E.J. Candès and T. Tao have proved that if δ2s <

√
2 − 1, then an unknown signal can

be recovered [[1]]. Later, S. Foucart and M. Lai have improved the bound to δ2s < 0.4531 [2]. Others,
δ2s < 0.4652 is used by [3], δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large by [4],
δ2s < 0.4734 for the case such that s is very large by [3] and δs < 0.307 by [4]. In a recent paper, Q.
Mo and S. Li have improved the sufficient condition to δ2s < 0.4931 for general case and δ2s < 0.6569
for the special case such that n ≤ 4s [5]. T. Cai and A. Zhang have improved the sufficient condition
to δs < 0.333 for general case [6]. T. Cai and A. Zhang have improved the sufficient condition to δk
in case of k ≤ 4

3
s, in particular δ2s < 0.707 [7]. Recently, H. Inoue has defined the k-restrictly norm

constant rk(A) of a matrix A and by the rescaling technique, he has proved the sufficient conditions
for the rescaled matrix Ã ≡ A

rk(A)
that if δ̃s < 0.5 and δ̃2s < 0.828, then an unknown compressive

signal with noise can be recovered [8].
This paper shows that it is possible to apply CS theory to various fields. For example, when we

apply CS to a statistical model, we define A as a basis function matrix and x as a coefficient vector.
We have to estimate the coefficient vector and assess this model. In this case, if A is a random
matrix, we can not interpret the estimated model. Thus, in order to interpret models, it is important
to discuss the method of using a matrix according to the structure of the data and the assessment
of estimators. However, the RIP requires a bounded condition number for all submatrices built by
selecting s arbitrary columns and the spectral norm of a matrix is generally difficult to calculate.
Therefore, it seems useful to weaken the condition of RIP. In [9], E.J. Candès and Y. Plan have
introduced the notion of weak RIP which is a generalization of RIP as follows:

Definition 1.2. (Weak RIP) Let T0 ⊂ {1, 2, · · · , n} with |T0| = s and 1 < r < s. A obeys the
weak RIP with respect to T0 of order r if there exists 0 < δ < 1 such that for any subset R ⊂ T c0 with
|R| ≤ r,

(1− δ) ‖ xT0∪R ‖
2
2≤‖ AxT0∪R ‖

2
2≤ (1 + δ) ‖ xT0∪R ‖

2
2 (1.6)

for all x ∈ Rn. The minimum of such constants δ is denoted by δT0,r.

Roughly speaking the notion of the weak RIP, we choose a suitable location T0 with |T0| = s in the
columns of the matrix A. We remark that A obeys the RIP of order r, but it does not necessarily obey
the RIP of order (s+ r). Furthermore, the matrix AT0∪R obeys the inequality (1.6) for any subset R of
T c0 with |R| = r. In [9], E.J. Candès and Y. Plan have proved that under the assumptions of isotropy
property and incoherence property a random matrix obeys the weak RIP with high probability 1−5e−β
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if m ≥ C logn (where C is a constant which only depends on β, δ, s, r and the coherent parameter
µ), and have evaluated stochastically the solution of LASSO [10] using the weak RIP and the other
properties (the existence of inexact dual vector, the noise correlation bound and etc.) In a recent
paper [11], H. Inoue has focused on this notion and evaluate the solution of CS under the assumption
of only the weak RIP without the probability, and obtain almost the same results as for the case of the
RIP. Thus it seems that the notion of weak RIP is useful in case that we have some information about
the data, that is, we have a good location T0, and it seems better to analyze data using the weak RIP
because it is much easier to construct matrices obeying the weak RIP than matrices obeying the RIP.
In this paper, we give a sufficient condition under which A obeys the weak RIP with respect to T0 of
order r and evaluate the solution of CS by using a correlative relationship θT0,r of the locations T0

and T c0 defined in (2.6). Furthermore, we apply this result to the case of a random matrix satisfying
the isotropy property.

