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Abstract
In this paper, we prove some properties of Fourier multipliers on compact groups. Mainly we obtain
the invariance of p−Fourier spaces under the action of Fourier multipliers over compact groups.
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1 Introduction

The Fourier transform has various applications for instance in Physics and Engineering. A recent use
of Fourier transform in signal process can be found in [1] and [2]. The classical Fourier transform
in Rn or in a general abelian group brought out some functions spaces called p−Fourier spaces.
Classical p−Fourier spaces were previously considered by Figà-Talamanca et al. [3], Larsen [4] and
Martin and Yap [5]. Thanks to the Fourier-Stieltjes transform of vector measures on compact groups
introduced by Assiamoua and Olubummo in [6], two of the authors of the present paper defined
the vector analogue of p−Fourier spaces and studied some of their topological properties [7]. The
particular case where p = 1 gives the vector version of the notion of Fourier algebra of compact
groups. The inversion formula allowed to introduce Fourier multipliers over compact groups in [8]
following Pisier [9] who studied the case of abelian groups. The main goal of this paper is to study
Fourier multipliers over p−Fourier spaces. We obtain among other results the important fact that
p−Fourier spaces are invariant by the action of Fourier multipliers.
We have organized the article as follows. The section 2 is devoted to fix notations and to recall some
properties of the p−Fourier spaces and related spaces which we may need. In section 3 we establish
our main results.
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2 Preliminaries
Let G be a compact group with normalized Haar measure dg. Its dual space Σ is defined as the set
of all unitary equivalence classes of irreducible representations of G. In each σ ∈ Σ, we choose an
element Uσ and denote its hilbertian representation space by Hσ. In compact group analysis, it is
well known that Hσ is of finite dimension dσ [10]. Let (ξσ1 , . . . , ξ

σ
dσ ) be a basis of Hσ. The matrix

elements of Uσ are given by
uσij(g) = 〈Uσg ξσj , ξσi 〉. (2.1)

We denote by U
σ

the contragredient of the representation Uσ, that is the representation whose
matrix elements are the complex conjugate of those of Uσ. For further details on representations
theory we refer to [10], [11] and [12].

Now let A be a complex Banach algebra (in fact A can just be taken as a Banach space in any
situation where we do not need to multiply its elements). We denote by L1(G,A) the space of Haar-
integrable A−valued functions on G in the Bochner sense. The Fourier transform of f ∈ L1(G,A) is
defined in [6] by

f̂(σ)(ξ, η) =

∫
G

〈Uσg ξ, η〉f(g)dg (2.2)

where (ξ, η) ∈ Hσ×Hσ. In this case f̂(σ) is interpreted as a sesquilinear mapping from Hσ×Hσ into
A. The authors in [6] obtained, among other results, that the Fourier transformation F : f → F(f) :=

f̂ is injective and that the reconstruction formula is given by

f =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

f̂(σ)(ξσj , ξ
σ
i )uσij . (2.3)

Now we set
S(Σ, A) =

∏
σ∈Σ

S(Hσ ×Hσ, A) (2.4)

where S(Hσ × Hσ, A) is the space of continuous sesquilinear mappings from Hσ × Hσ into A.
For ϕ ∈ S(Σ, A), we set

‖ϕ‖∞ = sup{‖ϕ(σ)‖ : σ ∈ Σ} (2.5)

where ‖ϕ(σ)‖ is the usual norm of a continuous sesquilinear mapping :

‖ϕ(σ)‖ = sup{‖ϕ(σ)(ξ, η)‖ : ‖ξ‖ ≤ 1, ‖η‖ ≤ 1}. (2.6)

We consider the following subspaces of S(Σ, A):

S∞(Σ, A) = {ϕ ∈ S(Σ, A) : ‖ϕ‖∞ <∞} (2.7)

and for 1 ≤ p <∞,

Sp(Σ, A) = {ϕ ∈ S(Σ, A) :
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

‖ϕ(σ)(ξσj , ξ
σ
i )‖p <∞}. (2.8)

Many fundamental properties of these spaces were studied in [13]. On the other hand, the vector
version of p−Fourier spaces Ap(G,A) were defined and studied in [7]. We recall their definitions :

