

British Journal of Mathematics & Computer Science
4(5): 612-666, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

__

*Corresponding author: maurer@gwu.edu;

Applications of Loop Trees

Ward Douglas Maurer1*

1Department of Computer Science, George Washington University, Washington, DC 20052, USA.

Received: 03 July 2013
Accepted: 22 September 2013
Published: 28 November 2013

Abstract

Aims: In a previous paper we have obtained a result which provides a new way to consider
structured programs. Any directed graph whatsoever, according to this result, is a dag overlaid
by a structured graph, with loops within loops in which no loops overlap. In such a structured
graph, the only backward edges go from somewhere in a loop to the head of that loop. Crucial to
this result is the construction of what we call a loop tree. As suggested by R. E. Tarjan, we here
apply this result to three well-known situations. We also compare our decomposition method to
two earlier such methods, one by Tarjan and one, much older, by Luce.
Methodology: We use the conventions of classical mathematics, in which sets and functions
underlie all structures, such as directed graphs and loop trees, and in which all facts obtained in
the course of the work are presented as theorems and lemmas, based on definitions and
accompanied by valid proofs.
Results: We give a method of solving the single-source path expression problem for a reducible
graph by examining its loop tree, which must be unique. We give a necessary and sufficient loop
tree condition for a graph to have two edge-disjoint spanning trees, and a necessary and
sufficient loop tree condition for a graph to have a feedback vertex.
Conclusion: The study of loop trees can be used to clarify many situations in the theory of
directed graphs, in addition to the complete classification of directed graphs mentioned above.

Keywords: Loop trees, path expressions, edge-disjoint spanning trees, feedback vertices, strongly
connected components, wheels within wheels.

1 Introduction

This paper is concerned with several applications of the concept of a loop tree, introduced by the
author in [1]. In order to make this presentation self-contained, we review basic loop tree notation
here. In this paper, by a graph we shall always mean a directed graph. When an algebraic language
program P is compiled, producing object code with a flowgraph G, loops in P do not necessarily
correspond to strongly connected subsets of G. Nevertheless, we argue that, from a semantic
standpoint, an outer loop L of G is a strong component of it which is non-trivial. (A strong
component of a graph is called trivial if it has just one vertex and no edges.)

Original Research Article

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

613

An outer loop L of a graph G is a non-trivial strong component of it. An entry point of L is a
vertex y ∈ L such that there is an edge in G to y from some x ∉ L. A head of L, in a rooted graph
G, is either an entry point or the root of G. Here L always contains a head, of one of these two
kinds, which are mutually exclusive; it might contain more than one entry point. Given an outer
loop L with a choice of head h, a loopback of L is an edge leading to h from somewhere in L, and
the body B of L is the result of removing all loopbacks from L. The non-trivial strong components
of B are then outer loops of B, and, by definition, first-level inner loops of G. These may contain
further loops, and so on, all of these being higher-level inner loops of G.

A loop tree of G is a tree T whose root is G; in which every outer loop of G is a child of G; and in
which every outer loop of the body B of any vertex L ≠ G in T is a child of L. If G itself is
strongly connected, it has one child in T, namely G itself. In all other cases, the children of a node
U in T are the non-trivial strong components of the body of U, with respect to some head of U.
The fundamental theorem of loop trees [1] states that every graph G whatsoever has at least one
loop tree, having several further properties which we use below. There is a linear ordering of the
nodes of G as P1, ..., Pn, in such a way that, for every edge E = (Pi → Pj) in G, either i < j or else E
is a loopback, as defined above. With respect to this ordering, every loop in G is induced by a
contiguous subset {Pu, Pu+1, ..., Pv} of the nodes, with head Pu, where u ≤ v. Two loops cannot
have the same head, and loops are properly nested, so that, for any two loops, either they are
disjoint or one is contained in the other. Since a loop might contain more than one entry point, G
might have more than one loop tree. However, it is stated in [1], and proved in [2], that G has a
unique loop tree if and only if it is reducible, in the sense of Allen and Cocke. The fundamental
theorem of loop trees is here applied in the following five ways.

1.1 Path Expressions

All paths from the start node s of a graph G to an arbitrary node v in G form the language σ(P(s,
v)) generated by a specific regular expression P(s, v). Such a regular expression is useful in
carrying out global flow analysis and in solving shortest path problems and sparse systems of
linear equations. In section 2 below, we present a relation between loop trees and such path
expressions. Specifically, given a loop tree of a reducible graph, we show how to generate all P(s,
v) for fixed s and all v. We also briefly discuss an extension of this technique to non-reducible
graphs.

1.2 Edge-Disjoint Spanning Trees

A spanning tree of a graph G is a subgraph of G which is a directed tree, and which contains all
vertices of G. Two spanning trees of G are edge-disjoint if they have no edges in common. It is
known that two edge-disjoint spanning trees of a rooted graph G, both having the same root r,
exist if and only if G has no bridges, where a bridge is an edge v-w which is included in every
path from r to w. In section 3 below, we derive a necessary and sufficient condition for a graph G
with a loop tree T to have two such trees, namely that every vertex in G other than r, and every
loop in T not containing r, has at least two entry edges. We also show that a graph with a unique
loop tree, and having at least two vertices, must have a bridge, and thus cannot have two edge-
disjoint spanning trees rooted at r.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

614

1.3 Feedback Vertices

A feedback vertex of a strongly connected graph is a vertex contained in every cycle in the graph.
Of course, not every graph has such a vertex. A feedback set is a set of vertices in a strongly
connected graph, such that every cycle in the graph must contain at least one vertex in the set.
Feedback vertices and feedback sets have been studied extensively by Smith and Walford [3] and
by Garey and Tarjan [4]. In section 4 below, we obtain a necessary and sufficient loop-tree
condition for G to have a feedback vertex. The condition is that G have a loop tree T with respect
to which G has no parallel loops and no conditional loops, in a sense which we define; and that the
innermost loop L of G, which must be unique to T, contains a vertex which covers every other
vertex in L. This will then also be true of every other loop tree of G. We also obtain bounds on the
size of a minimal feedback set in a graph.

1.4 Clustering Trees

For any strongly connected graph G, we here compare our construction of loop trees with a
decomposition tree construction due to Tarjan, to which we refer as a clustering tree. Both of these
are tree decompositions in which the root represents G; in which every vertex in the tree
represents a strongly connected subgraph of G; and in which, if N1 is the parent of N2 in the tree,
then G1 contains G2, where N1 represents G1 and N2 represents G2. In section 5 below, we derive a
necessary and sufficient condition for a generalization of loop trees to be identical to clustering
trees in all cases, and another such condition for these to be identical in at least one case. We then
show that every graph has a cost-free extension for which the two types of tree are identical in at
least one case.

1.5 Wheels within Wheels

Any strongly connected graph may be decomposed, in at least two ways, into smaller such graphs,
which may in turn be decomposed into others, and so on. We have developed one such
decomposition; another earlier one was discovered by Luce [5] and later rediscovered by Knuth
[6]. In section 6 below, we compare our result with that of Luce, and explicate its advantages over
Luce´s decomposition. We use Luce’s work to provide a further sharpening of Knuth’s
decomposition theorem, involving a special kind of graph which we call a chandelier. To make the
presentation clearer, we recast Luce’s work, using current graph terminology; we also relate this
work to further commentary by Chaty and Chein.

1.6 Recent Research

The reader will doubtless note the lack, in this paper, of the usual survey of recent research in the
given field. There is a good reason for this. Loop trees were only discovered in 2004, and the
fundamental theorem of loop trees was only published, outside of internal technical reports, in
2007. Moreover, loop trees were discovered by accident, in the process of working on improved
compiled code for nested recursive procedures. It should make sense, then, that no one has been
working on applications of loop trees, other than this author, although we hope that this swiftly
changes.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

615

2 Loop Trees and Path Expressions

In this section, by a path, we do not necessarily mean a simple path, except as specified explicitly.
Indeed, most of the paths which we consider here may be thought of as resembling execution
paths through a flowgraph, each of which may clearly go around a loop more than once, and
similarly for several loops. Such execution paths, however, are typically thought of as sequences
of statements, which are vertices in the flowgraph; by contrast, paths here, as always in a graph,
are sequences of edges, rather than vertices. We are interested mainly in paths of execution which
start at one specific node of a graph, called its root or start node. We do not specify a single exit
node; rather, we are concerned with all paths from the start node s to any other node v.

2.1 Introduction to Regular Expressions

Regular expressions here are those built up from variables representing the edges of a graph, using
parentheses and the operations ∪, ·, and *, with Λ denoting the null string. They are unrelated to
the more general regular expressions found in a programming language such as Perl. It has been
known for some time (see, e. g., [7]) that the set of all paths from s to v is representable as σ(P(s,
v)), where P(s, v) is some regular expression and σ(e), in general, is the language generated by the
regular expression e. We are concerned here with generating the various P(s, v) for an arbitrary
graph, and not merely one which is reducible in the sense of Allen and Cocke. Such regular
expressions are useful in carrying out global flow analysis and in solving shortest path problems
and sparse systems of linear equations.

2.2 Introduction to Loop Trees

Basic loop tree notation was introduced in section 1 above. We will also make use of a specific
representation for a loop tree, as described in section 9.1 of [1]. For the purposes of implementing
this representation in programming languages of the C family, we now refer to the nodes as P0, ...,
Pn–1, rather than as P1, ..., Pn. If G has n nodes, then the representation involves two arrays, called
order and loops. The order array gives the new ordering of the graph, with order[k] = z where Pk,
as above, is the node whose given index is z. The loops array specifies where the loops are. If Pk is
the head of a loop containing m nodes, then loops[k] = k+m; if Pk is not the head of any loop, then
loops[k] = k.

2.3 Generating Path Expressions from a Loop Tree

The problem of finding all of the P(s, v) for fixed s and arbitrary v is known as the single-source
path expression problem. This is by analogy with the single-source shortest path problem, where
again s is fixed and v is arbitrary. We here present a way to solve this problem for a reducible
graph G, given its (unique) loop tree as represented above, where s is the start node of G. This will
be done by a single pass through the nodes of G, given by P0, ..., Pn–1 as above, where s = P0. In
order to distinguish path expressions in different graphs, and also to avoid two conflicting uses of
P, we replace the notation P(s, v) of [7] by πG(s, v), indicating that this expression defines all paths
in G, whereas πK(s, v), for a subgraph K of G, defines all those paths which stay within K.

We make use of five rules, denoted by (R1) through (R5) below. We use a stage counter k,
initialized to zero, and a recursive program C(Y, h), where Y is either the entire graph G or the

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

616

body B of some loop L in G, having head node with index h. Because of our loop tree
representation, L will be of the form {Pu, Pu+1, ..., Pv}, for some u < v, where Pu is the head of L;
and B, since it is the body of L, contains the same nodes that L does. Here C(B, u) assumes that k
is initialized to u; it calculates πB(Pu, Pw) for all w, u ≤ w ≤ v, and leaves k set to v+1. Similarly,
C(G, 0) assumes that k is initialized to 0; it calculates πG(P0, Pw) for all w, 0 ≤ w ≤ n–1, and leaves
k set to n. We describe the general logic of C(Y, h).

At stage k, when we first come to the kth node, we need to calculate πY(Ph, Pk). We first calculate a
temporary value for this; if h = k, the temporary value is Λ (the empty string), and we set

πY(Ph, Ph) = Λ (R1)

If h ≠ k, then we look at all edges, other than loopbacks, which lead to Pk. Let us refer to these as
X1 → Pk, ..., Xj → Pk. For every Xi → Pk, since it is not a loopback, we must have Xi = Pa for some
a < k. A path from P0 to Pk, not ending in a loopback, must therefore be a path from Ph to some Xi
= Pa, followed by Xi → Pk. However, we already have an expression for all paths from Ph to Pa,
since we have already calculated πY(Ph, Pm) for all m, h ≤ m < k. Our temporary expression for
πY(Ph, Pk) is therefore the union, for 1 ≤ i ≤ j, of all expressions of the form πY(Ph, Xi)·(Xi → Pk);
that is, it is

πY(Ph, Pk) = πY(Ph, X1)·(X1 → Pk) ∪ ... ∪ πY(Ph, Xj)·(Xj → Pk) (R2)

If there are no loopbacks which lead to Pk, this temporary expression is in fact the permanent
expression for πY(Ph, Pk). If there are loopbacks, it is not, since a path from Ph to Pk might end in a
loopback. This will always happen if Pk is the start of a loop L (note that L, being strongly
connected, must have at least one loopback); and we can detect this, since we will have loops[k] =
k+z ≠ k. If B is the body of L, then C(Y, h) now proceeds by calling C(B, k). When C(B, k)
returns, k has been increased by z; and, for the old value of k, we have calculated:

• permanent values of πY(Ph, Pm) for h ≤ m < k;
• a temporary value of πY(Ph, Pk); and
• permanent values of πB(Pk, Pm) for k ≤ m < k+z. From this we must calculate πY(Ph, Pm)

for h ≤ m ≤ k+z; and the only new calculations here are those for k ≤ m ≤ k+z. These calculations
proceed as follows.

First we calculate πL(Pk, Pk); that is, a expression for all (simple and non-simple) cycles within the
loop L which start and end at Pk. To do this, we look at all loopbacks which lead to Pk, again
referring to these as X1 → Pk, ..., Xj → Pk. For every Xi → Pk, since it is a loopback, it leads to Pk
from some Xi = Pa in L, and therefore in the body B of L. A simple cycle which starts and ends at
Pk must therefore be a path in B from Pk to some Xi = Pa, followed by Xi → Pk. However, we
already have an expression for all paths from Pk to Pa in B, since we have already calculated πB(Pk,
Pm) for all m, k ≤ m < k+z–1. An expression for all simple cycles of this form is therefore the
union, for 1 ≤ i ≤ j, of all expressions of the form πB(Pk, Xi)·(Xi → Pk); that is, it is

πB(Pk, X1)·(X1 → Pk) ∪ ... ∪ πB(Pk, Xj)·(Xj → Pk)

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

617

An expression for all cycles, simple and non-simple, of this form, and including the empty cycle
Λ, is therefore the * operator of regular expressions applied to this; that is, it is

πL(Pk, Pk) = (πB(Pk, X1)·(X1 → Pk) ∪ ... ∪ πB(Pk, Xj)·(Xj → Pk))* (R3)

From this it is easy to calculate πL(Pk, Pm) for k ≤ m < k+z. A general path p within L from Pk to Pm
will be entirely within B if it contains no loopbacks of L. If it does contain loopbacks of L, then
that part of p which follows its last such loopback is within B, and the rest of p is a cycle (simple
or non-simple) from Pk to itself. Therefore p must consist of such a cycle, followed by a path
within B from Pk to Pm. We therefore have

πL(Pk, Pm) = πL(Pk, Pk) · πB(Pk, Pm) (R4)

Finally we consider πY(Ph, Pm) for k ≤ m ≤ k+z. Since Pm is in the loop L, while Ph is not, any path
from Ph to Pm must enter L through an entry point. Since G is reducible, L has only one entry
point, namely Pk. Therefore any path from Ph to Pm in Y is a path from Ph to Pk in Y followed by a
path from Pk to Pm in L, and we have

πY(Ph, Pm) = πY(Ph, Pk) · πL(Pk, Pm) (R5)

Fig. 2.1 A path expression example

2.4 An Example

The method of the preceding section will now be illustrated, using the graph of Fig. 2.1. This is a
reducible graph, with a unique loop tree, since the outer loop (induced by {2, 3, 4, 5, 6, 7, 8}) has
exactly one entry point (node 2), while the inner loop (induced by {4, 5, 6}) also has exactly one
entry point (node 4). We adopt the following notation:

• G is the entire graph;
• L1 is the outer loop;
• B1 is the body of the loop L1;

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

618

• L2 is the inner loop;
• B2 is the body of the loop L2.