2 The Weak RIP and CS
Throughout this paper, let T0 be a subset of {1, 2, · · · , n} with |T0| = s and r be a natural number
with 0 < r < s. In this section, we define the coefficient of correlation θT0,r of AT0 and ATc0 and give
a sufficient condition of θT0,r under which A obeys the weak RIP with respect to T0 of order r and
evaluate the solution of CS. We assume the following (i) and (ii):

(i) The submatrix AT0 is nearly isometric, that is, there exists a constant δ (0 ≤ δ < 1) such that

(1− δ)‖x‖22 ≤ ‖AT0x‖
2
2 ≤ (1 + δ)‖x‖22 (2.1)

for each x ∈ Rn with supp x ⊂ T0. The minimum of such constants δ is denoted by δ(T0).
The matrix AT0 is nearly isometric if and only if it obeys the RIP of order s. It is easily shown that

0 < ‖A?T0
AT0‖ < 2, ‖ (A?T0

AT0)
−1 ‖ > 1 (2.2)

and

δ(T0) =


1− 1

‖
(
A?
T0
AT0

)−1
‖

if ‖A?T0
AT0‖ ≤ 1

max

(
‖A?T0

AT0‖ − 1, 1− 1

‖
(
A?
T0
AT0

)−1
‖

)
= max(λ1 − 1, 1− λs)

if ‖A?T0
AT0‖ > 1,

(2.3)

where λ1 and λs are the maximum eigenvalue and the minimum eigenvalue of the positive matrix
A?T0

AT0 , respectively.

(ii) ATc0 obeys the RIP of order r. Let δr(T c0 ) denote the restricted isometry constant of ATc0 .

We consider the correlative relationship of the submatrices AT0 and ATc0 . Let T be any location
of T c0 with |T | = r. Then we define the coefficient of correlation θT0,r of AT0 and AT by

µ (T0, T ) = sup {| < Ax, Ay > |; supp x ⊂ T0, supp y ⊂ T, ‖x‖2 = ‖y‖2 = 1} ,
µT0,r = max {µ(T0, T ); T ⊂ T c0 with |T | = r} . (2.4)

Then we have

µT0,r = max {‖A?TAT0‖; T ⊂ T c0 with |T | = r} . (2.5)
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Here we define the coefficient of correlation θT0,r as follows:

θT0,r = max (δ(T0), δr(T
c
0 ), µT0,r) . (2.6)

It is easily shown that whenever r′ ≤ r

δr′(T
c
0 ) ≤ δr(T c0 ) and µT0,r′ ≤ µT0,r, (2.7)

so that

θT0,r′ ≤ θT0,r (2.8)

Suppose that A obeys the weak RIP with respect to T0 of order r. Then it is clear that AT0 is nearly
isometric with δ(T0) ≤ δT0,r and ATc0 obeys the RIP of order r with δr(T

c
0 ) ≤ δT0,r. Furthermore,

since

| < Ax, Ay > | ≤ δT0,r‖x‖2‖y‖2 (2.9)

for each x, y ∈ Rn with supp x ⊂ T0 and supp y ⊂ T c0 with |supp y| ≤ r, it follows that µT0,r ≤ δT0,r.
Hence we have

θT0,r ≤ δT0,r. (2.10)

Conversely we have the following

Theorem 2.1. Suppose that AT0 is nearly isometric, ATc0 obeys the RIP of order r and θT0,r <
1
2
.

Then A obeys the weak RIP with respect to T0 of order r and θT0,r ≤ δT0,r ≤ 2θT0,r.

Proof. Take arbitrary x, y ∈ Rn such that supp x ⊂ T0, supp y ⊂ T c0 and |supp y| = r. Then, since

‖A(x + y)‖22 = ‖Ax‖22 + 2 〈Ax, Ay〉+ ‖Ay‖22
≤ (1 + δ(T0))‖x‖22 + 2µT0,r‖x‖2‖y‖2 + (1 + δr(T

c
0 ))‖y‖22

≤ (1 + 2θT0,r)
(
‖x‖22 + ‖y‖22

)
= (1 + 2θT0,r)‖x + y‖22 (2.11)

and

‖A(x + y)‖22 ≥ ‖Ax‖22 − 2| < Ax, Ay > |+ ‖Ay‖22
≥ (1− δ(T0))‖x‖22 − 2µT0,r‖x‖2‖y‖2 + (1− δr(T0))‖y‖22
≥ (1− 2θT0,r)‖x + y‖22, (2.12)

it follows that

(1− 2θT0,r)‖x + y‖22 ≤ ‖A(x + y)‖22 ≤ (1 + 2θT0,r)‖x + y‖22, (2.13)

which implies Theorem 2.1.