Ap(G,A) = {f ∈ L1(G,A) : f̂ ∈ Sp(Σ, A)}, 1 ≤ p ≤ ∞. (2.9)

Each space Sp(Σ, A) is a Banach space if it is endowed with the norm

‖ϕ‖S∞ = sup{‖ϕ(σ)‖ : σ ∈ Σ}, for p =∞ (2.10)
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and

‖ϕ‖Sp =

(∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

‖ϕ(σ)(ξσj , ξ
σ
i )‖p

) 1
p

, 1 ≤ p <∞. (2.11)

Also each space Ap(G,A) is a Banach space if it is endowed with each one of the following norms

‖f‖Ap = ‖f‖L1 + ‖f̂‖Sp (2.12)

and
‖f‖Ap = ‖f̂‖Sp . (2.13)

We give now the following definition.

Definition 2.1. Let ϕ : Σ → C be a function. A Fourier multiplier on L1(G,A) is a mapping Mϕ :
L1(G,A)→ L1(G,A), f 7→Mϕf such that

Mϕf =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

ϕ(σ)f̂(σ)(ξσj , ξ
σ
i )uσij . (2.14)

where f̂ is of finite support.

We recall the following result which we may need enormously. Its proof can be found in [8].

Theorem 2.1. Mϕ is a Fourier multiplier if and only if M̂ϕf = ϕf̂ .

3 Main Results
We define the product × on S(Σ, A) as follows. If φ1, φ2 ∈ S(Σ, A) then φ1 × φ2 is given by

(φ1 × φ2)(σ)(ξσj , ξ
σ
i ) =

dσ∑
k=1

φ1(σ)(ξσk , ξ
σ
i )φ2(σ)(ξσj , ξ

σ
k ). (3.1)

More explicitly if we consider the matrices (aσi,j)1≤i,j≤dσ and (bσi,j)1≤i,j≤dσ defined by

aσi,j = φ1(σ)(ξσj , ξ
σ
i ), bσi,j = φ2(σ)(ξσj , ξ

σ
i ) (3.2)

then the matrix associated with (φ1 × φ2)(σ) is the matrix product (aσi,j)(b
σ
i,j).

Theorem 3.1. For f, g ∈ L1(G,A), we have (̂f ∗ g) = f̂ × ĝ where f ∗ g denotes the convolution of
f by g.

Proof.
f̂ ∗ g(σ)(ξσj , ξ

σ
i ) =

∫
G
< U

σ
t ξ
σ
j , ξ

σ
i > f ∗ g(t)dt

=
∫
G
< U

σ
t ξ
σ
j , ξ

σ
i >

(∫
G
f(ts−1)g(s)ds

)
dt

=
∫
G×G < U

σ
tsξ

σ
j , ξ

σ
i > f(t)g(s)dtds

=
∫
G
g(s)ds

∫
G
< U

σ
t U

σ
s ξ
σ
j , ξ

σ
i > f(t)dt

=
∫
G
f̂(σ)(U

σ
s ξ
σ
j , ξ

σ
i )g(s)ds

=
∫
G
f̂(σ)(

∑
k

uσkj(s)ξ
σ
k , ξ

σ
i )g(s)ds

=
∑
k

f̂(σ)(ξσk , ξ
σ
i )
∫
G
uσkj(s)g(s)ds

=
∑
k

f̂(σ)(ξσk , ξ
σ
i )
∫
G
< U

σ
s ξ
σ
j , ξ

σ
k > g(s)ds

=
∑
k

f̂(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k ) = (f̂ × ĝ)(σ)(ξσj , ξ

σ
i ),
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using in the computation the equalities

uσkj(s) =< U
σ
s ξ
σ
j , ξ

σ
k > and U

σ
s ξ
σ
j =

dσ∑
k

uσkj(s)ξ
σ
k .

Thus f̂ ∗ g = f̂ × ĝ.

We know how convolution is an important tool in Analysis. The following theorem links convolution
and Fourier multipliers.

Theorem 3.2. Let Mϕ1 , Mϕ2 be Fourier multipliers on L1(G,A), f, g ∈ L1(G,A). The following
equalities hold.