The steps in the algorithm are now as follows, keyed to the rules (R1) through (R5):

Y h k Rule πY(Ph, Pk)
G 1 1 R1 Λ
G 1 2 R2 a (temporary)
B1 2 2 R1 Λ (temporary)
B1 2 3 R2 b
B1 2 4 R2 b·c (temporary)
B2 4 4 R1 Λ (temporary)
B2 4 5 R2 d
B2 4 6 R2 d·e
L2 4 4 R3 (d·e·f)*
L2 4 5 R4 (d·e·f)*·d
L2 4 6 R4 (d·e·f)*·d·e
B1 2 4 R5 b·c·(d·e·f)*
B1 2 5 R5 b·c·(d·e·f)*·d
B1 2 6 R5 b·c·(d·e·f)*·d·e
B1 2 7 R5 b·c·(d·e·f)*·g
B1 2 8 R5 b·c·(d·e·f)*·d·i ∪ b·c·(d·e·f)*·g·h = b·c·(d·e·f)*·(d·i ∪ g·h)
L1 2 2 R3 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*
L1 2 3 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b
L1 2 4 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*
L1 2 5 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d
L1 2 6 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d·e
L1 2 7 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·g
L1 2 8 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·(d·i ∪·g·h)
G 1 2 R5 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*
G 1 3 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b
G 1 4 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*
G 1 5 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d
G 1 6 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d·e
G 1 7 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·g
G 1 8 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·(d·i ∪ g·h)

2.5 Non-Reducible Graphs

In order to extend this method to a graph G which is not reducible, it is necessary to consider all
possible loop trees of G. In the worst case, there may be an exponential number of such loop trees.
This is therefore not a reasonable method in this case, since Tarjan has given, in [7], a method
which runs in polynomial time.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

619

3 Edge-Disjoint Spanning Trees

3.1 Introduction

In what follows, all graphs are taken to be directed. A rooted graph G contains a vertex r, called
its root, such that for every vertex v in G there is a path from r to v. A spanning tree of G is a
subgraph of G which is a directed tree, and which contains all vertices of G. Two spanning trees
of G are edge-disjoint if they have no edges in common. Such trees have many uses, as noted in
[8].

The discovery that every graph whatsoever has an inherent structure of loops within loops,
representable by a loop tree [1], raises the question as to what such a loop tree must look like, in a
graph having two edge-disjoint spanning trees, each with the root r. We here provide a necessary
and sufficient condition for this, namely that every vertex in G other than r, and every loop in T
not containing r, has at least two entry edges, as these are specified in Definition 3.1 below. We
emphasize that our condition does not provide any improvement in the efficiency of finding two
edge-disjoint spanning trees with the same root; indeed, it is already possible to do this in linear
time [8]. Rather, our condition becomes a way of visualizing graphs which do, and which do not,
have two such spanning trees, in order to improve our informal understanding of them.

We also show that a graph with a unique loop tree, and having at least two vertices, cannot have
two edge-disjoint spanning trees rooted at r.

3.2 Some Lemmas about Loop Trees

Basic loop tree theory was reviewed in section 1 above. Here we will need four more lemmas
about loop trees.

LEMMA 3.1. Given a loop tree T for a graph G, and a cycle C in G, there exists a unique loop L
in T such that C both contains the head of L and is itself contained entirely in L.

PROOF. Clearly C is contained in some non-trivial strong component L of G, which is an outer
loop of G. Suppose first that C does not contain the head h of L. Then we argue by induction on
the number of vertices in L; C is completely contained within the body B of L, and therefore
within some non-trivial strong component L´ of B, where L´ has fewer vertices than L (note that
loops within L´ are also loops within L). Now suppose that C contains h, and, as before, is
contained entirely in L. Here L is unique in this sense because C is contained neither in any other
strong component of G (which must be disjoint from L) nor in any loop contained in L (because
such a loop cannot contain h). This completes the proof.

LEMMA 3.2. Given a loop tree T of a graph G with root r, and any vertex z in G, there is a path
from r to z which includes no loopbacks in T.

PROOF. We order the vertices of G as v1, v2, ..., vn, according to the fundamental theorem of loop
trees. We refer to vi-vj as a normal edge if i < j; that is, if it is not a loopback. We start by showing
that, given any vertex y in G other than r, there is a normal edge to y from some x in G. Otherwise,
the only edges to y would be loopbacks, implying that y is the head of some loop L in T.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

620

Therefore, since y is not r, y is an entry point of L; so there must be an edge to y from some x in G
which is not in L. This edge cannot be a loopback, since a loopback to the head of L is always
from somewhere in L; therefore it is a normal edge. It follows that there is a normal edge to z from
some vertex z1 in G, and then to z1 from some z2, and so on back to r. This produces a path from r
to z containing normal edges only, that is, containing no loopbacks, and completes the proof.

LEMMA 3.3. Given a loop L in a loop tree T of a graph G with root r, and an edge e-h, where h
is the head of L but e is not in L, there is a path from r to e which contains no vertices in L.

PROOF. As before, we order the vertices of G as v1, v2, ..., vn. If the indices of L are vi, vi+1, ..., vj,
then h = vi, as we have seen. Here e-h cannot be a loopback, since then both e and h would have to
be in L. Therefore, e-h is a normal edge, and e = vk for k < i. By Lemma 3.2, there is a path π from
r to e involving no loopbacks; and all the vertices of π must then also have indices less than i, and
thus cannot be in L. This completes the proof.

LEMMA 3.4. Given a loop L in a loop tree T of a graph G with root r, there is a path from r to
the head h of L which contains no vertices in L other than h.

PROOF. If h = r, we are done. Otherwise, h is an entry point, and there is an edge e-h, where h is
not in L. The lemma follows by concatenating e-h to the end of the path from r to e which exists
by Lemma 3.3.

3.3 Bridges in Graphs

A bridge in a graph G with root r is an edge v-w in G which is included in every path from r to w.
Our work is based on the following result, cited by Tarjan [8], which notes that it follows from
more general work of Edmonds [9].

THEOREM 3.1. A graph with root r has two edge-disjoint spanning trees, each with root r, if and
only if it has no bridges.

This is an immediate corollary of Lemma 1 of [8], which is a bit more general; it says that every
bridge in G must be in every spanning tree with root r, and that there always exist two spanning
trees, having root r, whose only common edges are the bridges in G.

Note that the definition of graphs in [8] does not allow them to have self-loops; however, Theorem
3.1 remains true, even in the presence of self-loops. Let G be a graph with root r, and let G´ be the
result of eliminating all self-loops from G. A self-loop cannot be in a spanning tree, since a tree
contains no cycles; hence G has two edge-disjoint spanning trees if and only if G´ does. This
holds, by the theorem, if and only if G´ has no bridges. However, a self-loop can never be a
bridge, by definition; so G´ has no bridges if and only if G does not.

The definition of graphs in [8] also allows them to have multiple edges. Loop trees were originally
developed for graphs without multiple edges, but the theory is easy to generalize; a strong
component containing an edge v-w must contain any further edges from v to w. Consider now a
graph G with root r, and with a loop tree T. Let us replace each bridge v-w in G by two edges,
each going from v to w, producing a graph G´. Clearly a multiple edge cannot be a bridge, since
any path from r to w could always use a different edge from v to w; thus G´ has no bridges, and

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

621

yet G´ has the same loop tree T that G does. Thus any loop tree whatsoever can be a loop tree of a
graph with no bridges, and hence with two edge-disjoint spanning trees rooted at r. It follows that
the existence of such spanning trees is not derivable from the form of T, if multiple edges are
allowed. In what follows, therefore, we assume that our graphs have no multiple edges.

We now consider certain conditions under which a graph with the root r has a bridge v-w. The
most obvious case is that in which w has in degree 1; so in fact all paths whatsoever, going to w,
must use the edge v-w. There is, however, another general case, involving loop trees. Let w be the
unique head of a loop L, somewhere in a loop tree of a graph. Suppose that there is only one edge,
v-w, which goes to w from outside L (although there will be at least one other edge to w from
inside L). Then v-w is a bridge. Any path from r to w must enter L at some point, which must be
an entry point of L; and, by assumption, this must be w, and the only way to get to w from outside
L is through the edge v-w.

Both kinds of bridge are illustrated in Fig. 3.1, where the root is taken to be the vertex A. The
edges B-C and C-D are bridges, here, since C and D both have indegree 1. The vertex B has in
degree 2, but the edge A-B is still a bridge because it is the only way to get to B from the root (A).
Note that D-B is not a bridge, since we can get from A to B without going through D-B.

3.4 A Loop Tree Condition for Bridges

We now give a necessary and sufficient condition for an edge in a rooted graph to be a bridge.

THEOREM 3.2. An edge v-w in a graph G with root r is a bridge in G if and only if either:

 (a) w has indegree 1 in G, or
 (b) w is the unique entry point of a loop L, somewhere in a loop tree in G, and v is not
contained in L, and v-w is the only edge to w from outside L.

Fig. 3.1. Bridges in a graph

PROOF. We have seen in section 3.3 above that any edge satisfying either of our conditions (a)
and (b) is a bridge. We now show that these are the only two kinds of bridge that G can have.
Suppose that v-w is a bridge. If there is no edge u-w for u ≠ v, then we have case (a) above. Now
suppose that such an edge u-w exists. Since G is a rooted graph, there is a simple path π from r to
u. Suppose that π did not include v; then, by concatenating the edge u-w to the end of π, we would
obtain a path from r to w which does not include v, contradicting our assumption that v-w is a
bridge. Therefore π must include v.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

622

In particular, there are simple paths π1, from r to v, and π2, from v to u. Here π1 does not include
the edge v-w; otherwise it would have to go back to v, and it would not be a simple path. Suppose
now that π2 does not include the edge v-w. It would then be possible to go from r to v (along π1),
from there to u (along π2), and then along the edge u-w. This gives a path from r to w that does
not include the edge v-w, which also contradicts our assumption that v-w is a bridge. Therefore π2
includes the edge v-w; and, in particular, there is a path from w to u. This path, followed by the
edge from u to w, constitutes a cycle C.

We now show that C cannot include v. Suppose the contrary; then, in particular, there are paths
π3, from w to v, and π4, from v to u. Here π4 does not include w, and thus does not include the
edge v-w. Thus π1, from r to v, followed by π4, from v to u, followed by the edge u-w, provides a
path from r to w without including the edge v-w, which is contained in neither π1 nor π4. Once
more this contradicts our assumption that v-w is a bridge; therefore C does not include v.

Now consider a loop tree T for G. Let L be the loop which exists by Lemma 3.1, so that C
contains the head h of L and is itself entirely contained within L. We show that L cannot include v.
Suppose the contrary; then, since C does not include v, there is a path π5 from h to w, along C, that
does not include v. By Lemma 3.4, there is always a path π6 from r to h which includes no
vertices in L other than h, and which, therefore, also does not include v (note that v ≠ h, since C
contains h but not v). Concatenating π6 and π5, we obtain a path from r to w that does not include
v, again contradicting our assumption that v-w is a bridge.

Since w is in L, while v is not, it follows, by definition, that w is an entry point of L. We now
show that w is the only entry point of L. Suppose that L has another entry point q ≠ w. Consider a
second loop tree T´, for which q is the head of L. By Lemma 3.4, there is then a path π7 from r to
q which contains no vertices in L other than q. Therefore, π7 does not contain w and thus does not
contain the edge v-w. Since L is strongly connected, there is a path π8 in L from q to w. Here π8
also does not contain the edge v-w, since π8 is entirely within L, while v is outside L.
Concatenating π7 and π8, we obtain a path from r to w which does not contain the edge v-w; and
once more this contradicts our assumption that v-w is a bridge.

Finally we show that v-w is the only edge to w from outside L. Suppose that there is an edge e-w
from outside L, where e ≠ v. By Lemma 3.3, there is a path π9 to e from r which contains no
vertices in L, and therefore does not include the edge v-w. Concatenating the edge e-w to π9, we
obtain a path from r to w that does not include the edge v-w. Again this contradicts our assumption
that v-w is a bridge, and completes the proof.

3.5 The Main Result on Edge-Disjoint Spanning Trees

We now provide a necessary and sufficient condition for there to be two edge-disjoint spanning
trees in the graph G, with the same root r; or, what is the same thing (by Theorem 3.1), for there to
be no bridges in G. This is based on the following definition.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

623

DEFINITION 3.1. Given a graph G with a loop tree T, an entry edge of a vertex w in G is an
edge to w from some vertex v ≠ w. An entry edge of a loop L in T is an edge to some vertex w in
L from some vertex v outside L.

THEOREM 3.3. A graph G with root r and loop tree T has no bridges (and therefore has two
edge-disjoint spanning trees with root r) if and only if every vertex of G other than r, and every
loop of T not containing r, has at least two entry edges.

PROOF. It suffices to show that the condition above holds if and only if G has no bridge of either
type (a) or (b), as specified in Theorem 3.2. Let T be a loop tree of G, and let w be a vertex in G,
with w ≠ r. Since G has the root r, there is a simple path from r to w in G. Let v-w be the last edge
on this path; here we must have v ≠ w. If w has indegree 1, then w has only one entry edge. If w is
the unique entry point of a loop L in T, and v is not contained in L, and v-w is the only edge to w
from outside L, then L has v-w as its only entry edge, and L does not contain r (since otherwise it
could not contain the entry point w). Conversely, suppose that w does not have at least two entry
edges. Since G has the root r, and w ≠ r, w has one entry edge v-w (with v ≠ w); hence v-w is a
bridge of type (a). Likewise, if L does not contain r, and does not have at least two entry edges, it
must have one entry edge, say v-w. In that case w is the only entry point of L, and v is not con-
tained in L, and v-w is the only edge to w from outside L (otherwise w would have two entry edges
from vertices unequal to w). Therefore, v-w is a bridge of type (b), completing the proof.

3.6 Innermost Loops and Multiple Entry Points

Theorem 3.3 allows two entry edges to the same entry point of a loop. We now show that this is
not allowed for innermost loops, where we disregard self-loops in taking a given loop to be
innermost. This result will be needed in our treatment, in section 3.7 below, of a graph having a
unique loop tree.

LEMMA 3.5. A graph G with root r, and with no bridges, and with at least one vertex other than
r, must have at least one loop not containing r, and not a self-loop.

PROOF. Let v1 be any vertex of G, other than r. Here v1 must have at least two entry edges, by
Theorem 3.3, and at least one of these is from a vertex (call it v2) other than r, since G has no
multiple edges. Similarly, v2 must have at least two entry edges; and at least one of these is from a
vertex (call it v3) other than r, and so on. This produces a sequence vk of vertices, with an edge
from vk+1 to vk for all k ≥ 1. Since G is finite, this sequence must eventually repeat, say vi = vj,
for i < j, so that vj-vj–1-...-vi (= vj) is a cycle C, not containing r.

Let B be the graph obtained from G by removing any edges of G which lead to r. Here C is
contained in B, and therefore in some strong component L of B; and L does not contain r, since it
contains no edges which lead to r. There are now two cases; L may be a strong component of G,
or, if it is not, it is contained in some strong component of G. This must have r as its only
additional vertex; and thus r is its head and L is its body. In either case, L is a loop in G, not con-
taining r. Here v2 ≠ v1 in the above, by Definition 3.1, since the edge from v2 to v1 is an entry
edge of v1; so L is not a self-loop. This completes the proof.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

624

The condition that G have at least one vertex other than r is clearly necessary here; indeed, if G
has just the vertex r, and no edges, then it has no bridges, and no loops.