We have the following result for an evaluation of the solution of CS.

Theorem 2.2. Suppose AT0 is nearly isometric, ATc0 obeys the RIP of order r and

2θT0,
r
5

+

√
5s

2r
θT0,r < 1. (2.14)

Then A obeys the weak RIP with respect to T0 of order r and

‖x? − x‖2 ≤ C0‖x− xT0‖1 + C1ε,
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where

C0 =

√
5

r

 1− 2θT0,
r
5

+
√

2θT0,r

1− 2θT0,
r
5
−
√

5s
2r
θT0,r

 ,

C1 =
2
(

1 +
√

5s
2r

)√
1 + θT0,

r
5

1− 2θT0,
r
5
−
√

5s
2r
θT0,r

. (2.15)

In particular, if x is a T0-sparse, that is, supp x ⊂ T0, then

‖x? − x‖2 ≤ C1ε.

Proof. We put h ≡ x? − x. Then we have

‖h‖2 ≤ 2ε (2.16)

and by definition of CS optimization

‖hTc0 ‖1 ≤ 2‖x− xT0‖1 + ‖hT0‖1. (2.17)

We consider the following decomposition of {1, 2, · · · , n}: Let T1 be the location of the r′ largest
coefficients of hTc0 , T2 the location of the r′′ ≡ r − r′ largest coefficients of h(T0∪T1)c and T3 the
location of the r′′ largest coefficients of h(T0∪T1∪T2)c . Repeating this method, {1, 2, · · · , n} = T0 ∪
T1 ∪ · · · ∪ Tl−1, |Tl| ≤ r′′. Then, since

|hTj−1

k | ≥ max
k∈Tj

|hTjk |, 2 ≤ j ≤ l, 1 ≤ k ≤ r′′,

it follows from Proposition 2.1. in [4] that

‖hTj‖2 ≤
1√
r′′
‖hTj‖1 +

√
r′′

4

(
|hTj1 | − |h

Tj
r′′ |
)
, j ≥ 2

and ∑
j≥2

‖hTj‖2 ≤ 1√
r′′

∑
j≥2

‖hTj‖1 +

√
r′′

4
|hT2

1 |

≤ 1√
r′′
‖h(T0∪T1)c‖1 +

√
r′′

4r′
‖hT1‖1

=
1√
r′′
‖hTc0 ‖1 −

(
1√
r′′
−
√
r′′

4r′

)
‖hT1‖1. (2.18)

By taking r′ = 1
5
r and r′′ = 4

5
r, we can obtain the decompsition {T1, T2, · · · , Tl} of T c0 , which is better

than those of [4] and [12]. Then it follows from (2.17) and (2.18) that∑
j≥2

‖hTj‖2 ≤ 1√
4
5
r
‖hTc0 ‖1

≤
√

5

r
‖x− xT0‖1 +

√
5

4r
‖hT0‖1

≤
√

5

r
‖x− xT0‖1 +

√
5s

4r
‖hT0∪T1‖2. (2.19)

Since ATc0 obeys the RIP of order r, it follows that

| < AhT1 , AhTj > | ≤ δr(T
c
0 )‖hT1‖2‖hTj‖2, j ≥ 2. (2.20)
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By the assumption (2.14), we have θT0,r <
√

2r
5s

< 1
2
. Hence it follows from Theorem 2.1 that A

obeys the weak RIP with respect to T0 of order r. Furthermore, we can show similarly to (2.11) and
(2.12) that (

1− 2θT0,
r
5

)
‖hT0∪T1‖

2
2 ≤ ‖AhT0∪T1‖

2
2 ≤

(
1 + 2θT0,

r
5

)
‖hT0∪T1‖

2
2, (2.21)

which implies by (2.16), (2.7) and (2.20) that(
1− 2θT0,

r
5

)
‖hT0∪T1‖

2
2

≤ ‖AhT0∪T1‖
2
2

≤ < AhT0∪T1 , Ah > +
∑
j≥2

| < AhT0∪T1 , AhTj > |

≤ 2ε
√

1 + 2θT0,
r
5
‖hT0∪T1‖2 +

∑
j≥2

| < AhT0 , AhTj > |+
∑
j≥2

| < AhT1 , AhTj > |

≤ 2ε
√

1 + 2θT0,
r
5
‖hT0∪T1‖2 + µT0,

4
5
r‖hT0‖2

∑
j≥2

‖hTj‖2

+ δr(T
c
0 )‖hT1‖2

∑
j≥2

hTj‖2


≤ 2ε

√
1 + 2θT0,

r
5
‖hT0∪T1‖2 +

√
2θT0,r‖hT0∪T1‖2

∑
j≥2

‖hTj‖2

 , (2.22)

