
____________________________________________________________________________________________ 
 
*Corresponding author: Email: wrightjw@wsu.edu; 

 
 

International Journal of Biochemistry Research 
& Review 

4(3): 204-223, 2014 
   

             SCIENCEDOMAIN international 
       www.sciencedomain.org 

 
 

The Importance of the RAS Interacting with the 
HGF/C-Met Receptor System in Hypertensive 

Type 2 Diabetes Mellitus 
 

John W. Wright1* and Joseph W. Harding1 
 

1
Departments of Psychology, Integrative Physiology and Neuroscience and 

 Program in Biotechnology, Pullman, Washington, USA. 
 

Authors’ contributions 
 

This work was carried out in collaboration between both authors. Both authors read and 
approved the final manuscript. 

 
 
 

Received 26
th

 August 2013 
Accepted 29

th
 November 2013 

Published 18
th

 January 2014 

 
 

ABSTRACT 
 
The classic renin-angiotensin system (RAS) is described as a circulating hormone system 
with primary roles in the regulation of blood pressure, body water balance and thirst and 
control over vasopressin and aldosterone release. Recently local tissue RASs have been 
identified with regulatory physiological functions and also with pathophysiological 
processes including fibrosis, inflammation and dysfunctional cell proliferation. There is a 
strong correlation between organs vulnerable to diabetic–induced hyperglycemic injury 
(eg. kidney and retina) and the over activation of local RASs.  Increased angiotensin II 
concentrations in these tissues promotes hypertension and end-organ damage in at least 
two ways: 1) By activating AT1 receptor proteins thus inducing changes in local blood flow 
and tissue hydration and 2) Exacerbating hyperglycemic-induced oxidative stress, 
elevated polyol and hexosamine pathway variability and facilitating glycation end-products. 
Thus, inhibition of the RAS has become an important treatment approach to control 
diabetic related hypertension, nephropathy and to a lesser extent retinopathy. The present 
review emphasizes the recently established importance of the hepatocyte growth factor 
(HGF)/c-Met receptor system interacting with the RAS in Type 2 diabetes and their likely 
contribution to end-organ damage. A hypothesis is offered concerning how the pancreatic 
RAS may affect dimerization of HGF and in turn activation of the c-Met receptor to 
promote β cell proliferation and insulin synthesis. We conclude with details concerning the 
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development of an AngIV-based small molecule HGF mimetic designed to act as an 
insulinotropic factor. 
 

 
Keywords: Hypertension; Type 2 diabetes; Renin-angiotensin system; Angiotensin II; 

Angiotensin IV; Hepatocyte growth factor; AT1 receptor subtype; AT4 receptor 
subtype; c-Met receptor. 

 

1. INTRODUCTION 
 
1.1 Background Information 
 
The worldwide incidence of diabetes mellitus presently numbers 250 to 350 million adults, 
and is predicted to reach 380-430 million by 2025 if new treatment strategies are not 
introduced [1,2]. Diabetes is accompanied by a significant increase in the risk of 
hypertension, heart attack, stroke, atherosclerosis, renal failure and end-organ damage [3-
5]. Thus, the control of blood pressure is an especially important goal in preventing 
cardiovascular and renal dysfunctions in Type 2 diabetic patients with hypertension.  
Although discussion continues over the optimal target, several reports recommend 
maintaining blood pressure at, or below, 130/80 mm Hg (reviewed in [6,7]). In the overall 
population the risk of cardiovascular events doubles with each 20 mm Hg elevation in 
systolic blood pressure above 115 mm Hg and each 10 mm Hg elevation above 75 mm Hg 
diastolic pressure [8]. Diabetic patients with hypertension suffer twice the risk of 
cardiovascular dysfunction as nondiabetic individuals with hypertension, accompanied by an 
increased likelihood of diabetes specific complications such as retinopathy [9-11] and 
nephropathy [12]. Patients with Type 2 diabetes and hypertension have a sevenfold 
increased risk of progression to end-stage renal disease as compared with normotensive 
Type 2 diabetic patients [13]. The association of Type 2 diabetes with hypertension, 
cardiovascular disease, retinopathy and nephropathy portends over activation of the renin-
angiotensin system (RAS) as an important predisposing factor [14-16]. The relationship 
between diabetes and the RAS is further supported in that increased local tissue angiotensin 
II (AngII) levels can result in insulin resistance by impacting insulin-stimulated elevations in 
insulin receptor substrate1-associated P13K activity [17], thus promoting nephropathy [18].  
 