THEOREM 3.4. Let G be a graph with root r, and with a loop tree T. If G has no bridges, then
any loop L in T, other than a self-loop, and containing no inner loops of its own, other than self-
loops, either contains r or has at least two entry points.

PROOF. Let L be as in the statement of the theorem, except that it has only one entry point w and
does not contain r. Since L is not a self-loop, it contains some vertex z ≠ w. By Theorem 3.3, L
has two entry edges; these are then edges u-w and v-w. Since G has no bridges, it has two edge-
disjoint spanning trees T1 and T2, with root r, by Theorem 3.1. Since T1 is a spanning tree, it
includes z, so that there is a simple path πz from r to z in T1. Since z is in L, and w is the only
entry point of L, πz must enter L at w. Let πź be that part of πz which leads from w to z. Then πź
is also a simple path, and thus does not include w except at the start; therefore πź does not include
any loopbacks of L. Also, πź never leaves L, because otherwise it would have to re-enter L at w,
since w is the only entry point of L. Therefore πź is completely contained in the body B of L.
Since this is true of any z in L, the union of all πź over all z in L defines a spanning tree T1´ of B,
with root w. Applying all these arguments to T2, we obtain a spanning tree T2´ of B, also with
root w. The trees T1´ and T2´ are edge-disjoint, since T1 and T2 are edge-disjoint. It follows from
Theorem 3.1, applied to B (which has the root w), that B has no bridges. Since B contains z ≠ w, it
now follows from Lemma 3.5 that B contains a loop L´, not a self-loop, with w not in L´. Here L´
is a loop inner to L, contradicting our hypothesis, and completing the proof.

A fundamental property of loop trees is that a loop containing the root r cannot contain any entry
points at all; this is why that case is excluded from Theorem 3.4. Indeed, a graph with no bridges
(such as, for example, a complete graph on more than two vertices) can easily have a loop
containing r.

3.7 Unique Loop Trees and Edge-Disjoint Spanning Trees

We now show that a graph with root r, and with a unique loop tree — that is, either one with no
loop at all, or one in which every loop has a unique head — must have at least one bridge, and
thus, by Theorem 3.1, cannot have two edge-disjoint spanning trees rooted at r. The only
exception to this is a graph with just one vertex.

LEMMA 3.6. Let G be a graph with root r and loop tree T; let L be a loop in G, which contains r;
and let B be the body of L. If L has no bridges, then neither does B.

PROOF. If L has no bridges, then it has two edge-disjoint spanning trees T1 and T2, rooted at r,
by Theorem 3.1. But T1 and T2 cannot contain loopbacks to r; otherwise they would contain
cycles, and a tree cannot contain cycles. Thus T1 and T2 are also edge-disjoint spanning trees of
B, which shows that B has no bridges, again by Theorem 3.1.

THEOREM 3.5. A graph G, rooted at r, with a unique loop tree T, and containing at least two
vertices, must have a bridge.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

625

PROOF. Suppose the contrary, so that G has no bridges. Since G has at least two vertices, it has
at least one loop in T, which is not a self-loop, by Lemma 3.5. Clearly, any self-loop which is a
loop in T must be a leaf in T; let us remove from T any such leaves, producing T´. Let L be a leaf
in T´. There are now two cases. Suppose first that L does not contain r; it then satisfies the
conditions of Theorem 3.4, and thus has at least two entry points, say x and y. Therefore G has at
least two loop trees, since there is at least one of these with x and with y as the head of L. This
contradicts our hypothesis.

Now suppose that L contains r, so that r is the head of L. Let B be the body of L, and consider a
bridge v-w in L, so that any path from r to w in L contains v-w. However, any path from r to w in
G must stay entirely in L; otherwise, it would have to re-enter L through an entry point, and, since
L contains r, it has no entry points. Hence v-w would in fact be a bridge in G. This contradiction
shows that L, in fact, has no bridges; and, by Lemma 3.6, neither does B. Since L is not a self-
loop, it contains at least two vertices, as does B. Therefore, by Lemma 3.5 applied to B, it contains
a loop L´, not containing r, and not a self-loop. Here L´ is a loop inner to L, contradicting our
assumption that L is a leaf in T´, and completing the proof.

The condition that G have at least two vertices is necessary, since a graph with just one vertex has
a unique loop tree but has no bridges. A self-loop, even in this case, is not a bridge, since it is not
on the null path from r to itself. Also, a graph with just one vertex r does have two edge-disjoint
spanning trees, namely T1, which contains just r and no edges, and T2 = T1. Even though T1 and
T2 are equal, they are still edge-disjoint; they have no edges in common, since they have no edges
at all.

It is possible for a graph, rooted at r, and having an outer loop which is a self-loop, to have two
edge-disjoint spanning trees, both rooted at r, as shown in Fig. 3.2. It is also possible, in a graph
having two edge-disjoint spanning trees, for a loop which is not an innermost loop to have a single
entry point, as, for example, the loop L2 in Fig. 3.3. In both cases, one spanning tree is shown
with bold gray arrows, and the other one with bold black arrows; edges with light black arrows are
not in either spanning tree. Note that every vertex in each of these graphs, other than r, has at least
two entry edges, although r has no entry edges at all.

 Fig. 3.2. Edge-disjoint spanning tree examples Fig. 3.3. More examples

In the case of a graph G with multiple edges, the most we can say here is that, if G has a unique
loop tree and contains at least two vertices, it must have an edge v-w which is either a bridge, or
would be a bridge if all other (multiple) edges from v to w were removed from G.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

626

4 Feedback Vertices

In this section, vertices are what are often called nodes in a graph. A feedback set is a set of ver-
tices in a strongly connected graph, such that every cycle in the graph must contain at least one
vertex in the set. If a feedback set contains just one vertex V, then V is known as a feedback
vertex. The discovery that every graph whatsoever has an inherent structure of loops within loops,
representable by a loop tree [1], raises the question as to what such a loop tree must look like, in a
graph having a feedback vertex.

We here provide a necessary and sufficient condition for a graph G to have a feedback vertex. The
condition is that G have a loop tree T with respect to which G has no parallel loops and no
conditional loops, in a sense which we define; and that its innermost loop L, which must be unique
to T, contains a vertex which covers every other vertex in L, as this is defined in [3]. We
emphasize that our condition does not provide any improvement in the efficiency of finding all
feedback vertices in a graph; indeed, it is already possible to do this in linear time [4]. Rather, our
condition becomes a way of visualizing graphs which do, and which do not, have feedback
vertices, in order to improve our informal understanding of them.

Feedback vertices, and feedback sets in general, have important applications in logic design [3].
They are also useful in the construction of cut points, as part of the proof of correctness of a
program [10]. We have done previous work [11] which attempts to develop what would be called,
using the terminology above, a “good” feedback set for this purpose.

4.1 Graphs with Feedback Vertices

In order to motivate our theorem, let us first look at a few graphs which have feedback vertices.
Clearly, if a graph G contains one and only one cycle, then every vertex in that cycle is a feedback
vertex. More generally, if G has only one strong component L, whose body is a dag, then the head
of L is a feedback vertex. There are, however, more general such graphs; as, for example, that of
the matrix product program of Fig. 4.1. Here there are three nested loops, as indicated by the
structured program at the top. This is converted into an unstructured program, whose flowgraph is
then given. It should be clear, however, that the vertex containing the statement S =
S+A[I,K]*B[K,J] is a feedback vertex. This example may be generalized to allow any number of
nested loops, rather than just three.

4.2 Graphs without Feedback Vertices

We now look at some conditions under which a graph cannot have a feedback vertex. The most
obvious of these involves what we may call parallel loops; that is, two or more loops in a loop tree
that are siblings (that is, they have the same parent). Since such loops are strong components of
the body of their common parent, they are disjoint and thus contain disjoint cycles; so a graph
having parallel loops cannot have a feedback vertex.

If T contains no parallel loops, then there can be at most one non-trivial strong component L1 of
G. The body B1 of L1 can then contain at most one non-trivial strong component L2, and so on.
Every loop tree of such a graph, therefore, is linear in the following sense.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

627

DEFINITION 4.1. A loop tree T of a graph is linear if there is some n ≥ 0 such that T comprises
n loops L1, ..., Ln with each Li being an inner loop within Li–1 for 2 ≤ i ≤ n.

Another such condition involves a loop that is not always done when its parent loop is done. We
refer to this as a conditional loop, since the most common form of it is an inner loop L´ within an
if-statement in its parent loop L. There is thus a cycle C in L which is disjoint from L´. Since L´
also contains at least one cycle, there are two disjoint cycles in the graph, and therefore there can-
not be a feedback vertex. It will be necessary, however, to use a slightly more general definition of
a conditional loop; instead of requiring that C be in L, we merely require that C be not disjoint
from L.

Fig. 4.1. A matrix-product program with a feedback vertex

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

628

We may justify this choice informally as follows. Suppose that H is the head of L, and that H is
immediately followed by a vertex N which is a conditional exit from L. Thus it is possible to enter
L at H, go to N, and take the conditional exit without doing L´. Here, then, L´ is a conditional loop
in an informal sense, since L can be entered without doing L´. On the other hand, if L is an outer
loop of the program, and there is no cycle in L which is disjoint from L´, there can still be a
feedback vertex in L´. However, now suppose that L itself is contained in another loop K. There
will then be a path which starts at the head X of K, goes through H and N and back into K, and
eventually back to X. This will be a cycle, disjoint from L´, and so G cannot have a feedback
vertex.

Accordingly, we make the following definition.

DEFINITION 4.2. A conditional loop in a loop tree T of a graph G is a loop L in T, such that
there is a cycle C in G, disjoint from L, but not disjoint from the parent of L in T.

The two kinds of conditional loop are illustrated in Figs. 4.2 and 4.3. In Fig. 4.2, the inner loop is
conditional in the ordinary sense; it is not done at all, within the outer loop, when the cycle
involving cond1 and cond2 is done. The structured form of this loop is shown at the top left; a
while loop inside an if statement, which is inside another while loop, as here, always leads to this
kind of conditional loop. In Fig. 4.3, the loop L3 is not conditional in this sense, but it is still
conditional because there is a cycle, A-D-E-A, which is disjoint from L3, but not disjoint from L2,
the parent of L3.

Fig. 4.2. A conditional loop

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

629

4.3 Loop Covers

We now extend some terminology used in [3]. A vertex x is said to cover another vertex y, in a
graph G, if all cycles in G which contain y also contain x. A feedback vertex for a graph, then, is
one which covers every other vertex in the graph. We here define a local version of this.

DEFINITION 4.3. A vertex x is said to cover a loop L if it covers every vertex in L.

We will be concerned exclusively with vertices which cover innermost loops. In particular, if such
a loop L has exactly one entry point H, then we can easily see that H covers L. In fact, let y be a
vertex in L, and let C be a cycle containing y. If C is not entirely contained in L, it must contain H
because H is the only entry point of L, so that C can enter L only through H. If C is entirely con-
tained in L, then again C must contain H, because L is an innermost loop and so the body of L is a
dag, which cannot contain the cycle C.

There are, however, other ways that a loop can be covered by one of its vertices, as shown in Fig.
4.4; here that vertex is marked as V, in each case. Note that, even if a loop has only one exit point,
that point might not be a loop cover; thus the vertex X in Fig. 4.5, for example, does not cover A,
since the cycle A-B-C-A contains A but does not contain X. Another example is shown in Fig.4.6;
this is the same graph that was given in Fig.4.3, except that B, rather than D, is now the head of
L2. This time, there is no L3, because the body of L2, with B as its head, is a dag. Here there are
two disjoint cycles, namely A-D-E-A and B-C-F-B, having non-empty intersections with L2; so
no vertex can cover L2.

4.4 The Main Result on Feedback Vertices

THEOREM 4.1. A graph G has a feedback vertex if and only if it has a loop tree T for which all
of the following are true:

Fig. 4.3. Another kind of conditional loop

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

630

Fig. 4.4. Examples of a loop being covered by one of its vertices

Fig. 4.5. Loops without loop covers Fig. 4.6. More loops without loop covers

 (a) G has no parallel loops (and therefore T is linear);
 (b) G has no conditional loops;
 (c) The innermost loop of T contains a vertex V which covers it (as in Definition 4.3).

PROOF. We saw in section 4.2 above that, if G has parallel loops, or a conditional loop, it cannot
have a feedback vertex. Also, if G has such a vertex V, then V must be in the innermost loop L, in
any loop tree. This is because it must, in particular, be contained in every cycle in L; and we know
that L contains at least one cycle, because, as a loop, it is non-trivial strongly connected. Here V,
being a feedback vertex, must, in particular, cover L. Thus the conditions (a)-(c) above are
necessary; we now show that they are sufficient.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

631

As in Definition 4.1, we denote the loops by L1 through Ln. Let Hi be the head of Li, for 1 ≤ i ≤ n,
and let C be any cycle in G. By Lemma 3.1, there is some Lk such that C contains Hk and is
contained entirely in Lk. We now show, by induction on i, that C has a non-null intersection with
Li for k ≤ i ≤ n, and thus, in particular, with Ln. By hypothesis, this holds for i = k. In general, if C
has a non-null intersection with Li, but not with Li+1, then Li+1 is, by Definition 4.2, a condi-
tional loop, contrary to hypothesis. Thus C has a non-null intersection with Ln, and therefore
contains V, since V covers Ln. This completes the proof.

4.5 Feedback Vertices and Multiple Loop Trees

The above theorem places strong restrictions on the loop tree T; this does not, however, preclude a
graph with a feedback vertex from having more than one loop tree. Indeed, it might have two loop
trees with different heights, as shown in Figs. 4.7 and 4.8. Here, if H1 is the head of L1, as in Fig.
4.7, there is no inner loop; if H2 is the head of L1, as in Fig. 4.8, then L1 has the inner loop L2.
However, in both cases, the loop tree is linear; and the feedback vertex F (or H1, for that matter) is
contained in the innermost loop, in each case, and covers that loop.

 Fig. 4.7. Multiple loop trees Fig. 4.8. Further multiple loop trees

4.6 Further Investigations

The determination as to whether a feedback set of size n exists, within a given graph, is NP-
complete [12]. By contrast, a loop tree, as defined in section 1 above, may be found in polynomial
time. (The determination of all loop trees remains exponential, although for a low-level reason:
the total number of loop trees for a graph may have exponential size; indeed, every permutation of
the vertices of a complete graph corresponds to a loop tree for that graph.) In view of these facts,
we will start by considering applications of feedback sets.

Two such applications are mentioned in [4]. The first is concerned with the graphs of logic
circuits, and is treated in [3]. The second, treated in [10], is directly concerned with flowgraphs,
and is also related to some of our own earlier work. We take this up here at some length, and, in
particular, we question whether the “best” feedback set, in that context, is the one with minimum
size.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

632

Also, in this section, we relate inner loops, in the sense of section 1 above, to Smith and Walford’s
sets F, GF, and GR, introduced in [3]. We show that any graph with a feedback vertex has just one
loop in an extended sense, although there might be more than one loop in its loop tree. We obtain
a connection, in a special case, between loop trees and the concept of depth first numbering. Final-
ly, we use loop trees to estimate the size of a minimal feedback set.

We note the following terminological differences among these papers:

 Garey and Tarjan [4] Vertex Arc Cycle
 Smith and Walford [3] Vertex Arc Loop
 Alternative notation Node Edge Cycle

4.7 Program Correctness and Feedback Sets

Suppose we wish to prove the correctness of a program having a given flowgraph. We assume that
our program is not structured, and may contain arbitrary go-to statements; in loop tree notation,
there might be more than one loop tree for the graph. This may be accomplished in eight steps (see
[11]):

(1) Identify the terminal vertices of the graph and assign an exit assertion to each one; this is
an assertion concerning the variables of the program which will hold at the time that that
exit is taken.

