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Abstract: Objectives. Epidemiological data concerning third-generation cephalosporin (3GC) re-
sistance in wild fauna are scarce. The aim of this study was to characterize the resistance genes,
their genetic context, and clonal relatedness in 17 Escherichia coli resistant to 3GC isolated from
wild animals. Methods. The isolates were characterized by short-read whole genome sequenc-
ing, and long-read sequencing was used for the hybrid assembly of plasmid sequences. Results.
The 3GC resistance gene most identified in the isolates was the extended-spectrum β-lactamases
(ESBL)-encoding gene blaCTX-M-1 (82.3%), followed by blaCTX-M-32 (5.9%), blaCTX-M-14 (5.9%), and
blaSHV-12 (5.9%). E. coli isolates mainly belonged to the sequence types (STs) rarely reported from
humans. The single nucleotide polymorphism (SNP)-based typing showed that most E. coli genomes
from wild animals (wild boars, birds of prey, and buzzards) formed clonal clusters (<5 SNPs), show-
ing a clonal dissemination crossing species boundaries. blaCTX-M-1-harboring IncI1-ST3 plasmid
was the predominant ESBL-encoding plasmid (76.4%) in wild animal isolates. Plasmid comparison
revealed a 110-kb self-transferable plasmid consisting of a conserved backbone and two variable
regions involved in antimicrobial resistance and in interaction with recipient cells during conjugation.
Conclusion. Our results highlighted the unexpected clonal dissemination of blaCTX-M-1-encoding
clones and the complicity of IncI1-ST3 plasmid in the spread of blaCTX-M-1 within wild fauna.

Keywords: antibiotic resistance; ESBL; CTX-M-1; Escherichia coli; enterobacteriaceae; environment;
animals; wild fauna; plasmid

1. Introduction

Antibiotics overuse is a key factor in the emergence of antimicrobial resistance
(AMR) mechanisms, especially extended-spectrum β-lactamases (ESBL) [1]. ESBLs are en-
zymes that confer resistance to penicillins and cephalosporins, including third-generation
cephalosporins (3GC), classified by the World Health Organization (WHO) as critically
important antimicrobial agents in human medicine [2].

Antimicrobial resistance is also a complex and multifaceted threat to humans, animals,
and the environment. Advanced knowledge on AMR has demonstrated that it not only
affects the human sector but is also widely distributed across animals and the environ-
ment [3]. A major cause of the AMR burden is the capability of AMR to transmit within and
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between individuals, including across sectors. There is a great concern that contacts with
animals may enhance the risk of ESC-E/CP-E acquisition by humans [3]. An increase in
ESBL-producing bacteria carriage was demonstrated for farmers and employees in contact
with broilers [4].

The occurrence of antibiotic-resistant bacteria in wild fauna has also been reported,
with the first description of chloramphenicol-resistant Escherichia coli isolates in Japanese
wild birds in 1977 [5,6]. The ESBL-producing E. coli isolates from wild animals were first
reported in Portugal in 2006 [7]. Since then, the occurrence of ESBL-producing bacteria
within diverse animal species, including urban and wild birds with no evident exposure to
antimicrobial drugs, has been recently reported across different geographical areas [6,8,9].
On the other hand, wild animals, especially migratory birds, have been identified as
potential reservoirs for ESBL, AmpC β-lactamase, carbapenemase, and colistin resistance
genes in Enterobacteriaceae [6,10]. Because of their frequent presence in close proximity to
human-influenced environments, such as urban areas, landfills, wastewater, and livestock
facilities, they can be colonized by resistant bacteria and then disseminate them over long
distances, thus constituting a possible transmission factor of resistant bacteria that can
contaminate animal food and natural water reservoirs [9,11]. However, few data were
collected on the spread of resistant bacteria in wildlife.