1.2 The Renin-Angiotensin System 
 
The classic RAS is known for its roles in the regulation of blood pressure, body water 
balance and thirst and influences on vasopressin and aldosterone release [19-26]. This 
system has been implicated in diabetes [14,21,27-29], particularly as evidenced by the 
ameliorating effects of angiotensin converting enzyme (ACE) inhibitors and angiotensin 
receptor blockers (ARBs, designed to block the angiotensin AT1 receptor subtype) in treating 
Type 2 diabetes (see below). This review focuses on the role of the RAS in the development 
and sustaining of Type 2 diabetes. We discuss the recently discovered relationship among 
the renin-angiotensin system (RAS), the hepatocyte growth factor (HGF)/c-Met receptor 
system and diabetes. Next, we discuss the negative impact of elevated prorenin levels on 
the pancreatic RAS and how this may promote end-organ damage. A working hypothesis is 
presented concerning how HGF and the angiotensin IV (AngIV) peptide is facilitated during 
treatment with an ACE inhibitor or ARB, thus activating the c-Met receptor and promoting β 
cell proliferation while attenuating cellular insulin resistance. We conclude with a description 
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of the development of a small molecule HGF mimetic that may act as an insulinotropic 
factor. 
 

2. FORMATION OF ANGIOTENSIN LIGANDS 
 
Components of the RAS have been localized in the brain and a number of peripheral tissues 
including heart, kidney, skeletal muscle, adipose tissue and pancreas [25,26,30]. All 
angiotensin ligands are derived from the precursor protein angiotensinogen which is 
synthesized and secreted from the liver, as well as adipose tissue in obese individuals [31].  
Angiotensin ligands are formed via several enzymatic conversion pathways Fig. 1 [32-34].  
Briefly, the decapeptide angiotensin I (AngI) is derived by renin (EC 3.4.23.15) acting upon 
the amino terminal of angiotensinogen [35]. AngI serves as a substrate for ACE (EC 
3.4.15.1) to form the octapeptide AngII [32,36]. This conversion can also be accomplished 
by the chymotrypsin-like serine protease, chymase [37]. AngII is converted to the 
heptapeptide angiotensin III (AngIII) by aminopeptidase A (APA: EC 3.4.11.7) cleavage of 
aspartate [38-40]. Aminopeptidase N (APN: EC 3.4.11.2) cleaves arginine at the N-terminal 
of AngIII to form the hexapeptide angiotensin IV (AngIV) [41]. AngIV can be further 
converted to Ang(3-7) by carboxypeptidase P (Carb-P) and propyl oligopeptidase (PO) 
cleavage of phenylalanine. Endopeptidases such as chymotrypsin, along with dipeptidyl 
carboxypeptidase, reduce AngIV and Ang(3-7) to inactive peptide fragments and amino acid 
constituents [32,42-46]. 
 
AngI is biologically inactive; while AngII and AngIII are full agonists at the AT1 and AT2 
receptor subtypes Table 1 [25,47]. AngIV and Ang(3-7) bind with low affinity at the AT1 
receptor subtype but with high affinity and specificity at the AT4 receptor subtype [48-53].  
AngII and AngIII mediate pressor and dipsogenic effects via the AT1 and AT2 receptor 
subtypes [19]. AngIV exerts a much reduced pressor response by acting with low affinity as 
an agonist at the AT1 receptor subtype [54-58]. 
 

Table 1. Binding affinity values (M) for native angiotensins, Candisartan and 
Telmisartan at three angiotensin receptor subtypes 

 
Ligands AT1 AT2 AT4 

Angiotensin II 7.92 X 10
-9

 M  5.22 X 10
-10

 M 1.00 X 10
-6 

M 
Angiotensin III 2.11 X 10

-8
 6.48 X 10

-10
  1.60 X 10

-7
 

Angiotensin IV 1.00 X 10
-5

 4.86 X 10
-8

 1.29 X 10
-9

 
Candisartan 1.56 X 10

-9
 1.00 X 10

-5
 NA 

Telmisartan 10.90 X 10
-9

 10.00 X 10
-6  

 NA 
The ligand binding affinities for the AT1 and AT2 receptor subtypes are from Bosnyak et al. [59] and 

Kukuta et al. [60]. Binding affinities for the AT4 receptor subtype are from Harding et al. [50].  
NA=not available. 
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Fig. 1. RAS synthetic pathway 
 

The renin-angiotensin pathway, including active ligands (bold), enzymes and receptors, is 
presented. The location of action for clinically available inhibitors designed to control 
angiotensin mediated hypertension are indicated in red. Abbreviations: ACE=angiotensin 
converting enzyme; APA=aminopeptidase A; APN=aminopeptidase N; ARBs=angiotensin 
receptor blockers. Carb-P=carboxypeptidases, PO=propyl oligopeptidase. 
 