(2) Identify the initial vertex of the graph and assign an entry assertion to it; this is an
assertion concerning the variables of the program which must hold when the program
starts. (If the graph has more than one initial vertex, the entire proof of correctness is
redone for each initial vertex.)

(3) Make a statement of correctness of this program: if it starts at the initial vertex with the
entry assertion holding, then (a) it will not loop endlessly; (b) it will not try to execute
any statement S at a time when S is not well defined; and (c) when it gets to a terminal
vertex, the corresponding exit assertion will hold.

(4) Identify intermediate assertion points, or what Manna [10] calls cutpoints; there must be
one such point in every cycle of the flowgraph. Associate an intermediate assertion with
every such point. Define an assertion point of the program as either an initial vertex, a
terminal vertex, or a cutpoint.

(5) Identify the verification paths in the program; these are paths from one assertion point to
another, with no assertion points in between. The assertion associated with the first (last)
statement in a path is called the initial (final) assertion of that path.

(6) State the verification conditions of the program, one associated with each verification
path. Such a condition says that if the path is started with its initial assertion valid, then it
will not try to execute any statement S at a time when S is not well defined, and that,
when it reaches the end of that path, its final assertion will be valid.

(7) Prove all the verification conditions.
(8) Prove that the program terminates. (The techniques for this are relatively simple

extensions of those above; we omit the details.)

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

633

Feedback sets arise in step (4) above, since the condition on a set of cutpoints is that every cycle
in the flowgraph must contain at least one cutpoint. A simple way to choose cutpoints is to choose
them as the destination points of reverse edges in the flowchart, relative to some ordering of the
vertices (normally the order in which the corresponding program is written).

4.8 Feedback Set Measures

Let us now consider what makes a “good” set of cutpoints, or feedback set. The treatment given in
[3] concerns finding such a set with as few vertices as possible; that of [12] shows that this
problem is NP-complete. There are two possible general approaches to this situation. We may try
to find a solution to the problem which, although exponential in the general case, “appears to be
quite efficient for large graphs arising in practical applications” (see the abstract of [3]). Or we
may question whether, for the purposes of program correctness proof, we actually want to
minimize the number of vertices in a feedback set.

In [11] we address the problem of finding a “best” set of intermediate assertion points, by which
we mean one which minimizes the total length of all verification conditions as described in step
(6) above. Since these are what have to be proved, we would like their total size to be as small as
possible. Provided that we use internal size only (that is, not counting the lengths of the initial and
final assertions in each verification condition, but only the lengths of what arises from the
statements in the path), we show that this is minimized by choosing, as cutpoints, exactly the join
points; that is, those of indegree greater than 1, in the program. In the present context, this has the
further advantage that such points may be determined immediately from the flowgraph.

4.9 Graph Partitions and Loop Trees

In [3], as part of their algorithm for finding minimal feedback sets, Smith and Walford introduce
sets F, GF, and GR. Here F is a set of vertices of the graph G, and G is then partitioned into GF

and GR (that is, GF ∩ GR = Ø and GF ∪ GR = G). A vertex is in GF if and only if it is contained
in at least one cycle of G which also contains a vertex in F, and is not contained in any cycle of G
which does not contain a vertex of F.

We may note first that F is a feedback set of a strongly connected graph G if and only if the
corresponding GF = G (that is, GR = Ø). If F is not a feedback set, then there exists at least one
cycle C in G which does not contain any elements of F, and any vertex V in C cannot be in GF
and so must be in GR. If F is a feedback set and V is a vertex in G, then V is contained in some
cycle (since G is strongly connected); any cycle containing V must contain some element of F, by
definition of a feedback set, and so V is in GF, thus implying that GF = G.

Now let the entire graph G be strongly connected, so that it is an outer loop, in our sense. Let F be
a one-element set, containing only the head H of G. Then GR consists precisely of all vertices in
inner loops of G. Note that if V is in an inner loop, that loop is in the body B of G and cannot
contain H, so V is not in GF. Conversely, if V is not in GF, then V is in some cycle of G that does
not contain H. That cycle is completely contained in B, and thus in some strong component of B,
that is, an inner loop of G.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

634

We may extend this example by including, within F, a single chosen head for each inner loop, in
addition to H. The corresponding GR now consists precisely of all vertices in all second-level
inner loops of G. Continuing this process recursively, we arrive at a set F containing the head of
every loop in some specific loop tree of G; and this time GR = Ø. This is, therefore, one way of
getting a feedback set F (see also section 8 below), although this F is not necessarily of minimum
size.

4.10 Feedback Vertices and Single Extended Loops

Given any n > 0, we may construct a graph having n nested loops, and therefore with a loop tree
of height n, but still having a single feedback vertex, as noted in section 4.9 above. Despite this,
however, every graph having a feedback vertex must have one and only one “loop” L in an
extended sense, namely that the head of L is not necessarily an entry point of L. As an example,
consider the matrix product program of Fig. 4.1, namely:

 I = 1 | FOR I = 1 TO N {
1 J = 1 | FOR J = 1 TO N {
2 S = 0 | S = 0
 K = 1 | FOR K = 1 TO N
3 S = S+A[I,K]*B[K,J] | {S = S+A[I,K]*B[K,J]}
 K = K+1 | C[I,J] = S
 IF (K <= N) GOTO 3 | }
 C[I,J] = S | }
 J = J+1 | OUTPUT "END"
 IF (J <= N) GOTO 2 |
 I = I+1 |
 IF (I <= N) GOTO 1 |
 OUTPUT "END" |

This program may be rewritten as follows:

 I = 1 | I = 1
 GOTO 1 | GOTO 1
3 S = S+A[I,K]*B[K,J] | WHILE (TRUE) {
 K = K+1 | S = S+A[I,K]*B[K,J]
 IF (K <= N) GOTO 3 | K = K+1
 C[I,J] = S | IF (K <= N) CONTINUE
 J = J+1 | C[I,J] = S
 IF (J <= N) GOTO 2 | J = J+1
 I = I+1 | IF (J > N) {
 IF (I > N) GOTO 4 | I = I+1
1 J = 1 | IF (I > N) BREAK
2 S = 0 | 1: J = 1
 K = 1 | }
 GOTO 3 | S = 0
4 OUTPUT "END" | K = 1
 | }
 | OUTPUT "END"

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

635

It is not difficult, although a bit tedious, to check the logic of the two programs above and verify
that they are the same. The head of the “loop” L, in the rewritten program, is the statement with
label 3, and this is not an entry point of L. It should be clear, from this example, that rewriting a
program in this way does not necessarily make it easier to understand, even though here we are
replacing three loops by one. Also, although the statement with label 3 is also a feedback vertex
for the graph, that fact does not help in the process of proving the program correct. Even though
there is now only one intermediate assertion point, the total length of all the verification
conditions of the program actually increases when this choice is made, as noted in [11].

In general, however, any graph with a feedback vertex V may be rewritten in this way. Here V
becomes the head of L; with respect to V, the body of L is a dag, because otherwise it would have
a cycle not containing V, contradicting the definition of a feedback vertex. However, in many
cases (as above), V is not an entry point of L, so the graph does not necessarily have a loop tree of
height 1.

4.11 Depth First Numbers and Loop Trees

The (preorder) depth first numbers (DFNs) of the vertices of a graph (also sometimes called
discovery times) are in the sequential order in which they are encountered in a depth first search
(DFS). Thus the DFN of the kth vertex to be encountered is k. Depth first numbers are treated in
[4], and it is natural to ask whether there are connections between them and loop trees. At least in
one special case, there is, indeed, a strong connection.

Suppose that the loop L has no exits, that is, edges from a vertex in L to a vertex outside L. (This
is uncommon in flowgraphs, although it frequently occurs in other kinds of graphs, such as call
graphs.) Then there exist integers i and j, for any DFS, such that the DFNs of the vertices of L are
precisely i, i+1, ..., j. Here i is the DFN of the first entry point of L (call it H) to be encountered in
this DFS. No vertices of L, therefore, are encountered before H, and thus the DFN of such a vertex
cannot be less than i. Since there are no exits from L, the only way the DFS can leave L is by
popping H from its stack. Before this is done, every vertex in L must be encountered, since L is
strongly connected. If j is the largest DFN of a vertex in L, therefore, all vertices of L, and only
these vertices, have DFNs in the range from i through j.

4.12 Estimating the Size of a Minimal Feedback Set

We finally introduce lower and upper bounds on the size of a minimal feedback set, as an
extension of the process of finding loop trees.

THEOREM 4.2. Let G be a graph having a loop tree T with n vertices, m of which are leaves of
T. Let k be the size of a minimal feedback set for G. Then m ≤ k ≤ n–1.

PROOF. We first note that any two leaves of T represent disjoint subgraphs of G. In fact, let U
and V be leaves, and, among all common ancestors of U and V, let X be the one farthest from the
root. Let X represent a subgraph with body B, and let Y be that child of X which is also an
ancestor of U. By the choice of X, we see that Y is not an ancestor of V, and therefore X has
another child, Z, which is an ancestor of V. Since Y and Z are children of X, they represent
distinct, and therefore disjoint, strong components of B. Since U and V are descendants of X and
Y respectively, they also represent disjoint subgraphs.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

636

It follows that the m leaves of T represent mutually disjoint strongly connected sets, each of which
contains at least one cycle. Any feedback set of G must contain one vertex in every such cycle,
and its size must therefore be at least m. On the other hand, every vertex in T, other than the root,
represents a loop with a head, and any cycle in the graph must pass through one of these heads.
The set of all n–1 of these heads, therefore, is a feedback set for G, completing the proof.

If G has more than one loop tree, then, by repeatedly applying the logic above, we see that m and
n may be taken here, respectively, as the maximum value of m and the minimum value of n, over
all loop trees of G. Such further tightening of these bounds, however, cannot be expected to go too
far, in light of the fact that the problem of determining a minimum feedback set, in general, is NP-
complete ([12], as noted in [4] and [3]).

5 Clustering Trees

5.1 Loop Trees and their Generalizations

We shall need two generalizations of the concept of a loop tree, as introduced in Section 1 above.
Suppose first that we were to include trivial, as well as non-trivial, strong components in the tree,
at every level. This would make the construction simpler and more general, in one sense; but the
name “loop tree” would no longer be appropriate, since trivial strong components are not loops.
Hence we use the term generalized loop tree for this case. Also, any graph has at least one loop
tree, but we will here be concerned only with strongly connected graphs. For such a graph G,
every loop tree has G as the root, whose only child is again G. This redundancy is unnecessary in
our context, and we therefore speak of the basic loop tree of a strongly connected graph, namely
the subtree whose root is the single child of the actual root. Combining these two constructions,
we obtain the basic generalized loop tree (or BGL tree) of a strongly connected graph.

5.2 Clustering Trees

Our object is to compare these BGL trees with what Tarjan [13] calls decomposition trees; these
have applications in cluster analysis. Since loop trees also involve decompositions, we will use a
separate term, clustering trees, to refer to the trees studied in [13]. It is assumed that we have a
strongly connected graph G in which all edges have distinct weights. The leaves of the clustering
tree are the vertices of G, and we build this tree from the bottom up, adding edges in increasing
order by weight. Whenever the addition of an edge causes two or more components A1, ..., Ak to
coalesce into a single component A, we make A the parent of A1, ..., Ak in the tree. When the last
edge is added, the tree is complete, with G as its root.

Clustering trees and loop trees have very different motivations. Clustering trees are used in cluster
analysis of data with an asymmetric similarity measure. The “distance” from A to B is not
necessarily the same as that from B to A (as, for example, with flight times between cities,
affected by prevailing winds). There is, however, always a “distance” from every vertex to every
other, and these distances, or weights, are always distinct. The aim here is to find clusters, that is,
groups of vertices, every one of which is close to every other one. Loop trees, by contrast, are
used in the analysis of flowgraphs. The only obvious notion of distance, here, is distance of one
statement from another in a program. However, here the vertices in the desired groups, or loops,
might be far away from each other in the program, and our task is to find the loops.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

637

Nevertheless, these two kinds of decomposition tree, for a graph G, have several similarities. In
each of these trees, the root represents G; every vertex in the tree represents a strongly connected
subgraph of G; and, if N1 is the parent of N2 in the tree, then G1 contains G2, where N1
represents G1 and N2 represents G2. It therefore becomes a matter of mathematical interest to
determine relations between these two kinds of tree.

5.3 Top-Down Construction of Clustering Trees

We find it useful to provide an alternative definition of a clustering tree. First we notice that, in
the construction of such a tree, the actual values of the weights are never used, but only their
order. Since the weights are all distinct, their order is unique. Formally, we may define an edge-
ordered graph as one with n edges given in the order e1, e2, ..., en. A graph in which the edges
have distinct weights may then be identified with an edge-ordered graph, in which the kth smallest
edge, in order of weight, is ek, for 1 ≤ k ≤ n. In what follows, therefore, we ignore weights, and
assume that we have an edge-ordered graph.

Secondly, our definitions become more precise when our tree is built top-down rather than
bottom-up. When building the tree bottom-up, we add e1 first, then e2, and so on. When building
it top-down, we start with all edges in the graph; then we remove en, then en–1, and so on. At
each stage, then, we have left only the edges e1, e2, ..., ek for some k; and the strong components
of the graph, with all the original vertices but with only these edges, are the leaves of that part of
the tree which has so far been constructed, from the top down.

Suppose now that we remove ek, leaving only the edges e1, e2, ..., ek–1. Here ek was in some
strong component, which, at this stage, is a leaf v. Removing ek can affect only v, and no other
strong component at this stage. It might happen that v is still strongly connected, even with ek
removed, in which case the tree does not change at this stage. If the tree does change, it is because
v, with ek removed, now has more than one strong component; each of these, at this stage,
becomes a child of v.

5.4 Decomposition Trees of Cycles

Our first question is that of finding conditions on a graph G, with a BGL tree T, for which every
clustering tree is the same as T. To simplify the statements of our theorems, we make the
following definition.

DEFINITION 5.1. An edge-ordered graph G, with a BGL tree T, is said to have the loop
clustering property if its clustering tree is the same as T.

We now have a surprisingly simple answer to the question we raised.

THEOREM 5.1. A graph G, with a BGL tree T, has the loop clustering property with any edge
ordering whatsoever if and only if G is a single cycle (of any length).

Of course, if G is in fact a single cycle, it has a unique BGL tree; in the general case, the
correspondence between the two types of tree is specific to a particular BGL tree.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

638

PROOF. First suppose G is a single cycle, and consider a BGL tree T for G, with G as the root.
Regardless of how we choose a head h for G, there will be one and only one edge e in G which
leads to h; and here e is the only loopback in G. If we remove e from G, producing the body B of
G, then B is a dag, and thus every child of G in T is trivial. Now consider the clustering tree T´ of
G, built from the top down. No matter which edge is removed first, the graph G, with only the re-
maining edges, is a dag, and thus every child of G in T´ is also trivial. Thus T and T´ are the same
in this case, and G, with T, has the loop clustering property.

