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Abstract
In this article, we study the periodicity, the boundedness and the global stability of the positive
solutions of the following nonlinear difference equation

xn+1 = Axn +Bxn−k + Cxn−l +Dxn−σ +
bxnxn−kxn−l

dxn−k − exn−l
, n = 0, 1, 2, .....

where the coefficients A,B,C,D, b, d, e ∈ (0,∞), while k, l and σ are positive integers. The initial
conditions x−σ,..., x−l,..., x−k, ..., x−1, x0 are arbitrary positive real numbers such that k < l < σ.

Some numerical examples will be given to illustrate our results.
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1 Introduction
Various natural and social processes can be represented as continuous models, which are in fact

a differential equation or a system of differential equations. On the other hand, today more and more
attention in many mathematical research centers is devoted to the study of discrete models derived
from physics, electrical engineering, mechanical engineering, mathematical biology, epidemiology,
economics or social sciences. The reason is that in many situations they adequately describe
the process of decision. These models are represented by difference equations or systems of
difference equations. Namely, in the mathematical modeling in biology, for example, a system of
difference equations is the way in which the two discrete populations (which are often in competition
or cooperation) reproduced from one generation to the next (Allee effects in fish, Lotka-Volteraovi
discrete models, discrete model type ”Hunter-victim” models of type Lesllie-Gower, etc.). Of particular
significance in recent times has been testing the models that are represented by rational two-dimensi-
onal systems (non-linear) of difference equations, i.e. rational difference equations with quadratic
members. There is, first of all, thought of competitive systems (i.e. systems that are modeling the
competition between the two populations, companies or similar), and cooperative systems (which
is modeling cooperation), and the anti-competitive but also to the other systems of this class. In
mathematical terms these are rational systems of difference equations in the plane. For example, in
the epidemiology discrete models are describing the interdependence between population suspicious
and infected populations. Difference equations proved to be effective in modelling and analysing the
discrete dynamical system that arise in signal processing, populations dynamics, heath sciences,
economics, and so on. These equations appear naturally as discrete analogues and as numerical
solutions of differential and delay differential equations having applications in biology, ecology, physics,
etc. (see [1]). For an introduction to the general theory of difference equations, we refer the readers
to Agarwal [2], Elaydi [3], and Kelley and Peterson [4]. Rational difference equations are important
classes of difference equations, where they have many applications in the real life, for example in
optics and mathematical biology (see [5]). Recently, there has been an interesting interest in the
study of the global behavior of rational difference equations, for example, see [6], [7], [8]–[13]. We
believe that the behavior of solutions of rational difference equations provides prototypes towards the
development of the basic theory of the global behavior of solutions of nonlinear difference equations of
order greater than one (see [14]). Recently, [15], Zayed and El-Moneam [16], [17]–[20] have studied
the following nonlinear rational difference equations:

xn+1 = axn − bxn

(cxn − dxn−1)
, n = 0, 1, 2, ..... (1.1)

xn+1 = axn − bxn

(cxn − dxn−k)
, n = 0, 1, 2, ..... (1.2)

xn+1 = axn−k +
bxn−k

(cxn ± dxn−k)
, n = 0, 1, 2, ..... (1.3)

xn+1 = axn − bxn−k

(cxn − dxn−k)
, n = 0, 1, 2, ..... (1.4)

xn+1 = axn−k − bxn

(cxn − dxn−k)
, n = 0, 1, 2, ..... (1.5)

xn+1 = Axn +Bxn−k +
βxn + γxn−k

(Cxn +Dxn−k)
, n = 0, 1, 2, ..... (1.6)

where in these equations, the parameters and the initial conditions are positive real numbers, while
k, l are positive integers such that k < l.

The objective of this article is to extend the work of [6], Zayed and El-Moneam (1.1) – (1.6) and
investigate some qualitative behavior of the solutions of the nonlinear difference equation

xn+1 = Axn +Bxn−k + Cxn−l +Dxn−σ +
bxnxn−kxn−l

dxn−k − exn−l
, n = 0, 1, 2, ..... (1.7)

655



El-Moneam; BJMCS, 5(5), 654-665, 2015; Article no.BJMCS.2015.048

where the coefficients A,B,C,D, b, d, e ∈ (0,∞), while k, l and σ are positive integers. The initial
conditions x−σ,..., x−l,..., x−k, ..., x−1, x0 are arbitrary positive real numbers such that k < l < σ.
That being said, the remainder of this paper is organized as follows: In Section 2, we present
some well-know definitions and results that are needed in the sections to follow. In Section 3, using
elementary mathematics and nontrivial combinations of ideas, we establish our main results.