3. CHARACTERIZATION OF THE AT1 AND AT2 RECEPTOR SUBTYPES 
 
The AT1 receptor subtype is a G-protein coupled receptor with signaling via phospholipase-C 
and calcium. Thus, the angiotensin ligand binds to the AT1 receptor and induces a 
conformational change in the receptor protein that activates G proteins, which in turn, 
mediates signal transduction. This transduction involves several plasma membrane 
mechanisms including phospholipase-C, -A2 and –D-adenylate cyclase, plus L-type and T-
type voltage sensitive calcium channels [19,61,62]. The AT1 receptor (now designated AT1A) 
is also coupled to intracellular signaling cascades that regulate gene transcription and the 
expression of proteins that mediate cellular proliferation and growth in many target tissues.  
Subsequently, a second AT1 subtype was discovered and designated AT1B that was also 
cloned in the rat [63,64], mouse [65] and human [66]. This subtype is approximately 92-95% 
homologous with the amino acid sequence of the AT1A subtype [67,68]. Of these two 
isoforms the AT1A subtype appears to be primarily responsible for the classic functions 
associated with the brain angiotensin system [69,70]. 
 
The AT2 receptor subtype has been cloned and sequenced using a rat fetus expression 
library [71,72] and also evidences a 7-transmembrane domain characteristic of G-protein 
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coupled receptors; however it shows only about 32-34% amino acid sequence identity with -
the rat AT1 receptor. Even though this AT2 receptor possesses structural features in common 
with members of the 7-transmembrane family of receptors, it displays few if any functional 
similarities with this group, although it does appear to be G-protein coupled [19,71,72]. While 
the AT1 receptor subtype is maximally sensitive to AngII, it is also responsive to AngIII. The 
AT2 receptor subtype appears to be maximally sensitive to AngIII but AngII also serves as a 
ligand at this receptor subtype. The functions associated with the activation of each of these 
receptors are presented in Table 2. 

 
Table 2. Ligand activation of the AT1, AT2 and AT4 receptor subtypes 

 

AT1 receptor subtype AT2 receptor subtype AT4 receptor subtype 

Vasoconstriction Vasodilation Dendritic    arborization 
Aldosterone release                            Antifibrotic Changes in blood flow 
Vasopressin release   Antiproliferative     Memory facilitation 
Cardiac hypertrophy   Antihypertrophic Protection against seizures 
Fibrosis Antithrombotic   Facilitates wound healing 
Proliferation   
Inflammation   
Platelet aggregation   
Oxidative stress   
Endothelial disruption   

  

4. CHARACTERIZATION OF THE AT4 RECEPTOR SUBTYPE 
 
During our attempt to purify and sequence the AT1 receptor subtype we noticed that heat-
denatured purified receptor from the bovine adrenal gland lost binding to [

125
I]-Sar

1
,Ile

8
-

AngII, whereas [
125

I]-AngIII binding persisted. It was initially suspected that an angiotensin 
receptor specific to AngIII had been isolated. However, with sufficient peptidase inhibitors 
added to prevent the conversion of AngIII to shorter fragments, this binding activity was also 
lost. These results were puzzling given that the two known receptor types at that time, AT1 
and AT2, each accepted AngII and AngIII as ligands, albeit with different affinities. A 
fragment of Ang III was suspected to be acting at this new site because Sar

1
-AngII, Sar

1
,Ile

8
-

AngII (Sarile), Sar
1
,Ala

8
-Ang II (Saralasin), DuP753 (Losartan), PD123177, CGP42112A, 

AngII(1-7) and AngIII did not act as ligands [50,52]. In fact [
125

I]-AngIV did bind at this site 
reversibly, saturably and with high affinity (Kd = 1 nM) [73,74].  Thus, we determined the 
binding profile of this protein to be distinct from the AT1 and AT2 receptor subtypes given that 
[
125

I]-AngIV binding could not be displaced by AT1 or AT2 receptor antagonists. 
  