Now suppose that G, with T, is not a single cycle. Since G is strongly connected, it must contain at
least one cycle. Of all cycles contained in G, let C be one of shortest length j. Suppose first that j =
1, so that C is a self-loop, involving an edge e from a vertex v to itself. Since G is not a single
cycle, there must be another vertex in the graph, say w. Since G is strongly connected, there are
paths from v to w and from w to v, so that k, the number of edges in G, is at least 3. We will now
show that G has at least two different clustering trees, contradicting our assumption that a
clustering tree is always the same as T. Let e1, e2, ..., ek be the edges of G. If e = e1, then e is
removed last, in the top-down construction. At the second stage from the end, C is a leaf, and then,
at the last stage, v becomes a child of C. On the other hand, if e = ek, where k ≠ 1, as we have
seen, then e is removed first, in the construction. Since the cycle involving v and w has not yet
been removed, v can never become a child of C, whose single edge has been removed at the first
stage. Thus these two clustering trees are different.

Finally suppose that j > 1, and let C = u1→u2→...→uj = u1. Since G is not C, there must be at
least one edge é in G which is not in C. We argue that there must also be at least one vertex w
which is not in C. Otherwise, é is ua→ub for some a and b. By combining é with the path within
C from ub to ua, we obtain a new cycle C´ whose length, by the construction, is strictly smaller
than j, contradicting the choice of C. Since G is strongly connected, there is a path π in G from u1
to w; let ui be the last vertex in π which is also on C. Since uj = u1, we can always assume i ≠ j
here. Since w is not on C, so that w is not ui, there is a vertex w´ (possibly w´ = w) which

immediately follows ui in π. Thus there are edges e 1́ = ui→ui+1 (where ui+1 exists since i ≠ j)

and e 2́ = ui→w´ in G. Here e is part of a cycle C´, since G is strongly connected; and C´ ≠ C
since C´ contains w´, which is not on C by the choice of ui. Also, e 1́ is in C but not in C´, while
e 2́ is in C´ but not in C. Therefore, in the top-down process, if e 1́ is removed first, then C is bro-
ken but C´ remains, while if e 2́ is removed first, then C´ is broken but C remains. However, ui is
on both C and C´; so, as before, we have a contradiction because G, with T, has at least two
different clustering trees. This completes the proof.

5.5 Bottlenecks

Theorem 5.1 shows us that most edge-ordered graphs do not have the loop clustering property. We
can ask, however, whether a given graph has any edge ordering at all, for which it has that
property. That this is not true for every graph may be seen from Fig. 5.1. If A is the start node,
then C→A and E→A are the loopbacks, and the remainder of the graph is a dag; and thus this
graph has a unique BGL tree T, which has every individual vertex as a child of G, which is at the
top. Now consider the top-down order in which edges are removed. If we remove A→B, B→C, or
C→A first, the strong component {A, D, E} will remain in the clustering tree T´. If we remove
A→D, D→E, or E→A first, the strong component {A, B, C} will remain in T´. Neither of these

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

639

components are in T, as we have seen; so no edge ordering of this graph has the loop clustering
property.

Consider now Fig. 5.2, which is much like Fig. 5.1 except for the vertex F. This graph has a
unique BGL tree T, very much like that of the graph of Fig. 5.1. Suppose here that, in forming the
clustering tree T´, we eliminate the edge A→F first. The resulting graph is a dag (it has no
directed cycles, although that entire graph is an undirected cycle). Therefore we can eliminate the
remaining edges in any order, and T´ will be the same as T. The important difference between the
two graphs is that, in Fig. 5.2, we have an edge (namely A→F) which is contained in every cycle
of the graph; in Fig. 5.1, we have no such edge. This leads us to the following definition.

DEFINITION 5.2. An edge in a rooted graph G, with root r, is a bottleneck if it is contained in
every cycle within G that contains r.

The justification for the name should be clear; if you start at r, you cannot get back to r except
through the bottleneck. Bottlenecks are related to vertex covers [3]; a vertex x is said to cover the
root r of a rooted graph G, if all cycles in G which contain r also contain x. Here we are requiring
that all cycles in G which contain r also contain an edge (that is, the bottleneck), rather than a ver-
tex.

Bottlenecks are also related to the concept of a bridge as defined by Tarjan [13]; that is, an edge e
= u→v such that every path from r to v must go through e. In particular, a bottleneck in a strongly
connected graph G is always a bridge in this sense; for suppose the contrary. Then there is a path π
from r to v that does not contain e. Since G is strongly connected, there is then a simple path π´ in
G from v to r which does not contain e (otherwise it would go back to v, and it would not be a
simple path). Combining π and π´, we would obtain a cycle in G, containing r, but not containing
e, contrary to hypothesis. On the other hand, not every bridge is a bottleneck; thus there are no
bottlenecks in the graph of Fig. 5.1, and yet A→B, B→C, A→D, and D→E are all bridges.

Often a graph G has a bottleneck for low-level reasons. For example, if there is only one edge
leading from r, then that edge is clearly a bottleneck. Also, if G has one and only one loopback,
then that loopback is a bottleneck, for a similar reason. However, these are not the only kinds of
bottleneck, as may be seen from Fig. 5.3. By following either R→A→C, R→B→C, or
R→A→B→C by either C→D→E→F→R or C→D→G→H→R, we obtain a cycle. These are the
only simple cycles here which include the root R, and C→D is the only edge which is on all of
these, and therefore the only bottleneck.

5.6 The General Loop Clustering Property Criterion

If G is strongly connected, with r being its head, and having a BGL tree T, we refer to a bottleneck
as an outer bottleneck if it is not contained in any inner loops that G might have, in T. Not all
bottlenecks are outer, as we may see from Fig. 5.4, which is the same as Fig. 5.3 with the loops L1
and L2 shown. Here C→D is contained in the inner loop L2, and is therefore not an outer
bottleneck. (This graph actually has a further inner loop, which is either {B, C, D, G} or {A, C, D,
E}, depending on whether A or B is taken as the head of L2.)

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

640

LEMMA 5.1. Let G be a strongly connected rooted graph with root r, and having an outer
bottleneck e. Let B be the body of G, and let G´ be the graph obtained from G by removing e.
Then the strong components of G´ are the same as those of B.

PROOF. The root r is a trivial strong component of B. It is also a trivial strong component of G´,
because otherwise r would be contained in a non-trivial strong component of G, and hence in a
cycle of G containing r; and such a cycle must contain e, by Definition 5.2, and is therefore not in
G´. Any strong component L of B, other than {r}, is a maximal strongly connected subset of B,
and cannot contain r. Because e is an outer bottleneck, it is not contained in L; therefore L is
contained in G´. It remains strongly connected, and it is also maximal strongly connected in G´
(and therefore a strong component of G´). This is because any strongly connected graph L´,
contained in G´ and containing L, could not contain r, because r is a trivial strong component of
G´; and it would remain strongly connected in G, and thus in B, contradicting our assumption that
L is maximal strongly connected in B. The trivial strong components of G´ consist of all vertices
which are not in non-trivial strong components of G´. These are, therefore, exactly those vertices
which are not in non-trivial strong components of B; so these components are also the same in G´
as they are in B. This completes the proof.

It should also be clear that the concepts of a bottleneck and an outer bottleneck are immediately
extensible to loops within a BGL tree of G, in which the root of every such loop is taken to be its
head. This extension is necessary in stating the main result of this section, as follows.

THEOREM 5.2. Let G be a strongly connected graph with a BGL tree T. Then there exists an
ordering of the edges of G, with respect to which G has the loop clustering property, if and only if
every loop in T has an outer bottleneck.

Fig. 5.1. Loop clustering property example Fig. 5.2. Another example

Fig. 5.3. Bottlenecks and outer bottlenecks

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

641

Fig. 5.4. Another example

PROOF. Let T be a BGL tree for G in which every loop has an outer bottleneck. As usual for
trees, we define the level of a vertex in T as its distance from G (the root); and a level order of the
vertices of T is an order v1, v2, ..., vj in which v1 is the root, followed by all vertices at level 2 (in
arbitrary order), then all vertices at level 3, and so on. For 1 ≤ i ≤ j, let xi be an outer bottleneck of
the loop represented by vi; and now choose the ordering e1, e2, ..., ek of the edges of G in such a
way that ek = x1, ek–1 = x2, and so on, so that in general ek+1–i = xi. Usually j < k here, and the
remaining edges e1, e2, ..., ek–j may be chosen in any order.

Consider now the top-down construction of the clustering tree T´ for G, in this order. We first
eliminate ek = x1, and, since this is an outer bottleneck for G as a whole, we are left with the graph
G´ as in Lemma 5.1. By this lemma, G´ has the same strong components as does the body B of G;
and all these become children of G in T´, exactly as in T. Now we eliminate ek–1 = x2, which is
an outer bottleneck for some non-trivial strong component L of B. Here L is an inner loop, and,
since x2 is an outer bottleneck for L, we are left with a graph G" which is like G´ as in Lemma
5.1, but applied this time to L. By this lemma, G" has the same strong components as does the
body B´ of L; and all these become children of L in T´, exactly as in T. We now proceed to
eliminate ek–2 = x3, and so on. Because of the level ordering of the vertices of T, the parent L´ of
any such vertex L is added to T´ before L is. Let v be an outer bottleneck of L, and let v´ be an
outer bottleneck of L´. When v´ is eliminated, the strong components of the body of L´, including
L, become part of T´, so that the same can happen to L when v is later eliminated. After
eliminating x1 through xj, the only remaining vertices in either T or T´ are trivial, and no further
building is done, so that in fact T = T´.

Now suppose that some loop L in T does not have an outer bottleneck; we show that no ordering
e1, e2, ..., ek of the edges of G leads to a graph having the loop clustering property. Assume the
contrary, so that T = T´ for this ordering. Since L is in T, it is thus also in T´. Let i be the smallest
integer such that, in the bottom-up process, when e1, e2, ..., ei have been added, L is included
among the strong components produced so far. Therefore, when e1, e2, ..., ei–1 have been added,

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

642

L has not been so included, but adding ei causes L to be included. Consider now the remainder of
the process of adding ei+1, ei+2, ..., ek. This process only combines existing strong components
into larger ones; it cannot affect those parts of T´ which have already been constructed. When the
process is finished, it produces T´, which, by assumption, is the same as T. Within T, however, the
children of L are the (trivial and non-trivial) strong components of the body of L. Therefore, when
L is first included by adding ei, these same strong components must already have been in that part
of T´ that had been constructed so far.

We now note that ei cannot be in any non-trivial strong component of the body of L, nor can it be
outside L, since adding ei, in either of those cases, could not produce L by combining its strong
components. However, ei, by assumption, is not an outer bottleneck of L, and therefore there is
some cycle C in L, containing the head of L, that does not contain ei. Thus L cannot, in fact, be
produced when ei is added, since C would have to be included in what is produced. This
contradiction completes the proof.

5.7 Multiple Null Node Expansions

Using the terminology of Theorem 5.2, we see that there are strongly connected graphs for which
T´ is never the same as T. We might ask, then, whether such a graph G might be expanded to form
a graph G´ for which T´ = T for some choice of ordering of the edges of G´. Ideally, we would like
G´ to be just as efficient as G, both in space and time, under some reasonable interpretation of
these. In fact, this can always be done, using a generalization of the idea of a null node expansion.
Given an edge v→w in a graph G, a null node expansion of G is a graph G´ obtained from G by
adding a new vertex z, removing the edge v→w, and introducing two new edges v→z and z→w. If
G is a flowgraph, any flow of execution along v→w is replaced by the use of v→z followed by
z→w. Here z is assumed to take no additional space or time, so that the total space or time taken
by any execution of G´ is the same as that of the corresponding execution of G.

We generalize this notion by considering several edges v1→w, v2→w, ..., vj→w, all leading to the
same vertex w. A multiple null node expansion G´ of G is now obtained by adding a new vertex
z, as before; removing all the above edges; introducing the new edge z→w as before; and then
introducing the further new edges v1→z, v2→z, ..., vj→z. Any flow of execution along any vi→w

is replaced by the use of vi→z followed by z→w. As before, since z takes no additional space or
time, the executions of G´ are as efficient as the corresponding executions of G. As with ordinary
null node expansions, multiple null node expansions can be iterated, expanding several vertices
like w in the process. We now show the utility of such expansions in this context.

DEFINITION 5.3. A unique loopback BGL tree is a BGL tree in which every loop has one and
only one loopback.

THEOREM 5.3. Any strongly connected graph, not having a unique loopback BGL tree, has an
iterated multiple null node expansion which has a unique loopback BGL tree.

PROOF. Let T be a BGL tree for G, and suppose that T is not a unique loopback tree. Given any
loop L in T having the head w, and having j loopbacks v1→w, v2→w, ..., vj→w, for j > 1, we form

the multiple null node expansion of G as above, in which L now has the single loopback z→w. By

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

643

repeating this process for every such loop in T, we obtain an iterated multiple null node expansion
in which every loop has a single loopback. This completes the proof.

COROLLARY. For any strongly connected graph G, with a BGL tree T, there exists an ordering
of the edges, either of G or of some iterated multiple null node expansion of G, with respect to
which it has the loop clustering property.

PROOF. We saw, at the end of section 5.5 above, that a unique loopback in a loop L is always a
bottleneck. It is also an outer bottleneck; it cannot be contained in any loop L´ inner to L, since L´
cannot contain the head of L. The corollary now follows immediately from Theorems 5.2 and 5.3.

5.8 Loop Trees and Communication Networks

The theorems above might appear unsatisfactory, in that a closer connection between clustering
trees and BGL trees might have been expected. There is a larger question, however, as to whether
loop trees, when applied to communication networks, are useful at all. Loop trees arose originally
out of our analysis of call graphs, in which a self-loop corresponds to ordinary recursion, and a
more general loop corresponds to mutual recursion. They were quickly applied, also, to
flowgraphs; and here a loop corresponds roughly, although not quite always syntactically, to a
loop in the ordinary programming sense. Consider now a communication network, in which, as
usual, we expect communication to proceed in both directions between any two vertices. What is
the interpretation, in this context, of a loop in a loop tree? Fig. 5.5 indicates one of the difficulties
here. This graph G gives simple two-way communication along a line, in either direction (note
that it would be highly unlikely for a flowgraph to have this form). Suppose that the start node of
G is u1; then G has a unique loop tree consisting of n–1 nested loops, each containing the vertices

uk through un for some k, 1 ≤ k ≤ n–1. Thus loops are not necessarily obvious divisions of a

communication network.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

644

Fig. 5.5. Why loop trees make little sense for communication networks

6 Wheels within Wheels

6.1 Introduction

In recent work [1] we introduce a decomposition of an arbitrary strongly connected graph G into
subgraphs. Such a decomposition has an associated tree, which we call a loop tree, in which every
node N, other than the root, represents a strongly connected subgraph H of G. Our work was
motivated by the consideration of flowgraphs; if G is a flowgraph and N represents H as above,
then H is either a single node, with no edges, or else it is, in a semantic sense, a loop in G.

There is also a completely different way of decomposing a strongly connected graph. This was
described by Luce [5] in a form which applies to some, but not all, such graphs. Luce’s work was
later rediscovered by Knuth [6], who used still another technique to provide an extension of
Luce’s decompositions to any strongly connected graph. Luce’s work was motivated by
considering communication networks, and many of his concepts do not have obvious informal
interpretations when applied to flowgraphs. However, from a purely formal point of view, both
Luce’s decomposition and Knuth’s extension of it are very similar to ours.

Using Knuth’s terminology, we may define a wheel, which is a strongly connected graph
decomposed into strongly connected parts, that are then decomposed into others, and so on.
Extending this terminology, we define a wheel tree to represent such a decomposition. In both
wheel trees and loop trees, every node represents a strongly connected subgraph; if N and N´
represent respective subgraphs H and H´, and if N is the parent of N´, then H contains H´; while if
N and N´, as above, have the same parent, then H and H´ are disjoint.