Definition 1.1. Consider a difference equation in the form

xn+1 = F (xn, xn−k, xn−l, xn−σ), n = 0, 1, 2, ..... (1.8)

where F is a continuous function, while k and l are positive integers such that k < l < σ. An
equilibrium point x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, x̃, x̃) . That is, the
constant sequence {xn} with xn = x̃ for all n ≥ −k ≥ −l ≥ σ is a solution of that equation.

Definition 1.2. Let x̃ ∈ (0,∞) be an equilibrium point of Eq.(1.8). Then we have

(i) An equilibrium point x̃ of Eq.(1.8) is called locally stable if for every ε > 0 there exists δ > 0
such that, if x−σ, ...,x−l, ...,x−k, ..., x−1, x0 ∈ (0,∞) with |x−σ − x̃|+ ...+ |x−l − x̃|+ ...+ |x−k − x̃|+
...+ |x−1 − x̃|+ |x0 − x̃| < δ, then |xn − x̃| < ε for all n ≥ −k ≥ −l.

(ii) An equilibrium point x̃ of Eq.(1.8) is called locally asymptotically stable if it is locally stable and
there exists γ > 0 such that, if x−σ, ...,x−l, ...,x−k, ..., x−1, x0 ∈ (0,∞) with |x−σ − x̃|+...+|x−l − x̃|+
...+ |x−k − x̃|+ ...+ |x−1 − x̃|+ |x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of Eq.(1.8) is called a global attractor if for every x−σ, ...,x−l, ...,x−k, ...,
x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of Eq.(1.8) is called globally asymptotically stable if it is locally stable and
a global attractor.

(v) An equilibrium point x̃ of Eq.(1.8) is called unstable if it is not locally stable.

Definition 1.3. A sequence {xn}∞n=−σ is said to be periodic with period r if xn+r = xn for all n ≥ −σ.
A sequence {xn}∞n=−σ is said to be periodic with prime period r if r is the smallest positive integer
having this property.

Definition 1.4. Eq.(1.8) is called permanent and bounded if there exists numbers m and M with
0 < m < M < ∞ such that for any initial conditions x−σ, ...,x−l, ...,x−k, ..., x−1, x0 ∈ (0,∞) there
exists a positive integer N which depends on these initial conditions such that

m ≤ xn ≤ M for all n ≥ N.

Definition 1.5. The linearized equation of Eq.(1.8) about the equilibrium point x̃ is defined by the
equation

zn+1 = ρ0zn + ρ1zn−k + ρ2zn−l + ρ3zn−σ = 0, (1.9)

where

ρ0 =
∂F (x̃, x̃, x̃, x̃)

∂xn
, ρ1 =

∂F (x̃, x̃, x̃, x̃)

∂xn−k
, ρ2 =

∂F (x̃, x̃, x̃, x̃)

∂xn−l
, ρ3 =

∂F (x̃, x̃, x̃, x̃)

∂xn−σ
.

The characteristic equation associated with Eq.(1.9) is

ρ (λ) = λσ+1 − ρ0λ
σ − ρ1λ

σ−k − ρ2λ
σ−l − ρ3 = 0. (1.10)
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Theorem 1.1. [1]. Assume that F is a C1− function and let x̃ be an equilibrium point of Eq.(1.8).
Then the following statements are true.
(i) If all roots of Eq.(1.10) lie in the open unit disk |λ| < 1, then the equilibrium point x̃ is locally
asymptotically stable.
(ii) If at least one root of Eq.(1.10) has absolute value greater than one, then the equilibrium point x̃
is unstable.
(iii) If all roots of Eq.(1.10) have absolute value greater than one, then the equilibrium point x̃ is a
source.

Theorem 1.2. [14]. Assume that ρ0, ρ1, ρ2 and ρ3 ∈ R. Then

|ρ0|+ |ρ1|+ |ρ2|+ |ρ3| < 1, (1.11)

is a sufficient condition for the asymptotic stability of Eq.(1.8).