We next set about determining the ligand requirements of this site. Using competitive assays 
against [

125
I]-AngIV it was soon discovered that the three N-terminal amino acids of AngIV 

(valine-tyrosine-isoleucine) were necessary for binding [74-76]. Substituting a straight-chain 
aliphatic moiety with a carbon atom (norleucine) for valine produced the AT4 receptor 
agonist, Nle

1
-AngIV. This substitution resulted in an analogue with higher receptor affinity 

than native Ang IV, and greater resistance to enzymatic degradation. Further modification of 
Nle

1
-AngIV by placing a reduced peptide bond (CH2-NH2) between norleucine and tyrosine 

yielded Norleucinal
1
-AngIV and resulted in even greater resistance to degradation 

accompanied by nanomolar affinity at the receptor. 
 



 
 
 
 

International Journal of Biochemistry Research & Review, 4(3): 204-223, 2014 
 

 

209 
 
 

The AT4 receptor is distributed within a number of brain structures [25] and in several 
peripheral tissues including heart, kidney, spleen, colon, prostate, bladder, adrenal gland 
and pancreas [54,77]. 
 

5. A ROLE FOR THE RAS IN TYPE 2 DIABETES MELLITUS 
 
There is no evidence of increased plasma AngII levels associated with diabetes. In fact, 
circulating AngII levels have been reported to be suppressed in diabetic patients [78]. 
However, increased plasma levels of the renin-precursor prorenin have been measured in 
diabetic patients and are suggested to serve as a predictor of the onset of retinopathy and 
nephropathy [79,80]. Since these increases in prorenin do not appear to result in elevated 
plasma AngII levels, it is proposed that they act at the renin-prorenin receptor to induce 
tissue injury [81,82]. Along these lines, the retina and kidney have been reported to have 
over-active local RASs during episodes of hyperglycemia [83,84]. Elevated prorenin levels 
have been measured in the vitreous of the eye in diabetic patients with proliferative 
retinopathy [85]. Some older patients with this disorder evidence increases in vitreous AngII 
levels [86]. Further, there is evidence that vitreous AngII levels are positively correlated with 
degree of retinopathy [87]. 
 
Considerable experimental work has focused on understanding how hyperglycemia and 
activation of local tissue RASs, lead to cellular damage. It has been known for some time 
that hyperglycemia induces oxidative stress; however elevated AngII tissue levels have also 
been shown to act as an oxidative stress inducer [88,89]. In this way elevated AngII 
concentrations in diabetic tissues may exacerbate hyperglycemia-induced oxidative stress 
damage [90,91]. As a result oxidative stress appears to both underlie, and be the result of, 
pathobiochemical mechanisms of diabetic-induced tissue damage [92]. The inhibition of the 
RAS with ACE inhibitors or ARBs in diabetic nephropathy rats reduced oxidative stress [93].  
Recent clinical trials have been conducted with young Type 1 diabetic patients evidencing 
vascular superoxide overproduction (and early signs of angiopathy) due to hyperglycemia-
related dysfunctional intracellular antioxidant enzyme production [94]. This dysfunction was 
reversed by treatment with the ARB Irbesartan. Further, the ARBs Candesartan and R-
147176 (a sartan with low affinity for the AT1 receptor subtype) appear to exert direct 
antioxidant influences apparently independent of AT1 receptor blockade [95]. Thus, these 
drugs show promise with regard to protection against diabetic-induced end-organ damage. 
 
Several clinical trials have focused on the efficacy of RAS blockade in diabetic patients. The 
Renin-Angiotensin System Study (RASS) monitored the efficacy of treatment with Losartan 
and Enalapril to Type 1 diabetic patients over a 5 year period [96]. The DIabetic REtinopathy 
Candesartan Trials (DIRECT) study tested the ARB Candesartan with Type 1 and 2 diabetic 
patients [97]. A report on An evaluation of telMisartan and losArtan in hypertensive Type 2 
DiabEtic patients with Overt nephropathy (AMADEO) was recently published [98]. Specific 
details concerning the results of each of these trials follow. 
 