The purpose of this section is threefold. We start by describing Luce’s work, using current
terminology for graphs. We define wheel trees and associated concepts, and show the similarities
and differences between wheel trees and loop trees. We then use Luce’s work to provide a
sharpened form of Knuth’s decomposition. Finally, we relate this work to the further commentary
on both [5] and [6] provided by Chaty and Chein [14].

Specifically, Knuth’s theorem implies that, in our terminology, every strongly connected graph
has a wheel tree; but no information is provided as to its form. In section 6.13 below, however, we
show, using one of Luce’s decomposition theorems, that such a tree may always be taken to have
a particular form, which we call a chandelier. This has a special node X, such that every node in
the chandelier has exactly one child if and only if it is a proper ancestor of X.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

645

6.2 Loop Trees and Wheel Trees

A brief description of our theory of loop trees was given in Section 1 above. We now compare this
with the theorem presented in [6] according to which any strongly connected graph D that has any
edges at all has a wheel decomposition. This means that D is composed of strongly connected
graphs D1, D2, ..., Dn, for n ≥ 1, together with edges x1→y2, x2→y3, ..., xn–1→yn, xn→y1,
where each xi and each yi is a node of Di. Suppose now that we set up a tree whose root is
associated with D, and having n children, associated respectively with D1, D2, ..., Dn. Since the
Di are all strongly connected, they may be decomposed further, and a tree, which we call a wheel
tree (Definition 6.1), may be built up in this way.

Two decomposition theorems are presented in [5], of which the second is relevant here. There are
strong conditions on the graph to be decomposed, but the conclusion is also stronger, in that we
have n ≥ 2 rather than n ≥ 1 in the above decomposition. Formal treatments of both Luce’s and
Knuth’s work are given in section 6.11 below.

6.3 Basic Definitions

Any application of Luce’s work [5] must start with its terminology. Luce was concerned with
oriented graphs, which, in modern terminology, are multigraphs; that is, there can be more than
one edge between two given nodes. He considered a special case of multigraphs, which he calls
networks, and which are, in fact, the same as (directed) graphs in the modern sense. Further
notation used by Luce is also often not what is used today.

Luce begins by defining oriented graphs, networks, subnetworks, complete subnetworks, q-chains
and their products, and connected and disconnected networks. These definitions are compared
with today’s terminology in Table 1. Most important, here, is Luce’s use of the term “connected,”
which means, in current terminology, strongly connected.

6.4 The Degree of a Graph

We next pass to some of Luce’s further definitions. The first is that of the degree of a graph ([5],
p. 703). A graph has degree 0 if it is not (strongly) connected. It has degree 1 if, first, of all, it does
not have degree 0 (so that it is strongly connected), but it has an edge whose removal leaves a
graph which is not strongly connected.

Luce generalizes this to a graph of degree k, in which you have to remove k edges to get a graph
which is not strongly connected. His approach now involves two decomposition theorems for
graphs. The first of these reduces the study of all graphs to the study of graphs of degree 1; this is
done through the concept of the sum of several graphs, which we take up in section 6.8 below.
The second is a decomposition only for graphs of degree 1; we take this up in sections 6.11 and
6.14 below.

It will be necessary, in these later sections, to present examples of graphs of degrees 2 and 3. Fig.
6.1 shows the double ring, a graph of degree 2; if we remove the two edges which lead outward
from any node, the result is no longer strongly connected, since there are no paths leading from

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

646

that node. However, if we remove any single edge, the result is still strongly connected. Fig. 6.2
shows the double cube, which, by similar logic, may be seen to be a graph of degree 3.

6.5 Minimal and 1-Minimal Graphs

A minimal network (i. e., graph), in [5], is strongly connected and also 1-minimal, meaning that
the removal of any edge would result in a graph which is not strongly connected. This definition
appears to be motivated by an analysis of communication networks. Suppose that, in such a
network G, there are three nodes, A, B, and C, with edges A→B, B→C, and A→C; then G is not
minimal, in an informal sense. You can always eliminate the edge A→C from G, and obtain a
smaller network which achieves the same effect by replacing any communication along A→C by
the use of A→B and B→C.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

647

Table 1. Comparison of Luce’s terminology with current terminology

Luce’s terminology Current terminology Luce’s definition (pp. 701-702 of [5])
Network (Directed) graph “A network N...is a system composed of...a finite non-empty set of...nodes...and...a...subset of the

set of all ordered pairs of nodes” (p. 701)
Links Edges “The members of P...are called the links of N” (p. 701)
Oriented graph Multigraph See first 6 lines, p. 701
(ab) ab “...bracketed ordered pairs (ab), (ca), ... [will be used] to denote links” (p. 701)
Initial node of (ab) a, in a→b “If (ab) is a link, the first node, a, will be called the initial node...” (p. 701)
End node of (ab) b, in a→b “...and the second, b, the end node of the link” (p. 701)
Subnetwork Subgraph (not necessarily

induced)
“A subnetwork N´ of a network N is a subset M´ of the nodes, M, of N, with P ́taken to be some
subset (not necessarily proper) of those links of N which are definable on M´” (p. 702)

Complete subnet
work

Subgraph of N containing all
nodes of N

“If M´ = M, we shall say that the subnetwork is complete” (p. 702)

Non-reflexive
network

Graph with no self-loops “We shall call a network non-reflexive if there are no links of the form (aa)” (p. 702)

Arc Two-node or one-node cycle
(not a single edge)

“In case both...(ab) and (ba) are present in a network,...an arc ab exists between a and b, the arc
consisting of this pair of links...A link of the form (aa) is always the arc aa” (p. 702)

q-chain from a to b Simple path, of length q, from a
to b

“A...q-chain from a to b is a set of q links of the form (ac1), (c1c2), ..., (cq–2cq–1), (cq–1b), such
that no node appears more than once, except in the case a = b where a appears twice” (p. 702)

(ab, q) a→c1→c2→...→cq–1→b “Any q-chain from a to b will be denoted by (ab, q)” (p. 702)

Product of two
chains

Concatenation of two paths “If c is a node included in a q-chain from a to b, then we may subdivide the chain into the
‘product’ of two chains, one from a to c, and the other from c to b...” (p. 702)

Circuit Cycle “An (oriented) circuit is a chain of the form (aa, q)” (p. 702)
Connected Strongly connected “A network is connected if there exists a chain from each node to every other node” (p. 702)
Disconnected Not strongly connected “A network which is not connected is disconnected” (p. 702)

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

648

Fig. 6.1. The double ring Fig. 6.2. The double cube

6.6 Uniform and 1-Uniform Graphs

Luce’s motivation for defining uniform networks (that is, graphs) is to develop “a condition
implying that there is an even distribution of connectedness throughout the network; roughly, that
the degree of any connected subnetwork is not greater than that of the network itself” ([5], p. 703).
A uniform graph is one which is strongly connected and 1-uniform , meaning that every strongly
connected subgraph is of degree 1.

This is in contrast to the situation illustrated by the graph of Fig. 6.3. Here we have a strongly
connected graph; however, if we delete the edge from A to B (or from B to A), the result is not
strongly connected. Therefore, this graph is of degree 1, by the definition in section 4 above.
However, if we eliminate the node A entirely, together with both of its edges, the result has degree
2, as we also saw in section 4. Thus this graph is not 1-uniform, and therefore not uniform. It is
also not minimal; indeed, you can remove four edges (B→E, E→D, D→C, and C→B) from the
graph, producing a strongly connected graph.

This example may be generalized. Whenever a graph G is not uniform, it has a subgraph G´ of
degree at least 2. At least one edge X→Y may always be eliminated from G´, producing a strongly
connected subgraph H´. This implies that there is a path π in H´ from X to Y. If you eliminate
X→Y from G, the remaining graph, H, will still be strongly connected. In fact, for any nodes U
and V in H, we may replace X→Y by π in any path from U to V in G that involves X→Y, pro-
ducing a path from U to V in H. This implies that a graph which is not uniform is not minimal; or,
more simply, a minimal graph is always uniform ([5], p. 704).

Fig. 6.3. Removing edges to produce a minimal graph

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

649

6.7 Descendants of a Graph

Given a graph G which is strongly connected but not minimal, you can always eliminate at least
one edge from it, and the result will still be strongly connected. Suppose now that you continue to
eliminate edges, one by one, preserving strong connectivity as you go, until you reach a graph D
for which you cannot do this any more. That is, you cannot eliminate any edge from D and still
preserve strong connectivity, so that D is minimal, by the definition in section 6.5 above.

Sometimes there is more than one way to do this. For example, in the graph of Fig. 6.3, we could,
as noted in section 6 above, remove the edges B→E, E→D, D→C, and C→B to produce a
strongly connected subgraph. We could also, however, have removed the edges B→C, C→D,
D→E, and E→B, and the result would still be strongly connected. Note that we are removing the
same number of edges in each case (four, here).

There are other cases, however, in which you can remove different numbers of edges, in
producing a minimal graph. Thus, in Fig. 6.4, we can eliminate one edge from G1 to produce G2;
or we can eliminate two edges from G1 to produce G3. Note that both G2 and G3 are minimal;
they are both strongly connected, but you cannot get a strongly connected graph by eliminating
more edges from either one.

We now consider minimal graphs obtained as above, by eliminating as many edges as possible.
These are what Luce calls descendants of the original graph. In the first case above, we can
produce a descendant by eliminating four edges, in either of two possible ways. In the second case
above, G3 is a descendant of G1, while G2 is not, because it is produced from G1 by eliminating
only one edge instead of two.

Fig. 6.4. Another example

6.8 Sums and Decompositions

Looking again at the graph of Fig. 6.1, we can see that it is made up of two cycles, one going
clockwise around the ring and the other going counterclockwise. This is a special case of what
Luce refers to as the sum of two subgraphs. In general, a graph G is the sum of subgraphs G1, G2,
..., Gk if every node of G is contained in all of the Gi but every edge of G is contained in exactly
one of the Gi.

Suppose now that the degree of G is 1, which implies that G is strongly connected. Let G1 be a
descendant of G, as in the preceding section (here G1 = G if G is already minimal). Form a graph
G2 out of all the nodes of G, together with exactly those nodes that were removed from G to form

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

650

G1. Then G is the sum, in the above sense, of G1 and G2. Here G1 is minimal (because it is a
descendant of G), while G2 is not strongly connected, since otherwise (as Luce proves) G would
have degree 2, not 1.

Luce’s first decomposition theorem, which we mentioned in section 6.4 above, generalizes this to
a graph of degree k > 1, which is expressed as the sum of k+1 subgraphs, all of which are 1-
minimal (see section 5 above). The first of these, G1, is always connected (and therefore
minimal), while the last, Gk+1, is always disconnected. The remaining G2 through Gk may be
either connected or disconnected, but their connected components are minimal. As we will see in
section 6.14 below, our approach avoids this first decomposition theorem entirely, using only the
second one, taken up in section 6.11 below.

6.9 Trees, Arcs, and Undirected Graphs

We now pass to trees, and what they mean for Luce. In the modern sense, Luce’s networks are
directed graphs, but Luce’s trees are not directed trees. A directed tree, today, is a directed graph
containing no cycles, not even undirected ones, as in Fig. 6.5. This is clearly not what Luce means
by a tree, since he states (p. 707, lines 13-14) that “...a network which is a tree is minimal.” A
minimal graph, however, is (strongly) connected, implying that it has at least one cycle, so it
cannot be a directed tree in the above sense.

A general dag (containing no directed cycles, A directed tree (not even
although it does contain an undirected cycle) any undirected cycles)

Fig. 6.5. Directed and undirected cycles

To understand Luce’s notion of a tree, one has to consider another of his definitions (Table 1). An
arc, for Luce, is not a single edge (as in [14], for example), but rather a pair of nodes, say U and
V, with both edges U→V and V→U present in the graph. Suppose now that we have a (directed)
graph in which every edge is part of an arc; then we can produce a corresponding undirected graph
in which each arc is replaced by a single undirected edge. Luce calls this a graph, and says that, in
this case, a network is a graph. When [5] was written, the term “graph,” in general, meant what we
now call an undirected graph.

Later, [5] refers to “the concept of a tree in graph theory,” meaning, therefore, the theory of
undirected graphs. A tree, then, for Luce, is what is obtained by replacing every edge a-b, in an
undirected tree, by the two edges a→b and b→a, as in Fig. 6.6. Now it makes sense that a network
which is a tree is minimal. A tree, in this sense, is strongly connected, but the removal of any of its
(single) links leaves a graph which is not strongly connected. If a→b is removed, there is no

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

651

longer a path from a to b, because such a path, followed by b→a, would have formed a cycle; and
a tree has no cycles.

6.10 L-Trees and Proper Descendants

We will refer to trees, in the sense of section 6.9 above, as L-trees (L for Luce), in order to
distinguish them from directed trees in the modern sense, such as decomposition trees. Note that a
single node with no edges is acyclic, and therefore a tree, as an undirected graph. It is therefore
also an L-tree, as a directed graph. We refer to such an L-tree as a trivial L-tree.

We define, in the obvious way, a proper descendant of G; that is, a descendant H of G such that
H ≠ G. Luce introduces a lemma ([5], Lemma 3.1, p. 707), which says, restated in modern
terminology, that a proper descendant of a graph cannot be an L-tree; this will be used in section
6.13 below. We here do not repeat the proof of this lemma, although we note that an example has
already been introduced, in Fig. 6.4 above. Here the graph G2 is an L-tree, as illustrated in Fig.
6.7. As we noted in section 6.7 above, G2 is not a proper descendant of G1.

Fig. 6.6. A directed tree, for Luce

Fig. 6.7. An L-tree, obtained from an undirected tree

6.11 Wheels

We now take up the study of Luce’s second decomposition theorem. This theorem is seemingly
restrictive, as it applies only to a graph which (a) contains no self-loops, (b) is minimal, and (c) is
not an L-tree. More recently, Knuth [6], using a completely different method, proved that any
strongly connected graph has a decomposition similar to, but more general than, that of Luce. In
section 6.13 below, we will use Luce’s decomposition in order to prove a stronger version of
Knuth’s decomposition. The following definitions are meant to be applicable to both of these
decompositions.

DEFINITION 6.1 . A (Knuth) wheel W is (defined recursively as) either a single node with no
edges (in which case it is called trivial and its wheel tree is a single node), or a graph consisting

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

652

of n wheels W1, W2, ..., Wn, where n ≥ 1, together with n edges x1→y2, x2→y3, ..., xn–1→yn,

xn→y1, where each xi and each yi is a node of Wi, for 1 ≤ i ≤ n, in which case:

a) the size of W is n,
b) the thickness of W is the minimum of n and the thicknesses of all nontrivial Wi, 1 ≤ i ≤

n, and
c) the wheel tree of W consists of a root node which, if W is non-trivial, has, as children,

the root nodes of the wheel trees of W1, W2, ..., Wn.

Every node in the wheel tree of W corresponds to a wheel somewhere in the recursively expressed
definition of W. It should be clear that a wheel of thickness 2, for example, is one for which, not
only is its size at least 2, but the sizes of all wheels corresponding, in this way, to all nodes in its
wheel tree are also at least 2, with one of them being equal to 2. We now need three lemmas.

LEMMA 6.1 . Every wheel is strongly connected.

PROOF. Using the notation of Definition 6.1, let W be a non-trivial wheel, where by induction
we may assume that W1, W2, ..., Wn are all strongly connected. Then, if X is in Wi and Y is in
Wj, there is a path from X to xi (because Wi is strongly connected) to yi+1 (or y1 if i = n) to xi+1
(or x1, because Wi+1, or W1, is strongly connected), and so on, and finally to Y. Knuth’s theorem
now says that, conversely, every strongly connected graph is a wheel [6].

LEMMA 6.2 . Every wheel containing a self-loop has thickness 1.