Theorem 1.3. [1]. Consider the difference equation (1.8). Let x̃ ∈ I be an equilibrium point of
Eq.(1.8). Suppose also that
(i) F is a nondecreasing function in each of its arguments.
(ii) The function F satisfies the negative feedback property

[F (x, x, x, x)− x] (x− x̃) < 0 for all x ∈ I − {x̃} ,

where I is an open interval of real numbers. Then x̃ is global attractor for all solutions of Eq.(1.8).

2 The Local Stability of the Solutions
The equilibrium point x̃ of Eq.(1.7) is the positive solution of the equation

x̃ = (A+B + C +D) x̃+
b x̃3

(d− e) x̃
, d ̸= e.

If d ̸= e, A+B + C +D ̸= 1, then the nonzero equilibrium point x̃ of Eq.(1.7) is given by

x̃ =
(d− e)

b
[1− (A+B + C +D)] . (2.1)

Let us now introduce a continuous function F : (0,∞)4 −→ (0,∞) which is defined by

F (u0, u1, u2, u3) = Au0 +Bu1 + Cu2 +Du3 +
bu0u1u2

du1 − eu2
. (2.2)

Consequently, we get

∂F (x̃,x̃,x̃,x̃)
∂u0

= 1− (B + C +D) = ρ0,

∂F (x̃,x̃,x̃,x̃)
∂u1

= B − e
(d−e)

[1− (A+B + C +D)] = ρ1,

∂F (x̃,x̃,x̃,x̃)
∂u2

= C + d
(d−e)

[1− (A+B + C +D)] = ρ2,

∂F (x̃,x̃,x̃,x̃)
∂u3

= D = ρ3.

(2.3)

Therefore, the linearized equation of Eq.(1.7) about the non zero equilibrium (2.1) is given by

zn+1 − ρ0zn − ρ1zn−k − ρ2zn−l − ρ3zn−σ = 0, (2.4)

where ρ0, ρ1, ρ2 and ρ3 are given by (2.3).
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Theorem 2.1. If A+B + C +D ̸= 1 and

|(d− e) [1− (B + C +D)]|+ |B (d− e)− e [1− (A+B + C +D)]|
+ |C (d− e) + d [1− (A+B + C +D)]|+D < |d− e| , (2.5)

then, the nonzero equilibrium point (2.1) is locally asymptotically stable.

Proof. The result follows directly from (1.10) and (2.5), and then apply Theorem 1.2. Thus, the proof
is now completed.

3 Periodic Solutions
In this section, we study the existence of periodic solutions of Eq.(1.7). The following theorem states
the necessary and sufficient conditions that the equation (1.7) has periodic solutions of prime period
two.

Theorem 3.1. (i) If k, l and σ are both even positive integers, or
(ii) If k, l are even and σ is odd positive integers.
Then, the following statements are true:

(1) If d > e, Eq.(1.7) has no prime period two solution.

(2) If d < e, Eq.(1.7) has prime period two solution if

A+B + C +D > 3. (3.1)

Proof. Assume that there exists distinct positive solutions

......., P,Q, P,Q, ........ (3.2)

of prime period two of Eq.(1.7).
(i) If k, l and σ are all even positive integers, then xn = xn−k = xn−l = xn−σ. It follows from

Eq.(1.7) that

P = (A+B + C +D)Q +
bQ2

(d − e)
, (3.3)

and

Q = (A+B + C +D)P +
bP 2

(d − e)
, (3.4)

where d ̸= e. Consequently, we get

(d − e)P = (d − e) (A+B + C +D)Q+ bQ2, (3.5)

and
(d − e)Q = (d − e) (A+B + C +D)P + bP 2. (3.6)

By subtracting (3.6) from (3.5), we get

P +Q = − (d − e)

b
[1 + (A+B + C +D)] . (3.7)

If d > e, we deduce from (3.7) that P +Q < 0. This is a contradiction. Thus, Eq.(1.7) has no prime
period two solution. The proof of part (1) of (i) follows. If d < e, we deduce from (3.7) that P +Q > 0,
which is always true. Consequently, we add Eqs.(3.5) and (3.6) and using (3.7) and we have

PQ =

(
d − e

b

)2

[1 + (A+B + C +D)] . (3.8)
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Assume that P and Q are two positive distinct real roots of the quadratic equation

t2 − ( P +Q) t+ PQ = 0. (3.9)

Thus, we deduce that
(P +Q)2 > 4PQ. (3.10)

Substituting (3.7) and (3.8) into (3.10), we get the condition (3.1), and then the proof of part (2) of (i)
follows. Similarly, we can prove the theorem, in case (ii) which is omitted here and the proof is now
completed.