The RASS study monitored 2007 normotensive, normoalbuminuric Type 1 patients and 
focused on retinopathy. Both ACE inhibitors and ARB treatment attenuated the progression 
of retinopathy by 65 and 70%, respectively. However, since the majority of these patients 
(74%) had no evidence, or minimal evidence, of non-proliferative retinopathy at the outset of 
the study these results indicate the attenuation of new onset retinopathy. 
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The DIRECT study consisted of 5000 Type 1 and 2 diabetic patients who for the most part 
were normotensive and normoalbuminuric. Three substudies were conducted. In one, 
DIRECT-Prevent, Type 1 patients showed no evidence of retinopathy. Candesartan reduced 
the incidence of retinopathy. In the second, DIRECT-Protect 1, Type 1 patients with existing 
retinopathy treated with Candesartan showed no effect on progression [97]. The third study, 
DIRECT-Protect 2, monitored normotensive and treated hypertensive Type 2 diabetic 
patients and found that Candesartan slowed the progression of retinopathy [99]. 
 
The AMEDEO study randomly assigned Type 2 patients with hypertension to treatment with 
Telmisartan (final dose = 8l0 mg) or Losartan (final dose = 100 mg) over the duration of one 
year. Telmisartan was found to provide an effective anti-proteinuric effect in these 
hypertensive and overt nephropathy Type 2 patients. This effect was greater than that 
achieved with Losartan and blood pressure was maintained equivalently in the two groups 
[98]. 
 
Taken together these animal and clinical trials results indicate that inhibiting the action of the 
RAS with ACE inhibitors or ARBs offers significant clinical advantage in both Type 1 and 2 
diabetic-induced retinopathy. These studies also illustrate the importance of gaining a better 
understanding of the underlying relationship between local RASs and diabetes. 
 

6. THE HGF/C-MET RECEPTOR SYSTEM 
 
Several years ago our laboratory began searching for a molecular target with structural 
homology to AngIV and physiological functions in agreement with those identified for the 
AngIV/AT4 receptor system. This yielded a partial match with the anti-angiogenic protein 
angiostatin and the related plasminogen family member HGF. HGF is a mesenchyme-
derived protein recognized as a potent mitogenic, morphogenic, and motogenic growth 
factor that acts via the Type 1 tyrosine kinase receptor c-Met [100]. HGF is intimately 
involved in cell survival, proliferation, migration and differentiation [101-103]. c-Met has been 
shown to play a role in multiple types of cancer [104,105], blunt neurodegenerative changes 
[106], facilitate long-term potentiation (LTP) [107], contribute to learning and memory 
consolidation [106,108-111] and c-Met has been implicated in Alzheimer’s disease 
[112,113]. Also, inactivation of c-Met in the embryonic proliferative zones of mice results in 
an increase in parvalbumin-expressing cells in the dentate gyrus of the brain, accompanied 
by a loss of these cells in the CA3 field, with an overall loss of calretinin-expressing cells 
throughout the hippocampus [114]. These results suggest that c-Met is required for 
appropriate hippocampal development. The above functions associated with the HGF/c-Met 
system overlap with those mediated by the AngIV/AT4 system including facilitated 
hippocampal LTP and memory consolidation, augmented neurite outgrowth, calcium 
signaling, dendritic arborization, facilitation of cerebral blood flow and cerebroprotection, 
seizure protection and facilitated wound healing [25]. 
 
These observations prompted the hypothesis that AngIV analogues may exert their activity 
via the HGF/c-Met system. Investigations conducted in our laboratory demonstrated that the 
AT4 receptor antagonist Norleual-AngIV inhibited HGF binding to c-Met and HGF-dependent 
cell signaling, proliferation, invasion and scattering [115]. Additional studies indicated that 
Norleual-AngIV bound directly to HGF blocking the ability of HGF to dimerize, a process 
required for HGF activation and binding to the c-Met receptor [116]. Taken together these 
results suggest that the biological effects of AngIV and AngIV analogues are likely mediated 
through the HGF/c-Met system.  
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7. A ROLE FOR THE HGF/C-MET SYSTEM IN TYPE 2 DIABETES MELLITUS 
 