PROOF. Informally, we can see this because, at some point in the decomposition, the self-loop
must be an edge like x1→y2 above; but x1 = y2 here, so that n = 1 and the thickness is 1.
Formally, if W contains a self-loop, then W is non-trivial; if any of W1, W2, ..., Wn has thickness
1, we are done. By inductive hypothesis, there are no self-loops in W1, W2, ..., Wn, so the self-

loop must be an edge like x1→y2 above. In that case, n = 1 and the thickness is 1, just as before.

LEMMA 6.3 . A non-trivial L-tree has thickness 2.

PROOF. Let T be an L-tree and let S be its associated undirected tree. Clearly S has a node U of
degree 1 (otherwise it would contain a cycle); let V be the node adjacent to U in S, so that T
contains both U→V and V→U. Let T´ be obtained by removing U, U→V, and V→U from T; then
T´ is also an L-tree. We form T into a wheel of size 2 by taking W1 to be U by itself; W2 to be T´;

x1→y2 to be U→V; and x2→y1 to be V→U. By induction, W2 is either trivial, or it has thickness
2, while W1 is trivial. Since T has size 2, it therefore has thickness 2.

6.12 Compound Circuits

The inclusion of the notion of thickness in Definition 6.1 is intended to allow it also to apply to
another of Luce’s definitions. A compound circuit is a wheel of thickness greater than 1. Luce
explicitly specifies that a compound circuit has no self-loops; however, this follows anyway from
Lemma 6.2. In order to state Luce’s theorem here more succinctly, we introduce another
definition.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

653

DEFINITION 6.2 . A generalized compound circuit is either a compound circuit or a single
node with no edges. A generalized L-tree is the result of replacing every node in an L-tree by a
generalized compound circuit, and every edge between nodes in the L-tree by an edge between
nodes in the corresponding generalized compound circuits.

LEMMA 6.4 . A generalized L-tree has thickness greater than 1, unless it is a single node with no
edges.

PROOF. The logic here is almost identical to that for ordinary L-trees. Let T be a generalized L-
tree, with underlying tree S. If S is a single node, then T is either a single node with no edges, or a
single compound circuit, of thickness greater than 1. Otherwise, let U and V be as in Lemma 6.3,
and let U´ and V´ be the generalized compound circuits associated, in T, with U and V
respectively. There now exist edges u1→v2 and u2→v1, where u1 and u2 are in U´, while v1 and

v2 are in V´. Let T´ be obtained by removing U´, u1→v2, and u2→v1 from T; then T´ is also a

generalized L-tree. We form T into a wheel of size 2 by taking W1 to be U´; W2 to be T´; x1→y2

to be u1→v2; and x2→y1 to be u2→v1. By induction, W2 has thickness greater than 1, unless it is
trivial; and so does W1, because it is a generalized compound circuit. Since T has size 2, it
therefore has thickness 2.

Luce’s second decomposition theorem now says that a minimal graph with no self-loops, which is
not an L-tree, is a generalized L-tree. This result is deeper than Knuth’s theorem, but it is also
seemingly more restrictive. However, Luce’s theorem may be used in a proof of a generalization
of Knuth’s theorem. Note that this theorem puts no restriction on the form of the wheel tree,
whereas ours will put a strong restriction on it, as indicated by the following definition.

DEFINITION 6.3 . A chandelier is a rooted tree T containing a node X such that any node in T
has exactly one child if and only if it is a proper ancestor of X. All proper ancestors of X
constitute the upper part of T, the remainder of T (including X) being its lower part .

Fig. 6.8 shows a chandelier and the visual justification of its name. Note that X and every node
below it has either no children, or at least two children, whereas every node above X has exactly
one child. Mathematically, a chandelier could consist of just a lower part, or of just X and an
upper part, or even of X by itself. The thickness of the lower part of a chandelier is always greater
than 1, unless the lower part consists of X by itself.

6.13 A Generalization of Knuth’s Theorem

We are now ready for our main result on wheel trees.

THEOREM 6.1. Any strongly connected graph G is a wheel whose wheel tree is a chandelier.

PROOF. First we ask whether G has a self-loop. If so, we express G as a wheel with size 1, in
which x1 = y1, and W1 is G with the self-loop removed. We denote W1, here, by G1, and
continue removing all self-loops in this fashion, producing G2, G3, etc., until we arrive at a graph
H = Gj with no self-loops. Every node in the wheel tree of G, from G down to H, has exactly one
child, except for H.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

654

Fig. 6.8. A chandelier

At this point we ask if H is an L-tree. Suppose it is; then we apply Lemma 6.3, which shows that
the wheel tree of H has thickness 2. Let X be the root of this wheel tree; then the wheel tree of G,
with this X, satisfies the requirements of Definition 6.3, and we are done in this case.

Now suppose that H is not an L-tree. If so, then, if it is minimal, we set K = H and proceed to the
next paragraph. If H is not minimal, then let K be a descendant of H; note that, by Luce’s lemma
of section 6.10 above, K is not an L-tree, since it is a proper descendant of H. Let z1, z2, ..., zk be

the edges which are removed from H to produce K, where each zi is ai→bi for 1 ≤ i ≤ k. Let Hi be
H with z1, z2, ..., zi removed, for 0 ≤ i ≤ k, so that H0 = H and Hk = K. For 1 ≤ i ≤ k, then, Hi is

Hi–1 with zi (= ai→bi) removed; and we may express Hi–1 as a wheel of size 1, in which x1 = ai,
y1 = bi, and W1 is Hi (that is, Hi–1 with zi removed). Every node in the wheel tree of G, from G
down to K, has exactly one child, except for K.

At this point K is a minimal graph, not an L-tree, and containing no self-loops, so that Luce’s
second decomposition theorem applies. Accordingly, K is a generalized L-tree, and, by Lemma
6.4, it has thickness greater than 1, unless it is a single node with no edges. Let X be the root of
the wheel tree of K; then the wheel tree of G, with this X, satisfies the requirements of Definition
6.3, as before, and we are done.

6.14 Chandeliers and Luce’s Two Decompositions

Luce presents two decompositions of graphs; but Theorem 6.1 uses only the second of these
theorems. We will now explain why. Luce’s first decomposition is a way of reducing the study of
graphs to the study of minimal graphs; any graph which is not minimal, and which might, indeed,
have high degree, may be expressed as the sum of simpler graphs.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

655

The double cube of Fig. 6.2 is a good example of this. If we were to apply Luce’s first
decomposition theorem to this, we would find this graph G decomposed into G1 and G2, where
G1 is further decomposed into H1 and H2. Here G, G1, and H1 are shown in Fig. 6.9. We omit the
rest of the details, except to note that there is a decomposition tree for G, constructible in this way.
However, this tree is not like our other decomposition trees because G2, an internal node in the
tree, is not strongly connected, although it has children in the tree which do correspond to strongly
connected subgraphs.

In constructing a chandelier for the double cube G, however, a much simpler decomposition is
used. The special node X, as in Definition 6.3, may now be taken to represent the graph H1, as in
Fig. 6.9. Note that G has 24 edges, while H1 has only eight. Each of the 16 remaining edges, in
turn, is taken as the single edge in a wheel of size 1, resulting in sixteen nodes at the upper part of
the chandelier. The decomposition of H1 is then into a wheel of size 8, and each child of H1 in the
chandelier is a single node. All this is illustrated in Fig. 6.10.

Fig. 6.9. Constructing a chandelier for the double cube

G1 = G ~ {1→→→→4} G5 = G4 ~ {5→→→→1} G9 = G8 ~ {1→→→→5} G13 = G12 ~ {5→→→→6}
G2 = G1 ~ {2→→→→1} G6 = G5 ~ {6→→→→2} G10 = G9 ~ {2→→→→3} G14 = G13 ~ {6→→→→7}
G3 = G2 ~ {3→→→→2} G7 = G6 ~ {7→→→→6} G11 = G10 ~ {3→→→→7} G15 = G14 ~ {7→→→→8}
G4 = G3 ~ {4→→→→3} G8 = G7 ~ {8→→→→4} G12 = G11 ~ {4→→→→8} H1 = G15 ~ {8→→→→5}

Fig. 6.10. The constructed chandelier

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

656

6.15 K-Rooted Trees and Related Concepts

For wheels with thickness greater than 1, our wheel trees have been studied by Chaty and Chein
[14], which calls them K-rooted trees (K for Knuth). Using the terminology of this paper:

• a reducible graph is a wheel with size greater than 1;
• a K-decomposition of a reducible graph is the specification of W1, W2, ..., Wn and the xi

and the yi in the wheel;

• a totally reducible graph is a wheel with thickness greater than 1;
• a K-rooted tree is what we are calling a wheel tree (but only for totally reducible graphs);
• the depth of a K-rooted tree is the maximum height of a wheel tree (when there is more

than one wheel tree) for a totally reducible graph;
• an optimum K-rooted tree is a wheel tree with maximum height;
• the order of a compound circuit is the number of nodes in its wheel tree;
• a circuitic (or circuitus) extension of a node is the result of replacing the node by a circuit

(that is, a cycle) and edges to the node by edges to somewhere in the circuit.

Chaty and Chein now proceed to define a contractible elementary cycle C as one from which
there is exactly one edge proceeding outward, and to which there is exactly one edge proceeding
inward. Formally, the definition in [14] involves the quotient graph in which C is contracted to a
point. (If the cycle is not contractible, there will be parallel edges in the quotient graph.) Chaty
and Chein now define a sequence of graphs, each one obtained from the previous one by a
circuitus extension, and show (using our notation) that a wheel has a wheel tree of thickness
greater than 1 if and only if it can be derived from a single point using a sequence of circuitus
extensions as above.

6.16 Generalizations to Graphs of Higher Degree

The notions of 1-minimal graphs, 1-uniform graphs, and descendants of a non-minimal graph are
generalized by Luce [5] to graphs of degree greater than 1. In such a case, Luce speaks of k-
minimal graphs, k-uniform graphs, and k-descendants of a graph.

A k-uniform graph is one in which every strongly connected subgraph has degree not greater than
k. A graph of degree k which is not k-uniform can easily be produced by starting with some graph
of degree k and attaching to it a graph of degree higher than k.

A k-minimal graph is one in which removal of any edge results in a subgraph of degree k–1. For
example, a double ring, like that of Fig. 6.1 (but having any number of nodes), is 2-minimal.
Removal of any edge U→V leaves a graph of degree 1; it is strongly connected, but removing the
remaining edge that starts at U leaves a disconnected graph (with no paths starting at U). In the
same way, the double cube of Fig. 6.2 is 3-minimal. Here removal of any edge U→V leaves a
graph of degree 2, since removing the remaining two edges that start at U leaves a disconnected
graph as before.

For k ≥ 2, Luce proves that every k-minimal graph is k-uniform, and of degree k. This generalizes
the fact that a minimal graph is uniform and of degree 1, although the precise statement of Luce’s
lemma is not always true for k = 1. The problem is that a 1-minimal graph does not have to be

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

657

strongly connected, and indeed any graph which is not strongly connected is 1-minimal, although
possibly of degree 0, not 1.

The removal of edges from a graph G of degree 1 is now generalized in [5] to the removal of
edges from a graph of degree k, producing a graph which is q-minimal for some q ≤ k. This is
called a q-descendant of G; and Luce states (without providing counterexamples) that q-
descendants do not always exist for q > 1, although they do always exist for q = 1.

6.17 Decompositions of Graphs of Higher Degree

In [5], Luce also generalizes his first decomposition theorem to graphs of degree higher than 1.
Let us consider a graph G of degree 2, since that case may be easily visualized. Here the
decomposition is into three graphs, G1, G2, and G3, each of which contains all the nodes of G.
The graph G1 is minimal, and therefore strongly connected; G2 is 1-minimal, but not necessarily
strongly connected, and therefore not necessarily minimal. (In the generalization to degree k, it is
still only G1 that must be strongly connected.) Also, G3 must be not strongly connected, and is
therefore always 1-minimal. However, any strongly connected subgraph of G2 is minimal.
Finally, G1 is a descendant of the sum of G1 and G2, which is in turn a 2-descendant of G.

To illustrate this, consider the graph G of Fig. 6.11, which has degree 2; if we remove B→A and
B→C, the result is not strongly connected, because there are no longer paths to anywhere from B.
Here G is the sum of G1, G2, and G3, as in Fig. 6.12. Note that G3, here, is not strongly
connected, because of the isolated nodes B and D. Also, G2, here, happens to be strongly
connected, so that both G1 and G2, here, are minimal (and, in fact, interchangeable).

For a general graph of degree k > 2, the decomposition is always into the sum of k+1 subgraphs,
all of which are 1-minimal. The first of these, G1, is always connected (and therefore minimal),
while the last, Gk+1, is always disconnected. The remaining G2 through Gk may be either
connected or disconnected, but their connected components are minimal. Each sum G1+...+Gj is
always a j-descendant (as at the end of section 6.16 above) of the sum G1+...+Gj+1.

Fig. 6.11. Decompositions of graphs of higher degree

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

658

Fig. 6.12. The decomposed graph

6.18 Decomposition Trees and Isolated Paths

We now ask whether a graph, having been decomposed as above, may be decomposed further,
producing a tree bearing certain similarities to a loop tree. This question is taken up in [5] as
follows: “...the study of an arbitrary network has been reduced to the study of a collection of 1-
minimal networks. These...are either connected, and so minimal, or disconnected. But a
disconnected network consists of isolated nodes, isolated chains, and connected pieces...the
connected pieces are minimal. If the theorem is applied repeatedly to the connected pieces...it
may, in the same sense, be reduced to isolated nodes, isolated chains, and minimal subnetworks.”

Luce’s use of the term “isolated chains” (meaning, in modern terminology, isolated paths) is
different from what is used today. An isolated node is one which is separated completely from all
other nodes; in other words, there are no edges to or from an isolated node. Two paths today,
therefore, would be considered isolated if they were separated completely from each other,
meaning, in this case, that they had no nodes in common. However, a disconnected network (that
is, a graph which is not strongly connected) does not necessarily consist of isolated nodes,
connected pieces, and (in the above sense) isolated chains, as may be seen from the graph of Fig.
6.13. Here the connected pieces are (induced by) {1, 2, 3} and {6, 7, 8}; but the remainder of the
graph is (induced by) {2, 3, 4, 5, 6}, and this is not made up of paths having no node in common.
Isolated chains, for Luce, then, are chains having no links (i. e., edges) in common, such as
2→→→→4→→→→5→→→→6 and 3→→→→4 here.

6.19 A Decomposition Tree Example

We now give an example of a decomposition tree for the double cube G of Fig. 6.2. This is 3-
minimal, and therefore 3-uniform and of degree 3, as we saw in section 6.16 above. Here G has 24
edges, of which we remove eight, producing a double ring on eight nodes, which we call G1; and
we denote the remaining edges by G2. All this is shown in Fig. 6.14.

We now use Luce’s Lemma 2.1 (p. 703 of [5]) which says that a graph of degree k, having m
nodes, must have at least km edges. Here k is 2 and m is 8, so any graph of degree 2 on these
nodes must have at least 16 edges. We use this to show that G1 is a 2-descendant of G. On one
hand, we have eliminated eight edges from G to produce the double ring G1, which is 2-minimal
(and therefore 2-uniform and of degree 2, as we saw in section 6.16 above). On the other hand, if
we had eliminated more than eight edges, the resulting graph would have fewer than 16 edges and
therefore, as we saw above, could not have degree 2. This shows that 8 is the maximum number of
edges we can remove, and still leave a graph of degree 2.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

659

Fig. 6.13. Decompositions of disconnected networks

Fig. 6.14. Decomposition of a 3-minimal graph

The graph G2 is not strongly connected, but it is made up of four strongly connected pieces, which
we denote by K1, K2, K3, and K4, as in Fig. 6.15. We now obtain a 1-descendant of the graph G1,
which is a single ring that we denote by H1. The eight edges which we remove from G1 to get H1
will be referred to as H2, as in Fig. 6.16. By an argument similar to the one above, we show that
H1 is a 1-descendant of G1 here. By eliminating eight edges from G1, we obtain H1, which is 1-
minimal; eliminating any edge from H1 produces a graph which is not strongly connected. On the
other hand, if we were to eliminate more than eight edges from G1, we would obtain a graph with
fewer than eight edges, but still having eight nodes, so that it could not be strongly connected.