and by (2.19)(
1− 2θT0,

r
5
−
√

5s

2r
θT0,r

)
‖hT0∪T1‖2 ≤ 2

√
1 + θT0,

r
5
ε+

√
10

r
θT0,r‖x− xT0‖1. (2.23)

Hence we have by (2.14) and (2.23)

‖x? − x‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)
c‖2

≤ ‖hT0∪T1‖2 +
∑
j≥2

‖hTj‖2

≤

(
1 +

√
5s

4r

)
‖hT0∪T1‖2 +

√
5

r
‖x− xT0‖1

≤ C0‖x− xT0‖1 + C1ε.

This completes the proof of Theorem 2.2.

We next consider a special case that A satisfies a restricted norm condition:

‖AT ‖ ≤ 1, (2.24)

for each T ⊂ T c0 with |T | ≤ r. Then we have the following

Theorem 2.3. Suppose that A?T0
AT0 is invertible, A?TAT is invertible for every T ⊂ T c0 with |T | ≤ r

and

2θT0,
r
5

+

√
5s

2r
max

(
θT0,

4
5
r,

1

2
θT0,r

)
< 1. (2.25)

Then we have

‖x? − x‖2 ≤ D0‖x− xT0‖1 +D1ε,
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where

D0 =

√
5

r

 1− 2θT0,
r
5

+
√

2 max
(
θT0,

4
5
r,

1
2
θT0,r

)
1− 2θT0,

r
5
−
√

5s
2r

max
(
θT0,

4
5
r,

1
2
θT0,r

)
 ,

D1 =
2
√

2
(

1 +
√

5s
4r

)
1− 2θT0,

r
5
−
√

5s
2r

max
(
θT0,

4
5
r,

1
2
θT0,r

) . (2.26)

Proof. Since ‖AT0‖ ≤ 1 and A?T0
AT0 is invertible, it follows that AT0 is nearly isometric and δ(T0) =

1 − 1

‖
(
A?
T0
AT0

)−1
‖

. Since ‖AT ‖ ≤ 1 and A?TAT is invertible for every T ⊂ T c0 with |T | ≤ r, it follows

that ATc0 obeys the RIP of order r and

δr(T
c
0 ) = 1− 1

min{‖ (A?TAT )−1 ‖; T ⊂ T c0 and |T | ≤ r}
. (2.27)

Since ‖AT0‖ ≤ 1 and ‖AT ‖ ≤ 1 for each T ⊂ T c0 with |T | ≤ r, it follows that

| < AhT1 , AhTj > | ≤
1

2
δr(T

c
0 )‖hT1‖2‖hTj‖2 , j ≥ 2 (2.28)

and similarly to (2.22)(
1− 2θT0,

r
5

)
‖hT0∪T1‖

2
2

≤ ‖AhT0∪T1‖
2
2

≤ 2
√

2ε‖hT0∪T1‖2 + µT0,
4
5
r‖hT0‖2

∑
j≥2

‖hTj‖2

+
1

2
δr(T

c
0 )‖hT1‖2

∑
j≥2

‖hTj‖2


≤ 2

√
2ε‖hT0∪T1‖2 +

√
2 max

(
θT0,

4
5
r,

1

2
θT0,r

)
‖hT0∪T1‖2

∑
j≥2

‖hTj‖2

 ,

which implies by (2.19) (
1− 2θT0,

r
5
−
√

5s

2r
max

(
θT0,

4
5
r,

1

2
θT0,r

))
‖hT0∪T1‖2

≤ 2
√

2ε+

√
10

r
max

(
θT0,

4
5
r,

1

2
θT0,r

)
‖x− xT0‖1.

Hence we have

‖x? − x‖2 ≤ D0‖x− xT0‖1 +D1ε.