1. Mϕ1(f ∗ g) = (Mϕ1f) ∗ g.

2. Mϕ1f ∗Mϕ2g = Mϕ1ϕ2(f ∗ g).

Proof. Let (ξ, η) ∈ Hσ ×Hσ with ξ =

dσ∑
j=1

αjξ
σ
j and η =

dσ∑
i=1

βiξ
σ
i in the canonical basis (ξσ1 , . . . , ξ

σ
dσ )

of Hσ. The equality M̂ϕ1f = ϕ1f̂ leads to

̂(Mϕ1f)(σ)(ξ, η) = ϕ1(σ)f̂(σ)(ξ, η) = ϕ1(σ)f̂(σ)(

dσ∑
j=1

αjξ
σ
j ,

dσ∑
i=1

βiξ
σ
i )

= ϕ1(σ)

dσ∑
i=1

dσ∑
j=1

αjβif̂(σ)(ξσj , ξ
σ
i ). Thus we have:

1.)F(Mϕ1(f ∗ g))(σ)(ξ, η) = ϕ1(σ)

dσ∑
i=1

dσ∑
j=1

αjβif̂ ∗ g(σ)(ξσj , ξ
σ
i )

= ϕ1(σ)

dσ∑
i=1

dσ∑
j=1

αjβi(f̂ × ĝ)(σ)(ξσj , ξ
σ
i ) = ϕ1(σ)

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

f̂(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k )

=

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

ϕ1(σ)f̂(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k ) =

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

M̂ϕ1f(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k )

=

dσ∑
i=1

dσ∑
j=1

αjβi(M̂ϕ1f × ĝ)(σ)(ξσj , ξ
σ
i ) =

dσ∑
i=1

dσ∑
j=1

αjβi( ̂Mϕ1f ∗ g)(σ)(ξσj , ξ
σ
i )

= F((Mϕ1f) ∗ g)(σ)(ξ, η).
By injectivity of F we have : Mϕ1(f ∗ g) = (Mϕ1f) ∗ g.

2.) F(Mϕ1f ∗Mϕ2g)(σ)(ξ, η) = (M̂ϕ1f × M̂ϕ2g)(σ)(ξ, η)

=

dσ∑
i=1

dσ∑
j=1

αjβi(M̂ϕ1f × M̂ϕ2g)(σ)(ξσj , ξ
σ
i ) =

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

M̂ϕ1f(σ)(ξσk , ξ
σ
i )M̂ϕ2g(σ)(ξσj , ξ

σ
k )

=

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

ϕ1(σ)f̂(σ)(ξσk , ξ
σ
i )ϕ2(σ)ĝ(σ)(ξσj , ξ

σ
k )

=

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

ϕ1(σ)ϕ2(σ)f̂(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k )

=

dσ∑
i=1

dσ∑
j=1

αjβi
∑
k

M̂ϕ1ϕ2f(σ)(ξσk , ξ
σ
i )ĝ(σ)(ξσj , ξ

σ
k ) =

dσ∑
i=1

dσ∑
j=1

αjβi(M̂ϕ1ϕ2f × ĝ)(σ)(ξσj , ξ
σ
i )
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=

dσ∑
i=1

dσ∑
j=1

αjβi( ̂Mϕ1ϕ2f ∗ g)(σ)(ξσj , ξ
σ
i ) = F(Mϕ1ϕ2(f ∗ g))(σ)(ξ, η).

Again by injectivity of F , we conclude that
Mϕ1f ∗Mϕ2g = Mϕ1ϕ2(f ∗ g).

Before we state the next theorem, we discuss some examples of functions ϕ satisfying the
condition

inf{|ϕ(σ)| : σ ∈ Σ} > 0 (3.3)

Let G = T be the one-dimensional torus, then Σ = Z, the set of integers. Consider the two families
(ϕθ)θ∈[0,2π[ and (ψθ)θ∈[0,2π[ of functions defined from Z into C by

ϕθ(n) = einθ and ψθ(n) =
einθ

n2 + 1
. (3.4)

Each mapping ϕθ satisfies the condition (3.3) whereas the functions ψθ do not satisfy it.

Theorem 3.3. If ϕ is bounded and is such that inf{|ϕ(σ)| : σ ∈ Σ} > 0, then
Mϕf ∈ Ap(G,A) if and only if f ∈ Ap(G,A).

