

British Journal of Mathematics & Computer Science 4(5): 590-596, 2014

SCIENCEDOMAIN international www.sciencedomain.org

On the Gaussian and Mean Curvatures of Parallel Hypersurfaces in E₁ⁿ⁺¹

Ayşe Yaşar Yavuz¹, F. Nejat Ekmekci² and Yusuf Yaylı²

¹Necmettin Erbakan University, Education of Mathematics, Konya, Turkey. ²Ankara University, Faculty of Sciences, Department of Mathematics, Ankara, Turkey.

Original Research Article

Received: 12 July 2013 Accepted: 05 November 2013 Published: 25 November 2013

Abstract

Let M be a hypersurfaces in (n+1) dimensional Lorentzian space E_n^{n+1} and \overline{M} be a parallel hypersurfaces to M. Before now in [2] the theorem was proved on M in Euclidean space, but now we prove this theorem on \overline{M} in Lorentzian Space. In this study, we give higher order Gaussian curvatures of \overline{M} in Lorentzian space by using its principal curvatures and we proved the theorem with induction method by using higher order Gaussian curvatures of \overline{M} in Lorentzian space.

Keywords: Gaussian curvatures, mean curvatures, parallel hypersurfaces, higher order Gaussian curvatures.

1 Introduction

For an integer v with $0 \le v \le n$, changing the first v plus signs above to minus gives a metric tensor

$$< v_p, w_p > = -\sum_{i=1}^{v} v_i w_i + \sum_{j=v+1}^{n} v_i w_i$$

of index v .The resulting semi-Euclidean space R_v^n reduces to R^n if v = 0. For $n \ge 2$, R_1^n is called Minkowski n - space; if n = 4 it is the simplest example of a relativistic spacetime.

The common value v of index g_p on a semi-Riemannian manifold M is a called the index of $0 \le v \le n = dimM$. If v = 0, M is Riemannian manifold; each g_p is then a (positive definite) inner product on $T_p(M)$. If v = 1 and $n \ge 2$, M is a Lorentz manifold. Fix the notation

^{*}Corresponding author: ayasar@konya.edu.tr;

$$\varepsilon_i = \begin{cases} -1 & for \ 1 \leq i \leq v, \\ +1 & for \ v+1 \leq i \leq n \end{cases}$$

Then the metric of R_{ν}^{n} can be written

$$g=\sum \varepsilon_i du_i\otimes du_i.$$

A tangent vector v to M is

spacelike if
$$\langle v, v \rangle > 0$$
 or $\langle v, v \rangle = 0$,
null if $\langle v, v \rangle = 0$ and $v \neq 0$
timelike if $\langle v, v \rangle < 0$ [1]

Normal curvatures, principal curvatures for hypersurfaces and the relevant higher order Gaussian curvatures are invariants independent of the choice of coordinates. There has been some recent studies on the relations between higher order Gaussian curvatures of a hypersurfaces M in E_1^{n+1} and that another hypersurfaces \overline{M} which is parallel to M. These invariants relevant definitions and theorems are generalized by replacing E_1^{n+1} with a (n + 1) –Lorentzian manifold.

Let *M* and \overline{M} are two hypersurfaces in E_1^{n+1} with unit normal vector Nof *M*.

$$N = \sum_{i=1}^{n} \alpha_i \frac{\partial}{\partial_{x_i}}$$

where each α_i is a C^{∞} function of *M*. If there is a function f, from *M* to \overline{M} such that

$$f: M \to \overline{M} P \to f(P) = P + rN_P$$

then \overline{M} is called parallel hypersurfaces of M, where $r \in R.[1]$

 $X \in \chi(M)$ and $\overline{X} \in \chi(\overline{M})$ vector fields and we have

$$X = \sum_{i=1}^{n+1} b_i \frac{\partial}{\partial_{x_i}}$$
$$\bar{X} = \sum_{i=1}^{n+1} \bar{b}_i \frac{\partial}{\partial_{x_i}}$$
$$P \in M, \ b_i(P) = \bar{b}_i(f(P)), \ 1 \le i \le n,$$

 $i)f_*(X) = \overline{X} + rS(X)$ $ii)\overline{S}(f_*(X)) = S(X)$

iii) If k is principal curvatures of M at the point P in direction X, then $\frac{k}{1+rk}$ is the principal curvatures of \overline{M} at the point f(P) in direction $f_*(X)$, that is, $\overline{S}(f_*(X)) = \frac{k_1}{1+rk_1}f_*(X)$ which means that f preserves principal directions, where f_* is the differential of f and we know that [3]

$$\bar{S}(f_*(X_1)) = \frac{k_1}{1 + rk_1} f_*(X_1)$$
$$\bar{S}(f_*(X_2)) = \frac{k_2}{1 + rk_2} f_*(X_2)$$
$$\vdots$$
$$\bar{S}(f_*(X_n)) = \frac{k_n}{1 + rk_n} f_*(X_n).$$