Theorem 3.2. (i) If k, l and σ are both odd positive integers and d ̸= e, A + 1 ̸= B + C + D ,
or
(ii) If σ is even and k, l are odd positive integers and d ̸= e, (A+D + 1) ̸= (B + C).
Then, Eq.(1.7) has no prime period two solution.

Proof. Following the proof of Theorem 3.1, we deduce that:
(i) If k, l and σ are both odd positive integers, then xn+1 = xn−k = xn−l = xn−σ. It follows

from Eq.(1.7) that

P = AQ+ (B + C +D)P +
bPQ

(d − e)
, (3.11)

and
Q = AP + (B + C +D)Q +

bPQ

(d − e)
. (3.12)

Consequently, we get

(d − e)P = A (d − e)Q+ (d − e) (B + C +D)P + bPQ, (3.13)

and
(d − e)Q = A (d − e)P + (d − e) (B + C +D)Q + bPQ. (3.14)

By subtracting (3.14) from (3.13), we get

(P −Q) [(A+ 1)− (B + C +D) ] = 0.

Since (d − e) ̸= 0 and [(A+ 1)− (B + C +D) ] ̸= 0, then P = Q. This is a contradiction, and then
the proof of part (i) follows.

(ii) If σ is even and k, l are odd positive integers, then xn = xn−σ and xn+1 = xn−k = xn−l. It
follows from Eq.(1.7) that

P = (A+D)Q+ (B + C)P +
bPQ

(d − e)
, (3.15)

and
Q = (A+D)P + (B + C)Q +

bPQ

(d − e)
. (3.16)

Consequently, we get

(d − e)P = (d − e) (A+D)Q+ (d − e) (B + C)P + bPQ, (3.17)

and
(d − e)Q = (d − e) (A+D)P + (d − e) (B + C)Q + bPQ. (3.18)

By subtracting (3.18) from (3.17), we get

(P −Q) (d − e) [(B + C)− (A+D + 1)] = 0.

Since (d − e) ̸= 0 and [(B + C)− (A+D + 1)] ̸= 0, then P = Q. This is a contradiction. Thus, the
proof is now completed.
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4 Boundedness of the Solutions

In this section, we investigate the boundedness of the positive solutions of Eq.(1.7).

Theorem 4.1. Let {xn}∞n=−σ be a solution of Eq.(1.7). Then the following statements are true:

(i) Suppose b < d and for some N ≥ 0, the intial conditions

xN−σ+1, ..., xN−l+1, ..., xN−k+1, ..., xN−1, xN ∈
[
b

d
, 1

]
,

are valid, then for b ̸= e, d2 ̸= be we have the inequality

b

d

[
(A+B + C +D) +

b2

(d2 − be)

]
≤ xn ≤ (A+B + C +D) +

b

(b− e)
, for all n ≥ N. (4.1)

(ii) Suppose b > d and for some N ≥ 0, the intial conditions

xN−σ+1, ..., xN−l+1, ..., xN−k+1, ..., xN−1, xN ∈
[
1,

b

d

]
,

are valid, then for b ̸= e, d2 ̸= be we have the inequality

(A+B + C +D) +
b

(b− e)
≤ xn ≤ b

d

[
(A+B + C +D) +

b2

(d2 − be)

]
, for all n ≥ N. (4.2)

Proof. First of all, if for some N ≥ 0 and b
d
≤ xN ≤ 1 and b ̸= e, we have

xN+1 = AxN +BxN−k + CxN−l +DxN−σ +
bxNxN−kxN−l

(dxN−k − exN−l)

≤ (A+B + C +D) +
b

(dxN−k − exN−l)
. (4.3)