CTX-M-type are the most common plasmid-mediated ESBL among Enterobacteriaceae
isolates of human and veterinary origin worldwide [12–16]. The CTX-M-1-encoding gene
blaCTX-M-1 has been frequently associated with IncI1 and IncN plasmids in Enterobacteriaceae
of human and veterinary origin [17–19], and it has been mainly associated with IncI1
plasmids in wildlife in Europe [20,21]. In addition, IncI1 plasmids can also carry other
ESBL-encoding genes such as blaTEM-52 and blaSHV-12 in wild animals [6,10]. However,
genomic data for ESBL-encoding plasmids in wild animals are scarce [22,23].

This study aimed to characterize a collection of 17 ESBL-producing E. coli isolates
collected in distinct regions of Portugal from wild animals with different eating habits to
analyze the clonal diversity of isolates and the ESBL genetic context. The results showed
both an unexpected clonal dissemination of ESBL-producing E. coli and the epidemic
spread of ESBL-encoding plasmids in wild fauna.

2. Materials and Methods
2.1. Bacterial Isolates

A total of 17 ESBL-producing E. coli isolates from different species of wild animals with
different eating habits living in natural parks and reserves in distinct regions of Portugal
were included in this study, ranging from carnivores such as birds of prey (n = 4), buzzards
(n = 4), lynx (n = 2), and wolves (n = 2) to omnivores such as wild boar (n = 3) and seagulls
(n = 1) and herbivores such as a bat (n = 1) (Table 1) [24–30].
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Table 1. Metadata and key features of Escherichia coli isolates collected from the stool of different wild animals.

Strain ID Source Country/Year Phylogroup/ST ESBL Gene/Replicon a Plasmid-Mediated Resistance Genes b Chromosome-Mediated
Resistance Genes b

TB63 Bat Portugal/2014 B1/ST155 blaCTX-M-1/IncI1-ST3 aadA5, dfrA17, sul2 gyrA-S83L

1-102 Bird of prey Portugal/2008 C/ST1998 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R), gyrA-S83L-D87N, parC-S80I

13-103 Bird of prey Portugal/2008 B1/ST1800 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R) gyrA-S83L-D87N, parC-S80I

2-101 Bird of prey Portugal/2008 C/ST1998 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R), gyrA-S83L-D87N, parC-S80I

21-101 Bird of prey Portugal/2008 C/ST1998 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R) gyrA-S83L-D87N, parC-S80I

BU10A Buzzard Portugal/2007 A/ST48 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R),
qnrS1, strAB, aadA1, dfrA1, sul1

BU10B Buzzard Portugal/2007 A/ST48 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R),
qnrS1, strAB, aadA1, dfrA1, sul1

BU22A Buzzard Portugal/2007 B1/ST1800 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R) gyrA-S83L-D87N, parC-S80I

BU41A Buzzard Portugal/2007 A/ST48 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R),
qnrS1, strAB, aadA1, dfrA1, sul1

L16 Lynx Spain/2010 C/ST23 blaCTX-M-14/IncK aadA1, aac(3)-VIa, tet(A), tet(R), sul1

L98 Lynx Spain/2010 F/ST117 blaSHV-12/IncI1-ST3 aadA1, aadA2, cmlA1, sul3, strA, dfrA5 gyrA-S83L

GV23 Seagull Portugal/2007 A/ST710 blaCTX-M-1/IncN-ST1 blaOXA-1, aadA1, catA1, sul1, tet(B),
tet(R)

J31 Wild boar Portugal/2006 A/ST48 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R),
qnrS1, strAB, aadA1, dfrA1, sul1

J64 Wild boar Portugal/2006 C/ST1998 blaCTX-M-1/IncI1-ST3 blaTEM-1, aadA5, dfrA17, sul2, tet(A), tet(R) gyrA-S83L-D87N, parC-S80I

J69 Wild boar Portugal/2006 A/ST10430 blaCTX-M-1/IncI1-ST3 aadA5, dfrA17, sul2 gyrA-S83L, parC-S80R, tet(B), tet(R)