2. Basic Consepts

Definition 1:

Let M and \overline{M} are two hypersurfaces in E_1^{n+1} with unit normal vector N of M.

$$N = \sum_{i=1}^{n} \alpha_i \frac{\partial}{\partial_{x_i}}$$

where each α_i is a C^{∞} function of M. If there is a function f from M to \overline{M} such that

$$f: M \to \overline{M} P \to f(P) = P + rN_P$$

then \overline{M} is called parallel hypersurfaces of M, where $r \in \mathbb{R}$.

Definition 2:

Let N be a unit normal vector field on a semi-Riemannian hypersurfaces \overline{M} . The tensor field S on M such that

$$\langle S(V), W \rangle = \langle II(V, W), N \rangle$$
 for all $V, W \in \mathfrak{K}(M)$

is called shape operator M derived from N.

As usual, S determines a linear operator $S_P: T_M(P) \to T_M(P)$ at each point $p \in M$. [1]

Definition 3:

Let *M* be a hypersurfaces in E_1^{n+1} and *S* denotes the shape operator on M, at $P \in M$. The function *H* defined by

$$H: M \to R$$
$$P \to H(P) = Trace S(P)$$

is called the mean curvature function of M and the real number H(P) is called mean curvature of M at the point P. [3]

Definition 4:

Let *M* be a hypersurfaces in E_1^{n+1} and *S* denotes the shape operator on M, at $P \in M$. The function *K* defined by

$$K: M \to R$$
$$P \to K(P) = \varepsilon det S(P)$$

is called the Gaussian curvature function of M and the real number K(P) is called Gaussian curvature of M at the point P. [3]

Definition 5:

Let M be a hypersurfaces in E_1^{n+1} and $T_M(P)$ be a tangent space on M, at $P \in M$. If S_P denotes the shape operator on M, then

$$S_P: T_M(P) \to T_M(P)$$

is a linear mapping. If we denote the characteristic vectors by $k_1, k_2, ..., k_n$ and the corresponding characteristic vectors by $x_1, x_2, ..., x_n$ of S_P then $k_1, k_2, ..., k_n$ are the principal curvatures and $x_1, x_2, ..., x_n$ are the principal directions of M, at $P \in M$. On the other hand, if we use the notions $\varepsilon_i = +1$

$$K_{1}^{(n)}(\mathbf{k}_{1}, \mathbf{k}_{2}, \dots, k_{n}) = \varepsilon_{1}\mathbf{k}_{1} + \sum_{i=2}^{n} \varepsilon_{i}\mathbf{k}_{i}$$

$$K_{2}^{(n)}(\mathbf{k}_{1}, \mathbf{k}_{2}, \dots, k_{n}) = \sum_{i=1 < j < t}^{n} \varepsilon_{i}\mathbf{k}_{i}\mathbf{k}_{j} + \sum_{i \neq 1 < j < t}^{n} \varepsilon_{i}\mathbf{k}_{i}\mathbf{k}_{j}$$

$$K_{3}^{(n)}(\mathbf{k}_{1}, \mathbf{k}_{2}, \dots, k_{n}) = \sum_{i=1 < j < t}^{n} \varepsilon_{i}\mathbf{k}_{i}\mathbf{k}_{j}\mathbf{k}_{t} + \sum_{i \neq 1 < j < t}^{n} \varepsilon_{i}\mathbf{k}_{i}\mathbf{k}_{j}\mathbf{k}_{t}$$

$$\vdots$$

$$K_{n}^{(n)}(\mathbf{k}^{1}, \mathbf{k}^{2}, \dots, k_{n}) = \varepsilon_{1}\prod_{i=1}^{n} \mathbf{k}_{i}$$

then the characteristic polynomial of S(P) becomes

$$P_{S(P)}(k) = k^{n} + (-1)K_{1}^{(n)}k^{n-1} + \dots + (-1)^{n}K_{n}^{(n)}$$

and $K_1, K_2, ..., K_n$ are uniquely determined, where the functions K_i are called the higher ordered Gaussian curvatures of the hypersurface M.