The decomposition tree for G is therefore that of Fig. 6.17. The main difference between this tree
and a loop tree is concerned with G2, which, as we saw above, is not strongly connected. In a loop
tree, every node, other than the root, represents a loop, which must be a strongly connected
subgraph.

Fig. 6.15. Decomposition of a 3-minimal graph (continued)

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

660

Fig. 6.16. Decomposition of a 3-minimal graph (further continued)

Fig. 6.17. Decomposition of a 3-minimal graph (concluded)

6.20 L-Trees and Proper Descendants

We define, in the obvious way, a proper descendant of G; that is, a descendant H of G such that
H ≠ G. The following was stated, but not proved, in section 6.19 above. It was proved in [5]; we

prove it again here, using modern terminology.

LEMMA (Lemma 3.1, p. 707 of [5]). A proper descendant of a strongly connected graph G
cannot be an L-tree.

PROOF. Suppose that H is an L-tree which is a proper descendant of G, obtained by removing
edges e1, ..., ek from G, in that order. Let H´ be H with the additional edge ek = U→V, so that H´
is not minimal. We show that H is a proper descendant of H´, as well as of G. Suppose the
contrary; since H is minimal, there must be another minimal graph H", obtained by removing at
least two edges from H´. Then H" would be obtained from G by removing e1, ..., ek–1 (to produce
H´), followed by at least two more edges; that is, at least k+1 edges in all. This would contradict
our assumption that H is a proper descendant of G, obtained by removing as many edges of G as
possible, with what remains still being strongly connected.

We obtain a contradiction by showing that such an H" exists after all. Since H is strongly
connected, there is a path π in H from V to U. We first show that the length of π is at least 2.
Otherwise, it would have length 1, so it would be a single edge V→U. However, since H is an L-

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

661

tree and it contains V→U, it also contains U→V. That would contradict the assumption that U→V
is a new edge, added to H to produce H´.

We now obtain H" by removing π from H´. Since π has length at least 2, we are removing at least
two edges from H´, as noted above. It remains to show that H" is strongly connected. Let X and Y
be in H"; we need to construct a path in H" from X to Y. Since H´ is strongly connected, and also
contains X and Y, there is a path π´ in H´ from X to Y. If this path does not involve any edge in π,
we are done.

Now let π be V1→V2→...→Vk, where V1 = V and Vk = U, and suppose that π´ involves some

edge Vi→Vi+1, where 1 ≤ i < k. Since H is an L-tree, every edge in H is part of what Luce calls

an arc (see section 6.9); therefore H also contains the path Vk→Vk–1→...→V1. We now replace

Vi→Vi+1 in π´ by the path Vi→Vi–1→...→V1→Vk→Vk–1→...→Vi+1, which is in H" (note that

V1→Vk is in H", since V1 = V and Vk = U). This completes the proof.

6.21 The Degree of a Flowgraph

In this and the next three sections, we take up the question of whether Luce’s work in [5]
motivated by a study of communication networks, has much relevance to flowgraphs, which
motivated our work described in [1]. The answer appears to be no, but the details may be of some
mathematical interest.

Luce states in [5] that his first decomposition theorem reduces the study of all graphs to that of
graphs of degree 1. However, for flowgraphs this would not appear to be of great importance,
because almost all flowgraphs have degree either 0 or 1 anyway. In fact, we have the following:
Any flowgraph containing an assignment statement is of degree either 0 or 1.

To prove this, first assume that the flowgraph G is not of degree 0, so that it is strongly connected.
Consider an assignment statement S in G, and let T be the next statement after S; note that T is
always executed immediately following S. Now remove the link in G from S to T, producing a
graph G´. There are no paths in G´ from S to any other node, because all such paths would have to
go through the link that was just removed. Hence G´ is not strongly connected, and G is thus of
degree 1.

It is possible, although of doubtful utility, to construct a flowgraph of degree 2. For example, we
could do this for the double ring of Fig. 6.1; every statement is now an if-statement, passing
control by one position either one or the other way around the ring, depending on the result of a
condition. One could include assignment statements as side effects of the if-statements, in order to
do useful work.

Mathematically, we could even construct a flowgraph of any degree higher than 2, by using a case
or switch statement at every node. For degree 3, each node is now one vertex of a cube, which has
three adjoining vertices, to any of which control may pass depending on which case is applicable,
as in the double cube of Fig. 6.2. For degree n > 3, each node is one vertex of a hypercube in n-
dimensional space, having n adjoining vertices.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

662

6.22 Minimal Flowgraphs

In section 6.21 above we mentioned that a flowgraph might not be minimal for a good reason.
Having said this, it is conceivably still of interest to determine which flowgraphs G are minimal
and which are not. The answer appears a bit strange, even for flowgraphs of structured programs
without the go-to. Let us assume that G is strongly connected, and that we build up G by replacing
parts of it by more complex parts. If G is minimal, and we replace L1: S; L2: within it by some
other construction Z, then the result is minimal in each of the cases (1) through (6) below:

1) If Z is L1: S1; L3: S2; L2:. Here we had an old edge, L1→L2, which does not remain;
and there are now two new edges, namely L1→L3 and L3→L2, and the removal of
either of these leaves the graph not strongly connected.

2) If Z is an if -statement with else, of the form L1: if C then L3: S1 else L4: S2; L2:, where
S1 and S2 are single nodes. There are four new edges, namely L1→L3, L3→L2,
L1→L4, and L4→L2, and the removal of any of these leaves the graph not strongly
connected.

3) If Z is L1: while (C) {L3: S1;} L2:, where S1 is a single node. We had an old edge,
L1→L2, which remains, and there are now two new edges, namely L1→L3 and L3→L1;
and the removal of any of these leaves the graph not strongly connected.

4) If Z is a while (true) construction containing a single break. Removing the break leaves
the graph not strongly connected, since there is no way to get to the statement following
the while loop.

5) If Z is L1: for (C1; C2; C3) {S1;} L2:, where S1 is a single node. This is equivalent to an
assignment followed by a while statement, and rules (1) and (3) above apply.

6) If Z is a case or switch statement in which every case is non-null, including the default
case. Removing the link from the start of the statement to any case, or from any case to
the end of Z, leaves the graph not strongly connected.

However, the result is not minimal in each of the cases (7) through (12) below:
7) If Z is an if -statement without else, of the form L1: if C then L3: S1; L2:, even if S1 is

not a single node. We had an old edge, L1→L2, which remains; and there are two new
edges, namely L1→L3 and L3→L2. The removal of L1→L2 now leaves a graph which
is strongly connected.

8) If Z is L1: do S; L3: while (C); L2:, even if S is not a single node. We had an old edge,
L1→L2, which does not remain, and there are now three new edges, namely L1→L3,
L3→L1, and L3→L2; and the removal of L3→L1 leaves a graph which is still strongly
connected.

9) If Z is a while (true) construction containing more than one break. Removing any break
now leaves the graph strongly connected, since we can always get to the statement
following the while loop by means of another break.

10) If Z is a while (C) construction containing break, one or more times, where C is
anything other than true. Removing any break now leaves the graph strongly connected,
since we can still get to the statement following the while loop through the normal while
logic when C is false.

11) If Z is a conditional continue. Removing the edge which does the continue leaves the
graph strongly connected.

12) If Z is a case or switch statement in which some case is null, and is represented by an
edge from the start of the case to the statement following Z. Removal of that link leaves
the graph strongly connected.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

663

6.23 Null Node Expansions and Minimal Graphs

In considering whether a flowgraph G may be replaced by a flowgraph H which is equivalent to
G, there is always the question of what equivalence means. Clearly H might provide exactly the
same computations that G does, and, at the same time, H might be less efficient than G, with
respect to time and/or space requirements. It is therefore useful to define a class of equivalent
graphs which do not present this problem.

Null node expansions were introduced in section 5.7 above. There are many possible reasons to
introduce null nodes. Here we will merely be concerned with one of these, related to [5]: a non-
minimal graph always has a null node expansion which is minimal. Suppose we have an edge,
L0→L1, the removal of which leaves the graph still strongly connected. We can always replace
L0→L1 by two edges, L0→L2 and L2→L1, where L2 is a null node, as in section 5.7. Removing
either of these edges leaves the graph not strongly connected; and if we do this for every such
edge, we will have a minimal graph. (In example (12) of the preceding section, this would be
minimal if the null case had its own node.).

6.24 Wheel Trees and Loop Trees

An individual loop, within a loop tree, may be derived from a general acyclic graph with
loopbacks, by replacing some of its elements by inner loops. An individual wheel, within a wheel
tree, may be derived from a simple cycle by replacing some of its elements by inner wheels. This
greater simplicity of wheel trees, however, comes at a cost; the height of a wheel tree is often
greater than the height of the corresponding loop tree. We will now illustrate this with an example.
Consider the following program:

 (A) s0;
 (B) do {
 switch (expr) {
 (C1) case 1: while (cond1) s1; break;
 (C2) case 2: while (cond2) s2; break;
 . . .
 (Ck) case k: while (condk) sk;
 }
 (E) } while (cond)
 (F) f;

The flowgraph of this program is given in Fig. 6.18. Consider the outer loop here, that is, the
entire graph except for the nodes A and F. A loop tree for that graph consists of the do loop,
containing k while loops, all at the same level. The height of this loop tree, therefore, is 2. We
now prove that any wheel tree for this graph has height at least k+1. If k = 1, the wheel tree also
has height 2 (= k+1); B, C1, and E form the outer wheel, while C1 and D1 form the inner wheel.

If k > 1, then let W be a representation of this graph as a wheel, as in section 6.11, containing
inner wheels W1, W2, ..., Wn. Let W1 be the inner wheel that contains Dk. There are four cases,
only three of which are actually possible:

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

664

1) W1 consists of Dk by itself. In that case, as we can see from Fig. 6.18, x1→y2 must be

Dk→Ck, while xn→y1 must be Ck→Dk. Therefore y2 = xn and so n = 2, with W2 being
the remainder of the graph. Otherwise, W1 must contain Ck, since Ck is the only node
with an edge either to or from Dk.

2) W1 consists of Dk and Ck by themselves. In that case, again from Fig. 6.18, x1→y2 must

be Ck→E, while xn→y1 must be B→Ck. Let W2 be the inner wheel that contains E.
Since W2 is strongly connected, it also contains B; but B = xn, so that again n = 2 and
W2 is the remainder of the graph. In either of these cases, W2 is strongly connected; also,
any wheel tree of W2 must have height at least (n–1)+1 = n, by induction, so any wheel
tree for W must have height at least n+1.

In the remaining two cases, W1 contains Dk, Ck, and either B or E, since these are the only nodes
with edges to or from Ck. If W1 contains E, then, since W1 is strongly connected, it also contains
B; so, in any case, W1 contains B.

3) W1 contains all Di except for some Dj, where j ≠ k. Here W2 contains Dj, and W2 does
not contain B, so that W2 must be either Dj by itself, or Dj and Cj by themselves. This
then reduces to case (1) or (2) above, with j taking the place of k.

Fig. 6.18. The height of a wheel tree compared to that of a loop tree

4) There exist two Di, say Da and Db, which are not contained in W1; but W1 still contains
Dk, Ck, and B. We now show that this case is impossible. Clearly Da and Db cannot be
in the same inner wheel, since that wheel would have to contain B; but B is actually in
W1. Therefore, Da and Db are contained in distinct inner wheels, and there must now be
a path around W, from Da to Db (or from Db to Da), which does not go through W1.
Since W1 contains B, this path cannot go through B. This is impossible, however,
because every path from Da to Db, or from Db to Da, in this graph must in fact go
through B. This completes the proof.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

665

A consequence of this is that wheel trees do not, in general, represent the looping depth of a graph,
even though, like loop trees, they constitute a decomposition of strongly connected graphs into a
tree structure, with a strongly connected subgraph at every level.

7 Conclusions

We have compared three methods of repeated decomposition of a directed graph, using strong
components, namely wheel trees, clustering trees, and loop trees. We have shown that loop trees
are a better source of understanding of the properties of flowgraphs than are clustering trees or
wheel trees. We have also shown that there are well-known concepts in the theory of directed
graphs that can be better understood by considering their loop trees. These include path
expressions, edge-disjoint spanning trees, and feedback vertices. Our contention is that loop trees
are the first important 21st-century development in the theory of directed graphs, particularly
flowgraphs, and that anyone interested in this theory should learn about them.

Acknowledgment

The author is grateful to R. E. Tarjan for calling to his attention the work of the following authors,
as work related to this author’s own: Edmonds [9], on edge-disjoint spanning trees; Karp [12] on
feedback sets and NP-completeness; Smith and Walford [3] and Garey and Tarjan [4], on
feedback vertices, feedback sets, and vertex covers; Luce [5], Knuth [6], and Chaty and Chein
[14], on an alternative method of decomposition involving strong components; as well as some of
Tarjan’s own work on clustering [13], edge-disjoint spanning trees [8], and path expressions [7].

Competing Interests

Author has declared that no competing interests exist.

References

[1] Maurer WD. Generalized structured programs and loop trees. Sci Comp Prog. 2007;67:223-

246.
[2] Maurer WD. Loop trees for directed graphs and their applications. Technical Report TR-

GWU-CS-05-004. Washington: Computer Science Dept, George Washington University;
2005.

[3] Smith GW Jr, Walford RB. The identification of a minimal feedback vertex set of a
directed graph. IEEE Trans Circuits Syst. 1975;CAS-22(1):9-14.

[4] Garey MR., Tarjan RE. A linear-time algorithm for finding all feedback vertices. Info Proc
Letters. 1978;7(6):274-276.

[5] Luce D. Two decomposition theorems for a class of finite oriented graphs. Amer J of Math.
1952;74(3):701-722.

[6] Knuth DE. Wheels within wheels. J Combinatorial Theory (B). 1974;16:42-46.
[7] Tarjan RE. Fast algorithms for solving path problems. J Assoc Comp Mach.

1981;28(3):594-614.

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014

666

[8] Tarjan RE. Edge-disjoint spanning trees and depth-first search. Acta Informatica.
1976;6:171-185.

[9] Edmonds J. Edge-disjoint branchings. In: Rustin R, editor. Combinatorial algorithms. New
York: Algorithmics Press; 1972.

[10] Manna Z. Mathematical theory of computation. New York: McGraw-Hill; 1974.
[11] Maurer WD. A minimization theorem for verification conditions. Waterloo, Ontario,

Canada: Proc. 8th International Conf on Computing and Automation (ICCI '96, CD-based
proceedings); 1996.

[12] Karp RM. Reducibility among combinatorial problems. In: Miller RE, Thatcher JW,
editors. Complexity of computer computations. New York: Plenum Press; 1972.

[13] Tarjan RE. An improved algorithm for hierarchical clustering using strong components.
Info Proc Letters. 1983;17:37-41.

[14] Chaty G, Chein M. A note on top down and bottom up analysis of strongly connected
digraphs. Discrete Math. 1976;16:309-311.

__
© 2014 Maurer; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=360&id=6&aid=2624