W151 Wolf Portugal/2008 A/ST361 blaCTX-M-32/IncN-ST1

W4 Wolf Portugal/2008 B1/ST155 blaCTX-M-1/IncI1-ST3 tet(A), tet(R) gyrA-S83L
a The association of ESBL genes with replicons was determined from Southern blot experiments and in silico analysis of WGS; b deduced from in silico NGS data analysis.
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2.2. Antibiotic Susceptibility Testing

Antimicrobial susceptibility testing was assessed with the disc (Bio-Rad, Marnes-la-
Coquette, France) diffusion method according to the European Committee on Antimicro-
bial Susceptibility Testing guidelines (http://www.eucast.org/ (accessed on 1 December
2020)). The molecules tested were ampicillin (10 µg), amoxicillin-clavulanate combination
(20–10 µg), ticarcillin (75 µg), piperacillin (30 µg), piperacillin-tazobactam combination
(30–6 µg), cephalexin (30 µg), cefuroxime (30 µg), cefixime (5 µg), cefoxitin (30 µg), ce-
fotaxime (5 µg), ceftazidime (10 µg), cefepime (30 µg), aztreonam (30 µg), ertapenem
(10 µg), imipenem (10 µg), mecillinam (10 µg), tobramycin (10 µg), amikacin (30 µg), gen-
tamicin (10 µg), netilmicin (10 µg), nalidixic acid (30 µg), norfloxacin (10 µg), ofloxacin
(5 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg), trimethoprim (5 µg), trimethoprim-
sulfamethoxazole combination (1.25–23.75 µg), temocillin (30 µg), and fosfomycin (200 µg).
ESBL production was detected by the double-disc synergy test using cefotaxime, an
amoxicillin-clavulanate combination, and ceftazidime (http://www.eucast.org/ (accessed
on 1 December 2020)). E. coli ATCC 25,922 was used as a reference strain.

2.3. Whole-Genome Sequencing

Whole-genome sequencing (WGS) was performed using the next-generation sequenc-
ing platform of the teaching hospital of Clermont-Ferrand, France. DNA was extracted
with a DNeasy UltraClean Microbial kit (Qiagen). The libraries were prepared with a Nex-
tera XT Kit (Illumina, San Diego, CA, USA), and sequenced by the Illumina MiSeq system
generating 2 × 301-base pair (bp) paired-end reads. The Fastp v0.19.10 [31] was used for
quality filtering of Illumina reads and SPAdes [32] for short reads assembly. The average
sequencing depth was ≥75×; the number of assembled contigs ranged between 69 and
154, and genome sizes between 4,567,913 and 5,210,322 nucleotides. The raw reads have
been deposited in the European Nucleotide Archive (ENA) under the project accession
number PRJEB36175.

Genomic Data Analysis

E. coli phylogroups and multi-locus sequence typing (MLST) were determined in silico
according to ClermonTyping method [33] and Achtman’s MLST scheme [34]. The molecular
typing of isolates was performed by core genome SNP-based typing (cgSNP) and core
genome MLST (cgMLST). BactSNP was used to perform cgSNP using the E. coli EC958
genome [35] as reference (genome size: 5,162,892 bases) as previously described [36,37].
After the filtration of recombination zones detected by Gubbins [38], a phylogenetic tree was
inferred from the resulting alignment by maximum likelihood using RAxML [39]. The cgMLST
was performed according to the Enterobase cgMLST scheme (https://enterobase.warwick.
ac.uk (accessed on 4 February 2021)) and allele calling with package chewBBACA [40].
The antibiotic resistant genes were identified by alignment against a database including
the online databases CARD [41], Resfinder [42], and the NCBI National Database of
Antibiotic Resistant Organisms (https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-
resistance/ (accessed on 1 December 2020)) using a 95% minimum threshold for the breadth
of coverage and identity percentage, as previously described [43].