The HGF/c-Met signaling pathway is involved in multiple functions including cellular 
proliferation, regeneration and branching morphogenesis [117]. As mentioned above, HGF 
must dimerize in order to bind and activate the transmembrane tyrosine kinase c-Met 
receptor [118]. The HGF/c-Met system is expressed in the pancreas where HGF is localized 
to endothelial islet and mesenchymal cells; while the c-Met receptor is present in islet, ductal 
and pancreatic progenitor cells [119-121]. Both HGF and c-Met are highly expressed during 
pancreatic development and HGF functions as an insulinotropic factor promoting β cell 
proliferation and regeneration [122-124]. Pancreas specific c-Met knockout mice are 
susceptible to low dose streptozotocin-induced diabetes [125]. These mice evidence 
elevated blood glucose levels accompanied by decreased glucose tolerance, 
hypoinsulinemia and significantly decreased β cell mass when compared with wild type litter 
mates. Overall this HGF/c-Met knockout mouse evidences a pattern of β cell functioning and 
glucose metabolism very similar to what is seen in early phase β cell failure in Type 2 
diabetic patients [120]. Thus, HGF/c-Met signaling appears to be essential for appropriate 
glucose-dependent insulin secretion and utilization. 
 
The HGF/c-Met system is also necessary for optimizing hepatic insulin responsiveness by 
interacting with the insulin receptor to form a hybrid complex of c-Met-insulin receptor [126].  
These researchers reported that activation of the HGF/c-Met system facilitated insulin 
responsiveness in the ob/ob mouse model of Type 2 diabetes. The importance of this 
system is further emphasized in that HGF gene delivery slowed the progression of diabetic 
nephropathy in db/db mice by promoting antifibrotic and antiapoptotic actions [127]. In 
addition, HGF gene delivery in streptozotocin-induced diabetic mice triggered pro-survival 
Akt kinase activity as well as Bcl-xL expression in pancreatic islet cells thus preserving β 
cells [128,129]. 
 

8.  HYPOTHESIS CONCERNING THE RAS AND HGF/C-MET SYSTEMS IN TYPE 
2 DIABETES 

 
Several findings are relevant in designing a model to explain how small molecule HGF 
mimetics may be efficacious in the treatment of Type 2 diabetes. 1) It has been determined 
that prorenin levels associated with local RASs are elevated in the retina and kidney during 
hyperglycemia [79,85,130,131]. 2) There is ample angiotensinogen available in local tissues 
to act as a substrate for elevated renin levels, along with the necessary ACE to convert AngI 
to AngII [132]. 3) Local tissue elevations in AngII have been linked with tissue injury 
[133,134]. 4) Severity of retinopathy has been positively correlated with the level of vitreous 
AngII [135]. 
 
The above findings encourage the following hypothesis concerning the relationship between 
the pancreatic RAS and cellular damage. Elevated prorenin levels in local tissues result in 
renin acting on angiotensinogen to produce increases in AngI (Fig. 2). This elevated AngI is 
converted to the biologically active peptide, AngII. Increased AngII levels facilitate 
hyperglycemic-induced oxidative stress and elevate glycation end-products resulting in β cell 
damage. As β cells die off progressive reductions in insulin synthesis and release follow. 
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Fig. 2. Renin Angiotensin System and elevated Prorenin 
Changes in the pancreas renin-angiotensin system as a result of elevated prorenin levels.  Angiotensin 

II (bold) is biologically active. 
 

From this prediction it is proposed that the treatment of Type 2 diabetic patients with an ACE 
inhibitor or ARB reduces activation of the RAS with resulting reductions in hypertension and 
oxidative stress (Fig. 3).  Decreased RAS activity also impacts the local HGF/c-Met systems.  
Specifically, treatment with an ACE inhibitor would be expected to reduce the formation of 
AngII and result in compensatory increases in the nonapeptide, D-Asp

1
, AngI. Cleavage of 

aspartate by APA, histidine and leucine via carboxypeptidases would convert this 
nonapeptide to AngIII and then to AngIV via APN cleavage of arginine Fig. 4; [47]. This 
elevation in AngIV causes dimerization of HGF followed by increased activation of the c-Met 
receptor thus optimizing hepatic insulin responsiveness accompanied by the facilitation of 
cellular insulin receptivity. A similar outcome would be anticipated with ARB treatment of 
Type 2 diabetic patients. Specifically, the positive response of Type 2 diabetic patients 
treated with an ARB [136-138] is accompanied by an excess of AngII that is prevented from 
binding at the AT1 receptor subtype. This excess AngII may be converted to AngIII and then 
to AngIV and Ang(3-7) (Figs. 1 and 3). These latter angiotensins are capable of facilitating 
dimerization of HGF which then activates c-Met receptors in the pancreas and elsewhere. 
Activation of c-Met receptors in turn increments insulin production and facilitate cellular 
insulin responsiveness, with accompanying reductions in hyperglycemia-induced oxidative 
stress and end-organ damage. 
 