Proof.
Mϕf ∈ Ap(G,A) =⇒ M̂ϕf ∈ Sp(Σ, A)

=⇒ ‖M̂ϕf‖Sp <∞.

We have

‖M̂ϕf‖pSp =
∑
σ∈Σ

dσ
∑
i,j

‖M̂ϕf(σ)(ξσj , ξ
σ
i )‖p

=
∑
σ∈Σ

dσ
∑
i,j

‖ϕ(σ)f̂(σ)(ξσj , ξ
σ
i )‖p

=
∑
σ∈Σ

dσ
∑
i,j

|ϕ(σ)|p‖f̂(σ)(ξσj , ξ
σ
i )‖p

=
∑
σ∈Σ

dσ|ϕ(σ)|p
∑
i,j

‖f̂(σ)(ξσj , ξ
σ
i )‖p.

Now, since inf{|ϕ(σ)| : σ ∈ Σ} > 0 then there exists C > 0 such that C ≤ inf{|ϕ(σ)| : σ ∈ Σ}.
Therefore

‖M̂ϕf‖Sp ≥ C‖f̂‖Sp .

Hence
M̂ϕf ∈ Ap(G,A) =⇒ ‖f̂‖Sp <∞

=⇒ f̂ ∈ Sp(Σ, A)
=⇒ f ∈ Ap(G,A).

Conversely, we have

f ∈ Ap(G,A) =⇒ f̂ ∈ Sp(Σ, A)

=⇒ ‖f̂‖Sp <∞.

From the boundedness of ϕ, there exist C′ > 0 such that

sup{|ϕ(σ)| : σ ∈ Σ} ≤ C′.

Then
‖M̂ϕf‖Sp ≤ C

′‖f̂‖Sp .
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So
f ∈ Ap(G,A) =⇒ ‖M̂ϕf‖Sp <∞

=⇒ M̂ϕf ∈ Sp(Σ, A)
=⇒ Mϕf ∈ Ap(G,A).

Hereafter are some inequalities involving Fourier multipliers.

Theorem 3.4. Let Mϕ be a bounded Fourier multiplier on L1(G,A). Then there exists two constants
C1 > 0 , C2 > 0 such that for each function f in Ap(G,A), we have:

1. ‖Mϕf‖Ap ≤ C1‖f‖L1 + C2‖f̂‖Sp .

2. ‖Mϕf‖Ap ≤ C2‖f̂‖Sp .

Proof. SinceMϕ is bounded on L1(G,A), there exists a constantC1 > 0 such that ∀f ∈ L1(G,A), ‖Mϕf‖L1 ≤
C1‖f‖L1 . The boundedness of Mϕ implies that ϕ is also bounded as a function on Σ. From the proof
of Theorem 3.3, we get the existence of a constant C′ ≥ 0 such that ‖M̂ϕf‖Sp ≤ C′‖f̂‖Sp . Setting
C2 = C′, we obtain:

1. ‖Mϕf‖Ap = ‖Mϕf‖L1 + ‖M̂ϕf‖Sp ≤ C1‖f‖L1 + C2‖f̂‖Sp .
2. ‖Mϕf‖Ap = ‖M̂ϕf‖Sp ≤ C2‖f̂‖Sp .

As a consequence of the above inequalities, we have the next result which asserts that each
bounded Fourier multiplier on L1(G,A) is also a bounded Fourier multiplier on the p−Fourier space.

Corollary 3.5. If Mϕ is a bounded Fourier multiplier on L1(G,A) then Mϕ is also a bounded Fourier
multiplier on Ap(G,A) endowed with each of the norms ‖ · ‖Ap or ‖ · ‖Ap .

Proof. According to Theorem 3.4 (part 1), there exists two positive constants C1 and C2 such that
‖Mϕf‖Ap ≤ C1‖f‖L11 +C2‖f̂‖Sp . If we set C = max{C1, C2} then we have ‖Mϕf‖Ap ≤ C(‖f‖L1 +

‖f̂‖Sp), that is ‖Mϕf‖Ap ≤ C‖f‖Ap .

On the other hand, we know that ‖f̂‖Sp = ‖f‖Ap by definition , so using Theorem 3.4 (part 2),
we have ‖Mϕf‖Ap ≤ C2‖f‖Ap .
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