2.4. Plasmid Analysis

The plasmid content of bacteria and the size of plasmids were determined using
plasmid DNA extracted using the method of Kado and Liu [44]. The PCR-based replicon
typing (PBRT) scheme (Diatheva, Fano, Italy) and Southern blots using probes specific for
the IncI1, IncN, and IncK replicons and CTX-M-1, CTX-M-14, and SHV-12-encoding genes
were used to localize the ESBL-encoding genes in plasmids, as previously described [45].
The PCR-generated probes derived from blaCTX-M-harboring sequenced strains and PBRT
kit controls (Diatheva, Fano, Italy). The experimental results were confirmed in silico from
WGS using plasmidFinder and the plasmid MLST typing, as previously described [46].
Long reads were obtained from E. coli isolates 2-101 (birds of prey) and J31 (wild boar) using

http://www.eucast.org/
http://www.eucast.org/
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the ligation sequencing kit 1D SQK-LSK109 with the barcoding extension kit EXP-NBD
104 according to the Oxford Nanopore Technologies protocols (Oxford, United Kingdom).
The same DNA extract was used for sequencing across Illumina and Nanopore platforms
to minimize biological variability introduced in bacterial culture. A flowcell FLO-MIN106
connected to the MinION sequencing device was used to sequence the library during 48 h.
Real-time base calling of MinION reads was performed with the MinIT and integrated
Guppy software to produce fastQ files. The reads size from Nanopore varied between 120
and 69,617 bases for the J31 dataset (39,647 reads with a median of average quality score per
read of Q15—base call accuracy: 97%—and an average size of 11,691 bases corresponding to
a total of 463,529,496 bases) and between 107 and 87,164 bases for 2-101 dataset (85,034 reads
with a median of average quality score per read of Q15—base call accuracy: 97%—and
an average size of 10,090 bases corresponding to a total of 857,958,899 bases). These long
reads were de novo assembled with the Illumina short reads using Unicycler v. 0.4.7 [47].
The average sequencing depth of the hybrid assembly was 573× (minimum 139×), and
169× (minimum 30×) for J31 isolate and 370× (minimuFm 89×) and 110× (minimum 20×)
for 2-101 isolate from Nanopore and Illumina reads, respectively. Plasmids annotation
was performed by the National Center for Biotechnology Information prokaryotic genome
annotation pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ (accessed
on 4 May 2020), project accession number PRJEB36175).

3. Results
3.1. Resistance Phenotype and Resistome

The E. coli isolates exhibited a positive synergy test and resistance to penicillin and
cephalosporins, including the oxyimino-cephalosporins cefotaxime or ceftazidime, in agree-
ment with ESBL production. A total of 41% of the isolates were resistant to all quinolones,
76.4% to trimethoprim, and 82.3% to sulphonamides. All the tested isolates were sus-
ceptible to amikacin, and only one isolate was resistant to gentamicin. The antimicrobial
susceptibility profiles are listed in Supplementary Table S1.

WGS analysis detected ESBL-encoding genes in all isolates (Table 1). The predomi-
nant ESBL gene was blaCTX-M-1 (82.3%), followed by the point variants blaCTX-M-32 (5.9%),
blaCTX-M-14 (5.9%), and blaSHV-12 (5.9%). Analysis of gyrA and parC mutations responsible
for quinolone resistance showed the predominance of the double mutations gyrA (S83L
and D87N) associated with parC mutation (S80I; 35.3%). The gene qnrS1 that decreases
quinolone susceptibility was identified in 23.5% of the isolates. The most prevalent amino-
glycoside resistance genes were the genes aadA (aadA1, aadA2, and aadA5), strA, and strB
that affect susceptibility to streptomycin. Only one gene known to affect the susceptibility
to gentamicin was detected (aac(3)-VIa; 5.9%), and none affecting amikacin were detected.
Overall, the content in resistance genes agreed with the resistance phenotype.