It is easy to see that dxN−k − exN−l ≥ b− e, then for b ̸= e, we get

xN+1 ≤ (A+B + C +D) +
b

(b− e)
. (4.4)

Similarly, we can show that

xN+1 ≥ b

d

[
(A+B + C +D) +

b2

d (dxN−k − exN−l)

]
. (4.5)

But, one can show that dxN−k − exN−l ≥ 1
d

(
d2 − be

)
, then for d2 ̸= be, we get

xN+1 ≥ b

d

[
(A+B + C +D) +

b2

(d2 − be)

]
. (4.6)

From (4.4) and (4.6) we deduce for all n ≥ N that the inequality (4.1) is valid. Hence the proof of part
(i) is completed. Similarly, if 1 ≤ xN ≤ b

d
, then we can prove part (ii) which is omitted here. Thus, the

proof is now completed.
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5 Global Stability

In this section we study the global asymptotic stability of the positive solutions of Eq.(1.7) .

Theorem 5.1. The nonzero equilibrium point (2.1) of Eq.(1.7) is global attractor.

Proof. We consider the following function:

F (x, y, z, w) = Ax+By + Cz +Dw +
bxyz

(dy − ez)
. (5.1)

where dy ̸= ez, provided that
[
A (dy − ez)2 + byz (dy − ez)

]
> 0, B (dy − ez)2 > bexz2 and

[
C (dy − ez)2 + bdxy2

]
>

0. It is easy to verify the condition (i) of Theorem 1.3. Let us now verify the condition (ii) of Theorem
1.3 as follows:

[F (x, x, x, x)− x] (x− x̃) =

{
(A+B + C +D)x+

bx2

(d− e)
− x

}
×{

x− (d− e)

b
[1− (A+B + C +D)]

}
=

bx

(d− e)

{
x− (d− e)

b
[1− (A+B + C +D)]

}2

< 0,

(5.2)

which is valid for all x satisfying the inequality

bx

(d− e)
< 0. (5.3)

According to Theorem 1.3, the nonzero equilibrium point x̃ given by (2.1) is global attractor if the
condition (5.3) is valid. Thus, the proof is now completed.

On combining the two Theorems 2.1 and 5.1, we have the following result:

Theorem 5.2. The nonzero quilibrium point (2.1) of Eq.(1.7) is globally asymptotically stable.

6 Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions,
we consider some numerical examples in this section. These examples represent different types of
qualitative behavior of solutions of Eq.(1.7).
Example 1. Figure 1, shows that Eq.(1.7) has no prime period two solutions if k = 2, l = 4, σ =
6, x−6 = 1, x−5 = 2, x−4 = 3, x−3 = 4, x−2 = 5, x−1 = 6, x0 = 7, A = 300, B = 200, C =
100, D = 75, b = 50, d = 30, e = 20.
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Example 2. Figure 2, shows that Eq.(1.7) has no prime period two solutions if k = 1, l = 3, σ =
2, x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, A = 5000, B = 1500, C = 1000, D = 750, b = 500, d =
300, e = 200.
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Example 3. Figure 3, shows that Eq.(1.7) is globally asymptotically stable when (x̃ ̸= 0) if k = 1, l =
4, σ = 6, x−6 = 1, x−5 = 2, x−4 = 3, x−3 = 4, x−2 = 5, x−1 = 6, x0 = 7, A = 0.01, B =
0.02, C = 0.03, D = 0.04, b = 0.4, d = 500, e = 5.
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7 Conclusions
We have discussed some properties of the nonlinear rational difference equation (1.7), namely the
periodicity, the boundedness and the global stability of the positive solutions of this equation. We
gave some figures to illustrate the behavior of these solutions. Our results in this article can be
considered as a more generalization than the results obtained in Refs.[15–20]. Note that example
1 verifies Theorem 3.1 (part (1) of (i)) which shows that if k, l and σ are all even positive integers,
then Eq.(1.7) has no prime period two solution and example 2 verifies Theorem 3.2 (ii) which shows
that if σ is even and k, l are odd positive integers, then Eq.(1.7) has no prime period two solution.
But example 3 verifies Theorem 5.2 which shows that Eq.(1.7) is globally asymptotically stable when
(x̃ ̸= 0).
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