 \overline{M} be a parallel hypersurfaces to M in E_1^{n+1} . If $\overline{k_i}$ denotes the i-th principal curvature function on \overline{M} , then, in a similar way, we can write the higher order Gaussian curvatures on \overline{M} as follows;

$$\overline{K}_{1}^{(n)}(\overline{\mathbf{k}_{1}},\overline{\mathbf{k}_{2}},\ldots,\overline{k_{n}}) = \varepsilon_{1}\overline{\mathbf{k}_{1}} + \sum_{i=2}^{n} \varepsilon_{i}\overline{\mathbf{k}_{i}}$$

$$\overline{K}_{2}^{(n)}(\overline{\mathbf{k}_{1}},\overline{\mathbf{k}_{2}},\ldots,\overline{k}_{n}) = \sum_{i=1< j}^{n} \varepsilon_{i}\overline{\mathbf{k}_{i}}\overline{\mathbf{k}_{j}} + \sum_{i\neq 1< j}^{n} \varepsilon_{i}\overline{\mathbf{k}_{i}}\overline{\mathbf{k}_{j}}$$

$$\overline{K}_{3}^{(n)}(\overline{\mathbf{k}_{1}},\overline{\mathbf{k}_{2}},\ldots,\overline{k}_{n}) = \sum_{i=1< j< t}^{n} \varepsilon_{i}\overline{\mathbf{k}_{i}}\overline{\mathbf{k}_{j}}\overline{\mathbf{k}_{t}} + \sum_{i\neq 1< j< t}^{n} \varepsilon_{i}\overline{\mathbf{k}_{i}}\overline{\mathbf{k}_{j}}\overline{\mathbf{k}_{t}}$$

$$\vdots$$

$$\overline{K}_{n}^{(n)}(\overline{\mathbf{k}_{1}},\overline{\mathbf{k}_{2}},\ldots,\overline{k}_{n}) = \varepsilon_{1}\prod_{i=1}^{n}\overline{\mathbf{k}_{i}}$$

$$\overline{k}_{i} = \frac{k_{i}}{1+r+k_{i}}, 1 \leq i \leq n.$$

where

Theorem:

Let \overline{M} be a parallel hypersurfaces in E_1^{n+1} and $\overline{K_1}, \overline{K_2}, \ldots, \overline{K_n}$ are called the higher order Gaussian curvatures and $\overline{k}_1, \overline{k}_2, \ldots, \overline{k}_n$ are the principal curvatures at the point $f(P) \in \overline{M}$. Let us define a function

$$\begin{split} \varepsilon_{i} &= +1, \varepsilon_{1} = \pm 1 \ (i \neq 1) \\ \varphi: \overline{M} \to R \\ P \to \varphi(P) &= \varphi(\mathbf{r}, \overline{\mathbf{k}}_{1}, \overline{\mathbf{k}}_{2}, \dots, \overline{k}_{n}) \\ &= \prod_{i=1}^{n} (1 + \varepsilon_{i} r \overline{k_{i}}) \end{split}$$

such that φ function is

$$\varphi(\mathbf{r}, \bar{\mathbf{k}}_1, \bar{\mathbf{k}}_2, \dots, \bar{\mathbf{k}}_n) = \mathbf{r}\overline{K_1} + r^2\overline{K_2} + \dots + r^n\overline{K_n}.$$

where $\overline{k_i} = \frac{k_i}{1 + rk_i}$, $1 \le i \le n$.

Proof:

We prove the theorem by induction method.

a) If X_p is spacelike $\varepsilon_1 = +1$. For n = 1, the theorem holds. Actually,

$$\varphi(\mathbf{r}, \overline{\mathbf{k}}_1, \overline{\mathbf{k}}_2, \dots, \overline{\mathbf{k}}_n) = \prod_{\substack{i=1\\i=1}}^1 (1 + \varepsilon_i r \overline{\mathbf{k}}_i)$$
$$= 1 + r \overline{\mathbf{k}}_1$$
$$= 1 + r \sum_{\substack{i=1\\i=1}}^1 \varepsilon_i \overline{\mathbf{k}}_i$$
$$= 1 + r \overline{K}_1$$

Now suppose that the theorem holds for n - 1 and show that is true for n:

$$\varphi(\mathbf{r}, \bar{\mathbf{k}}_{1}, \bar{\mathbf{k}}_{2}, \dots, \bar{\mathbf{k}}_{n}) = \prod_{i=1}^{n-1} (1 + \varepsilon_{i} r \bar{k}_{i})$$
$$= 1 + r \sum_{i=1}^{n-1} \bar{k}_{i} + r^{2} \sum_{i < j}^{n-1} \bar{k}_{i} \bar{k}_{j} + \dots + r^{n-1} \prod_{i=1}^{n-1} \bar{k}_{i}$$
$$= 1 + r \overline{K_{1}} + r^{2} \overline{K_{2}} + \dots + r^{n-1} \overline{K_{n-1}}$$