3.2. Whole-Genome Typing of E. coli Isolates

Most E. coli isolates belonged to phylogroup A (41.2%); the others belonged to phy-
logroups C (29.4%), B1 (23.5%), and F (5.9%). Nine STs were identified among the isolates,
and 70% of the wild animal isolates were clustered in four STs: ST48 (n = 4), ST1998 (n = 4),
ST1800 (n = 2) and ST155 (n = 2) (Table 1). None of these isolates belonged to the predomi-
nant STs that carry ESBLs in humans [48–64], suggesting that the dissemination of ESBLs
in wild animals is not due to human strains.

The core genome alignment consisted of 3,499,887 bp, with the isolates differing from
each other by 0 to 77,550 SNPs. Three clonal clusters comprising 2 to 4 isolates differed from
each other by less than 5 SNPs, while the others diverged by 1831 to 77,550 SNPs (Figure 1a).
To provide an unbiased phylogeny, recombination zones were removed. The resulting
alignment consisted of 568,547 nucleotides with 0 or 1 SNP for the clonal isolates (≤5 SNPs)
and of 211 to 32,758 SNPs for the other isolates. The clonality relationships were also
inferred by a cgMLST scheme including 2513 conserved loci (Figure 1b). In agreement with
the cgSNP approach, the isolates differed from each other by 0 or 3 alleles for the clonal

https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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isolates (≤5 alleles) and by 258 to 2375 alleles for the other isolates (Figure 1b). The clonal
clusters belonged to ST48, ST1800, and ST1198, and corresponding isolates were isolated
from carnivore birds and a wild boar. These results reveal the clonal dissemination of
ESBL-producing E. coli strains for 10 out of 17 isolates in wild fauna.
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3.3. CTX-M-1-Encoding Plasmids

Hybridization experiments revealed that ~110-kb IncI1 plasmids were mainly asso-
ciated with blaCTX-M-1 (n = 13) and, to a lesser extent, with blaSHV-12 (n = 1). Furthermore,
blaCTX-M-1 and blaCTX-M-32 were also localized on ~50-kb IncN plasmid in isolates GV23 and
W151, respectively. The probe specific for the blaCTX-M-14 gene hybridized with a ~90-kb
IncK plasmid in L16 isolate. The in silico analysis of WGS performed with plasmidFinder
identified seven replicons among the isolates, with IncF and IncI1-ST3 replicons among
the predominant ones (88.2%). The experimental and in silico plasmid analysis results are
listed in the Supplementary Table S2.

The genetic context of the predominant ESBL-encoding gene blaCTX-M-1 was further
investigated. Based on short-read mapping and WGS assembly, blaCTX-M-1 was localized in
large contigs (size ranged between 38,271–88,238 bp), including the replicon origin IncI1
(60%) or at least a fragment of the region previously called shufflon that is specific to IncI1
plasmids [65,66]. These data agreed with the hybridization experiments and the detection
of plasmid IncI1-ST3 in the 13 blaCTX-M-1 isolates. The mapping of corresponding reads
against IncI1 reference plasmid R64 confirmed the results and showed a highly similar
structure of IncI1-ST3 plasmids except in two variable regions, including the shufflon.

While the ESBL-producing plasmid IncI1-ST3 has already been sequenced in strains
isolated from human and human-influenced habitats [67,68], data that have been collected
from wild fauna are scarce [23]. The isolates J31 (wild boar) and 2-101 (bird of prey)
were, therefore, sequenced to closure by Nanopore sequencing. The hybrid assembly of
the J31 dataset generated five circular contigs (sizes: 4871 kb, 50 kb, 108 kb, 126 kb, and
160 kb), including the complete and circular IncI1-ST3 plasmid pJ31 harboring blaCTX-M-1
(108,661 bases, accession number: CP053788). The hybrid assembly of the 2-101 dataset
generated a linear contig (size: 150 kb) and two circular contigs (sizes: 4759 kb and
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108 kb), including complete and circular IncI1-ST3 plasmid p2-101 harboring blaCTX-M-1
(108,661 bases, accession number: CP053786).