Remark. In case that A does not satisfy the restricted norm condition (2.24), we may obtain a similar
result to Theorem 2.3 using a rescaled matrix Ã ≡ A

σr(T
c
0 )

, where

σr(T
c
0 ) = sup {‖AT ‖; T ⊂ T c0 and |T | = r} .

Such rescaling technique has been used by many authors. In particular, H. Inoue has shown that it
is useful to apply the above rescaled matrix Ã to the theory of CS [8].
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3 The Weak RIP and CS with Probability
In this section, we next evaluate the solution of CS in case that a random m×n matrix A satisfies the
isotropy property:

E
(
A{k}A

?
{k}
)

= I (3.1)

for every row vector A{k} of A. We put |aij | ≤ ρ(A) (simply, ρ), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then we have
the following

Theorem 3.1. For any 0 < δ < 1
2
, Ã ≡ A√

m
obeys the weak RIP with respect to T0 order r and

θ̃T0,r ≤ δ with probability at least 1− e−β provided with

m ≥ max


2(1+ δ

3 )
δ2

(ρs− 1)(β + log 2s),
2(1+ δ

3 )
δ2

(ρr − 1)
(
β + r log n−s

r
+ r + log 2r

)
,

8ρsr
δ2

(
β + log (n− s) + 1

4

)
 . (3.2)

We consider the following equality (3.3) instead of (1.3):

ỹ = Ãx + z̃, (3.3)

where ỹ ≡ y√
m
, Ã ≡ A√

m
and z̃ ≡ z√

m
. Since {a ∈ Rn; ‖y −Aa‖2 ≤ ε} = {a ∈ Rn; ‖ỹ − Ãa‖2 ≤

ε√
m
}, it follows that the solution x? to the optimization problem is the same as that to (1.4).

Theorem 3.2. The solution x? to (1.4) obeys

‖x? − x‖2 ≤ C0‖x− xT0‖1 + C1
ε√
m
,

with probability with 1− e−β provided with

m ≥ max



3
(
2+
√

5s
2r

)2

2
(
5+
√

5s
2r

) (ρs− 1)(β + log 2s),

3
(
2+
√

5s
2r

)2

2
(
5+
√

5s
2r

) (ρr − 1)
(
β + r log n−s

r
+ r + log 2r

)
,

8
(

2 +
√

5s
2r

)2
ρsr

(
β + log n+ 1

4

)


. (3.4)

We prepare some lemmas to prove Theorem 3.1 and Theorem 3.2. We assume that a random
m × n matrix A satisfies the isotropy property and put Ã = A√

m
. Let δ be any real number with

0 < δ < 1.

Lemma 3.1. Let T be any subset of {1, 2, · · · , n} with |T | = k. Then ÃT is nearly isometric for

δ with probability 1− 2k exp

{
− m

(ρk−1)
δ2

2(1+ δ
3 )

}
.

Proof. This is due to Lemma 2.1 in [9]. We simply give the proof. It is shown that

Ã?T ÃT − I =
1

m

m∑
i=1

((
A{i}T

) (
A{i}T

)? − I) .
Putting Xi = A{i}TA

?
{i}T − I, i = 1, 2, · · · ,m, we can show that E(Xi) = 0, ‖Xi‖ ≤ ρk − 1 and

0 ≤ E(X2
i ) ≤ (ρk − 1)I. Hence it follows from the matrix Bernstein inequality [9] that

P
(
‖Ã?T ÃT − I‖ ≥ δ

)
≤ 2k exp

{
− m

(ρk − 1)

δ2

2
(
1 + δ

3

)} . (3.5)
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Lemma 3.2. The following statements (i) and (ii) hold:
(i) ÃT0 is nearly isometric for δ with probability at least 1− e−β provided with

m ≥
2
(
1 + δ

3

)
δ2

(ρs− 1)(β + log 2s). (3.6)

(ii) ÃTc0 obeys the RIP of order r and δr(T c0 ) ≤ δ with probability at least 1− e−β provided with

m ≥
2
(
1 + δ

3

)
δ2

(ρr − 1)(β + log n−sCr + log 2r)

≥
2
(
1 + δ

3

)
δ2

(ρr − 1)
(
β + r log

n− s
r

+ r + log 2r
)
. (3.7)