 
 

Fig. 3. Hyperglycemia and β Cell Damage: Treatment with and Angiotensin Receptor 

Blocker (ARB) 
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A) The contribution of hyperglycemia and increased tissue AngII levels results in facilitated 
hyperglycemic-induced oxidative stress leading to β cell damage. B) Treatment with an ACE 
inhibitor reduces the conversion of AngI to AngII resulting in decreased oxidative stress-
induced β cell damage. C) Treatment with an ARB prevents AngII binding with the AT1 
receptor subtype resulting in decreased oxidative stress-induced β cell damage. 
 

 
 

Fig. 4. Influence of ACE Inhibition on AngIV and Ang (3-7) Formation: Treatment 
with an Angiotensin Converting Enzyme (ACE) Inhibitor 

 
Proposed changes in the synthesis pathway with ACE inhibitor treatment. This inhibitor 
reduces the formation of angiotensin II resulting in the increased formation of nonapeptide 
Ang(2-10). Carboxypeptidases then form angiotensin III which is converted to angiotensin IV 
by APN and angiotensin (3-7) by Carb-P and PO.  Both AngIV and Ang(3-7) are capable of 
dimerizing HGF which then binds at the AT4 (c-Met) receptor. 
 

9. Development of a Small Molecule AngIV Analogue 
 
During the development of AngIV analogues we determined the minimum structural features 
of Nle

1
-AngIV capable of promoting biological activity [139]. Previous studies indicated that 

critical structural information resides at the N-terminal of AngIV [140,141]. Thus, we 
sequentially removed amino acids from the C-terminal of Nle

1
-AngIV, while monitoring pro-

cognitive activity. This approach suggested that memory facilitation was achievable with 
peptides as small as tetra- and tripeptides. Next, we modified these peptides in several ways 
to enhance stability and hydrophobicity. Modifications included the addition of a D-amino 
acid or non-α-amino acid in the #1 position, acylation of the N-terminal amino acid and 
conversion of the 1-2 peptide bond to a reduced-peptide bond.  Several resulting molecules 
offered the desired stability while maintaining the required biological activity [139,142].  
Included in this group were analogues protected at both the N- and C-terminals by 
nonmetabolizable constituents and in particular a tripeptide-sized small molecule with the 
ability to reverse scopolamine-induced amnesia when delivered peripherally. We are 
currently testing this compound for its ability to act as an insulinotropic factor in Type 2 
diabetic animal models. 
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10. CONCLUSION 
 
The number of individuals diagnosed with Type 2 diabetes is reaching epidemic proportions.  
It is essential that new and novel treatments be considered [143-145]. The deleterious 
contribution of local RASs has been documented in diabetic patients with hypertension. In 
these patients AngII promotes end-organ damage by: 1) Promoting local vasoconstriction 
accompanied by tissue ischemia and altered fluid electrolyte imbalance. 2) Exacerbating 
hyperglycemic-induced oxidation stress and deleterious glycation end-products. Recently the 
HGF/c-Met system has been implicated in diabetes [146,147]. This growth factor system 
appears to be essential for the appropriate development and maintenance of pancreatic β 
cells [148,149] and thus may hold the key to new treatment strategies. The presently 
described approach concerns the use of a small molecule HGF mimetic to increase HGF 
dimerization and binding to the c-Met receptor. Increased activation of c-Met receptors has 
been shown to facilitate proliferation and optimization of pancreatic β cells. It appears that 
appropriate insulin response is dependent upon engaging the insulin receptor to form a 
hybrid complex with the c-Met receptor [148]. Insulin refractoriness is significantly reduced 
when this complex is restored in Type 2 diabetic animal models. These research findings, 
coupled with our discovery that a small molecule AngIV analogue induces HGF dimerization 
(a prerequisite to c-Met binding), offer a unique potential treatment. The availability of a 
small molecule may offer a significant advantage over the use of HGF or large HGF 
analogues, to accomplish this treatment goal. It remains to be seen whether long-term 
treatment of Type 2 diabetes with small molecule HGF mimetics is efficacious. 
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