These data confirmed the presence of two variable regions. The first variable region
was located downstream of the gene repZ and flanked by an ISSbo1 and ISVsa3, two IS91-
like elements in plasmids p2-101 and pJ31. This region (12.725 kb) harbored a class 1
integrase gene int1, two resistance gene cassettes (dfrA17 and aadA5), IS26, and truncated
IS5075 insertion sequences and sul2 (Figure 2a,b), as previously reported IncI1-ST3 plasmids
(e.g., KJ484638, MH846978, and LT985235), but was absent in plasmid of wolf’s strain W4
(Table 1).

The second variable region, the shufflon, was located between the conserved genes
rci and pilVA and usually consisted of four segments A to D randomly rearranged by the
activity of the rci-encoded recombinase [69]. In contrast to IncI1 reference plasmid R64,
shufflon segment D was absent in the InI1-ST3 plasmids, and the remaining segments
exhibited different organizations in the circularized plasmids p2-101 and pJ31 (Figure 2b).
An additional level of rearrangement was provided by the presence of insertion sequence
ISEcp1 associated with blaCTX-M-1. The element ISEcp1-blaCTX-M-1, which is well-known to
be mobile, was flanked by direct repeats (TTTTTA) and was inserted in the same site within
the shufflon segment B. However, this block ISEcp1-blaCTX-M-1-B exhibited two different
orientations in plasmids p2-101 and pJ31 (Figure 2b). Since the shufflon segments are
involved in the synthesis of PilV adhesin of the type IV conjugative pilus, the insertion
of ISEcp1-blaCTX-M-1 associated with the shuffling of segments could provide diversity
in PilV adhesin and, therefore, modify the recognition and the binding of recipient cell
during IncI1-ST3 conjugation [65]. The resistance element ISEcp1-blaCTX-M-1 could thereby
modulate the transfer efficiency of IncI1-ST3 blaCTX-M-1 plasmids and may be, therefore,
involved their successful spread in a broad diversity of E. coli lineages.
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4. Discussion

This work aimed to analyze at the genomic level ESBL-producing E. coli collected
from wild animals with different eating habits and living in natural parks and reserves or
other rural conservation areas in distinct regions of Portugal [24–30]. All ESBL-producing
E. coli strains were resistant to penicillin, cephalosporin 1st generation (cephalexin), and
cefuroxime and 94% were resistant to cefotaxime. The isolates also exhibited associated
resistances to quinolones, fluoroquinolones, sulfonamides, and trimethoprim, showing
that multidrug-resistant bacteria have emerged in wild birds, as previously reported [6],
and in a broad range of other wildlife species.

The blaCTX-M-1 gene was the predominant ESBL-encoding gene (82.3%), followed
by blaCTX-M-14 (5.9%), and blaCTX-M-32 (5.9%). In addition to blaCTX-M genes, we detected
the blaSHV-12 gene, previously reported in isolates from humans, livestock, companion
animals, and wild birds [6,70–73]. We also detected genes blaOXA-1 and blaTEM-1, which
have been reported in waterbirds on the Baltic sea coast of Poland [20] and from wild
boars and Barbary macaques [74], respectively. Except for the absence of blaCTX-M-15,
these results were also consistent with those previously reported from wild birds [6],
in which the blaCTX-M-1 and blaCTX-M-15 genes were the most widespread ESBL genes,
followed by blaCTX-M-14 and blaCTX-M-32. The blaCTX-M-15 gene is the predominant ESBL in
humans [6]. The absence of blaCTX-M-15 in our study may reflect a weak anthropization
of the wild animals included in this study. Previous reports identified the impact of the
human-influenced habitat in the diffusion of the antimicrobial resistance determinant in the
wildlife, especially in urban areas where wild birds can live and feed [6,10,75]. Our isolates
were collected from natural parks and reserves or other rural conservation areas [24–30],
which are less influenced by human activity than urban areas.