Proof. (i) This follows from Lemma 3.1.
(ii) By Lemma 3.1 we have

P

(⋃
T

{
‖Ã?T ÃT − I‖ ≥ δ

})
≤

∑
T

P
(
‖Ã?T ÃT − I‖ ≥ δ

)
≤ n−sCr2r exp

(
− m

(ρr − 1)

δ2

2
(
1 + δ

3

))

= exp

(
− m

(ρr − 1)

δ2

2
(
1 + δ

3

) + log (n−sCr2r)

)

≤ exp

(
− m

(ρr − 1)

δ2

2
(
1 + δ

3

) + log

((
e(n− s)

r

)r
2r

))

= exp

(
− m

(ρr − 1)

δ2

2
(
1 + δ

3

) + r log
n− s
r

+ r + log 2r

)
, (3.8)

where T moves all subsets of T c0 with |T | = r, which implies (2).

Lemma 3.3. We have

θ̃T0,r ≤ δ (3.9)

with probability at least 1− e−β provided with

m ≥ 8ρsr

δ2

(
β + log(n− s) +

1

4

)
. (3.10)

Proof. By Lemma 2.5 in [9], we have

P

(
max
i∈Tc0

‖Ã?T0
ai‖2 ≥ t

)
≤ (n− s) exp

(
−mt

2

8ρs
+

1

4

)
. (3.11)

Hence we have

P

(
max
i∈Tc0

‖Ã?T0
ai‖2 ≥ t

)
≥ P

(
max
i∈T
‖Ã?T0

ai‖2 ≥ t
)

= P

((⋂
i∈T

{
‖Ã?T0

ai‖2 < t
})c)

= 1− P

(⋂
i∈T

{
Ã?T0

ai‖2 < t
})

, (3.12)
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where T moves all subset of T c0 with |T | = r, which implies by (3.11) that

P

(⋂
i∈T

{
‖Ã?T0

ai‖2 < t
})

≥ 1− P
(

max
i∈Tc0

‖Ã?T0
ai‖2 ≥ t

)

≥ 1− (n− s) exp

(
−mt

2

8ρs
+

1

4

)
. (3.13)

Since

‖Ã?T0
ÃTw‖2 = ‖

∑
i∈T

wiÃ
?
T0
ai‖2

≤
∑
i∈T

|wi|‖Ã?T0
ai‖2

≤ ‖w‖2

(∑
i∈T

‖Ã?T0
ai‖22

) 1
2

(3.14)

for each w = (w1, w2, · · · , wn)T ∈ Rn, it follows from (3.13) that

θ̃T0,r = max
{
‖Ã?T0

ÃT ‖; T ⊂ T c0 with |T | = r
}
≤ t
√
r (3.15)

with at least probability 1− (n− s) exp
(
−mt

2

8ρs
+ 1

4

)
. Putting t = δ√

r
, Lemma 3.3 holds.

Proof of Theorem 3.1. This follows from Lemma 3.2, Lemma 3.3 and Theorem 2.1.

Proof of Theorem 3.2. We put δ = 1

2+
√

5s
2r

. Then Theorem 3.2 follows from Theorem 3.1 and

Theorem 2.2.

Remark. In [9], E.J. Candès and Y. Plan have shown that if A satisfies the isotropy property and

m ≥ Cδβρmax
(
s log sρ, r log n (log r)2 log (rρ log n)

)
, (3.16)

then A obeys the weak RIP with respect to T0 of order r with probability
(
1− 5e−β

)
. In Theorem

3.2, we have obtained by a simple proof that A obeys the weak RIP with respect to T0 of order r
with probability

(
1− e−β

)
if m satisfies the inequality (3.2) and the condition (3.2) of m is better than

(3.16) if n is sufficient large for s ( for example, n ≥ e(log r)
s

).

4 Conclusions
In this paper, we study the weak RIP and its application to compressed sensing. In Theorem 2.1, we
have introduced the property of a correlative relationship θT0,r of the locations T0 and T c0 . In Theorem
2.2 and Theorem 2.3, we have given a sufficient condition under which A obeys the weak RIP with
respect to T0 of order r and have evaluated the solution of CS by using a correlative relationship θT0,r.
In Theorem 3.1 and Theorem 3.2, we have evaluated the solution of CS with probability in case that
a random matrix satisfying the isotropy property.
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