For *n*, both sides of the equation is multiplied by $1 + r\overline{k_n}$

$$\left(\prod_{i=1}^{n-1} 1 + r\overline{k_i}\right) \left(1 + r\overline{k_n}\right) = \left(1 + r\sum_{i=1}^{n-1} \overline{k_i} + r^2 \sum_{i
$$= 1 + r\left(\sum_{i=1}^{n-1} \overline{k_i} + \overline{k_n}\right) + r^2 \left(\sum_{iwe have$$$$

and

$$\prod_{i=1}^{n} 1 + r\overline{k_i} = 1 + r\sum_{i=1}^{n} \overline{k_i} + r^2 \sum_{i< j}^{n} \overline{k_i} \overline{k_j} + \dots + r^n \prod_{i=1}^{n} \overline{k_i}$$
$$\varphi(\mathbf{r}, \overline{\mathbf{k}_1}, \overline{\mathbf{k}_2}, \dots, \overline{\mathbf{k}_n}) = 1 + \mathbf{r}\overline{K_1} + r^2\overline{K_2} + \dots + r^n\overline{K_n}$$

b) If X_p is timelike ε_1 =-1. For n = 1, the theorem holds . Actually,

$$\varphi(\mathbf{r}, \overline{\mathbf{k}}_1, \overline{\mathbf{k}}_2, \dots, \overline{\mathbf{k}}_n) = \prod_{\substack{i=1\\i=1}}^{1} (1 + \varepsilon_i r \overline{\mathbf{k}}_i)$$
$$= 1 + \varepsilon_1 r \overline{\mathbf{k}}_1$$
$$= 1 + r \sum_{\substack{i=1\\i=1\\i=1}}^{1} \varepsilon_i \overline{\mathbf{k}}_i$$
$$= 1 + r \overline{K_1}$$

Now suppose that the theorem holds for n - 1 and show that is true for n:

$$\varphi(\mathbf{r}, \overline{\mathbf{k}}_1, \overline{\mathbf{k}}_2, \dots, \overline{\mathbf{k}}_n) = \prod_{i=1}^{n-1} 1 + \varepsilon_i r \overline{k}_i$$
$$= 1 + r \sum_{i=1}^{n-1} \varepsilon_i \overline{k}_i + r^2 \sum_{i < j}^{n-1} \varepsilon_i \overline{k}_i \overline{k}_j + \dots + r^{n-1} \prod_{i=1}^{n-1} \varepsilon_i \overline{k}_i$$
$$= 1 + r \overline{K}_1 + r^2 \overline{K}_2 + \dots + r^{n-1} \overline{K}_{n-1}$$

For *n*, both sides of the equation is multiplied by $1 + r\varepsilon_n \overline{k_n}$

$$\begin{pmatrix} \prod_{i=1}^{n-1} 1 + r\varepsilon_i \overline{k_i} \end{pmatrix} (1 + r\varepsilon_i \overline{k_n})$$

$$= \left(1 + r \sum_{i=1}^{n-1} \varepsilon_i \overline{k_i} + r^2 \sum_{i

$$= 1 + r \left(\sum_{i=1}^{n-1} \varepsilon_i \overline{k_i} + \overline{\varepsilon_n k_n} \right) + r^2 \left(\sum_{i$$$$

and we have

$$\varphi(\mathbf{r}, \overline{\mathbf{k}}_1, \overline{\mathbf{k}}_2, \dots, \overline{\mathbf{k}}_n) = 1 + \mathbf{r}\overline{K_1} + r^2\overline{K_2} + \dots + r^n\overline{K_n}$$

4. Conclusion

.

Consequently, in this paper we studied higher order Gaussian curvatures on \overline{M} in E_1^{n+1} and we proved a new theorem that related higher order Gaussian curvatures and principal curvatures.

Competing Interests

Authors have declared that no competing interests exist.

References

- O.Neill, B., Semi Riemannian Geometry. Department of Mathematics Uni-versity of California Los Angeles, California. 1983
- [2] Sağel M.K.and Hacısalihoğlu, H.H.1988. On the Gaussian and mean curva-tures of a paralel hypersurface I: Commun. Fac. Sci.Univ. Ankara, Ser. Al 37, No.1-2,9-1500.
- [3] Yaşar, A. Higher Order Gaussian Curvatures of a Parallel Hypersurfaces in Ln Lorentz Space, Master Thesis Ankara University.

© 2014 Yavuz et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=360&id=6&aid=2593