E. coli ST131 and ST405 are the major STs associated with the rapid worldwide rise
in blaCTX-M genes, including blaCTX-M-15 [76] and other CTX-M genes, such as blaCTX-M-14
and blaCTX-M-1 [77]. None of our blaCTX-M-positive isolates belonged to ST131 or ST405,
showing that the dissemination of blaCTX-M genes in our isolates is not related to well-
known clonal strains, in contrast to previous reports about wildlife [6,10]. Furthermore,
E. coli isolates from this study essentially belonged to novel STs (ST1998, ST1800, ST10430),
STs rarely reported in human and human-influenced habitats (ST361, ST155, ST117, ST710)
and/or STs reported in wild animals (ST117 and ST155) [10]. A striking finding from this
study is the clonal dissemination of ESBL-producing E. coli in wild fauna. The isolates
belonged to ST48, ST1800, and ST1198 formed clusters that diverged by less than 5 SNPs,
suggesting direct and/or indirect transmissions between wild animals. This contrasts with
data obtained from human isolates, in which ESBLs are often observed in distantly related
E. coli isolates [48–64]. Overall, the genetic background of isolates suggests that ESBL
spread in the wild animals of this study is not directly linked to contacts with humans or
human-influenced habitats and is marked by direct or indirect transmission within wild
fauna despite a probable low antibiotic selection pressure.

Consequently, anthropization is probably not the main spreading factor of blaCTX-M-1,
which was observed in five different species (bird of prey, bat, wolf, buzzard, wild boar)
out of the seven wild animal species included in this study. 92.8% of the gene blaCTX-M-1
was encoded by the Incl1-ST3 plasmid. Incl1 is one of the most common plasmid families
in Enterobacteriaceae, in both animals and humans [6,10,78], and one of the major plasmids
contributing to the dissemination of the blaCTX-M-1 gene in animals, the environment, and
humans [79]. On the Baltic coast of Poland, ESBL-producing bacteria isolated from water-
birds predominantly had the blaCTX-M-1 gene located on plasmid Incl1 [20]. Similarly, in the
Netherlands, the blaCTX-M-1 gene was carried by Incl1 plasmids among E. coli isolates from
several wild birds [21]. This association was also more recently detected in ESBL-producing
E. coli from various wild animals isolated in Guadeloupe [23]. The identification of the
epidemic plasmids IncI1-ST3 encoding blaCTX-M-1 in samples of different sources, including
humans, animals, and the environment, further underlined the role of horizontal transfer in
the dissemination of resistance genes [80]. Since the IncI1 shufflon segments are involved
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in the synthesis of PilV adhesin of the type IV conjugative pilus, the insertion of ISEcp1-
blaCTX-M-1 associated with the shuffling of segments could modify the recognition and the
binding of recipient cells during IncI1-ST3 conjugation [65], modulate the transfer efficiency
of IncI1-ST3 blaCTX-M-1 plasmids, and may be, therefore, involved in their successful spread
in a broad diversity of E. coli lineages even in an antibiotic-free ecosystem.

5. Conclusions

It emerges from this study that the clonal dissemination of ESBL-producing E. coli
strains in wild fauna crosses the species barriers. It is worth noting the moderate diversity
of ESBLs detected in our E. coli isolates. The blaCTX-M-1 gene, associated with tetracyclines,
fluoroquinolones, aminoglycosides, sulphonamides, and trimethoprim-encoding resistance
genes, was the predominant resistance mechanism observed in our isolates, which belonged
to unusual E. coli lineages collected from wild animals. Our results also underline the
key role of the epidemic plasmid IncI1-ST3 in the diffusion of CTX-M-1 in areas with
low or no antibiotic exposure and weak anthropization. The present study is a step
forward to understanding the dissemination of antibiotic resistance in the wild ecosystem.
More surveillance programs focusing on the spread of antibiotic resistance mechanisms at
the interface of ecosystems, including the wildlife, are needed to better assess the emergence
of antibiotic resistance in the context of the “one health” approach.
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