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Abstract

The aim of this paper is to solve the tenth and twelfth order linear and nonlinear boundary value
problems numerically by the Galerkin weighted residual technique with two point boundary
conditions. The well known Bernstein polynomials are exploited as basis functions in the
technique and thus the basis functions are needed to modify into a new set of basis functions
where the Dirichlet types of boundary conditions are satisfied. The method is developed as a
rigorous matrix formulation. Numerical examples, available in the literature, are considered to
implement the proposed technique. The comparison shows that the present method is more
efficient and yields better results.
Keywords: Galerkin method, tenth and twelfth order BVP, linear and nonlinear differential
equations, bernstein polynomials.

1 Introduction

The existence and uniqueness theorem of solutions of boundary value problems (BVP) was
discussed extensively by Agarwal [1] without any numerical examples. In the literature of BVPs
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we observe that the higher order differential equations arise in some branches of applied
mathematics, engineering and many other fields of advanced physical sciences. Particularly,
eighth, tenth and more even higher order BVP arise in hydromagnetic stability analyses which are
available in [2]. But few researchers have paid their attentions to solve high order BVP
numerically. Finite difference methods for the solution of such problems were developed by
Boutayeb and Twizell [3], Djidjeli et al. [4], and Twizell et al. [5] but these solutions were found
only at specific grid points while Siddiqi and Iftikhar [6] solved these problems by homotopy
analysis method (HAM). Inc and Evans [7] solved eighth order, Siddiqi et al. [8] solved seventh
order BVPs using Adomian decomposition method whereas Siddiqi and Twizell [9] developed
spline solutions for eighth order problems. Also nonpolynomial spline solution technique was
introduced by Siddiqi and Akram [10] for these BVP. Besides these, Siddiqi and Iftikhar [11,12]
solved seventh order BVP by the variation of parameters and Adomian decomposition method.
From the literature we observe that the tenth and twelfth order BVP has been attempted to solve
numerically by a few researchers, namely, Siddiqi and Twizell [13] solved using tenth degree
spline while Siddiqi and Akram [14] presented the solutions by eleventh degree spline
polynomials. Also variational iteration technique was introduced by Siddiqi et al. [15] for solving
these tenth order problems. On the other hand, Siddigi and Twizell [16] solved the twelfth order
BVPs using twelfth degree splines while Siddiqi and Akram [17] developed the solutions of
twelfth order BVPs by applying thirteen degree splines. Al- Kudri and Mulhem [18] derived the
numerical solutions of twelfth-order BVPs using adomain decomposition method. Mirmoradi et
al. [19] solved twelfth-order BVPs by the homotopy perturbation method. Also Noor and Mohy-
ud-Din [20] used variational iteration method for solving these BVPs by applying He’s
polynomials. The modified decomposition method has been used extensively only by Wazwaz
[21] to find the solutions of nonlinear BVP of higher order while Iftikhar et al. [22] used
differential transformed method to solve thirteen order BVP. Recently, Hossain et al. [23] have
studied the eleventh order BVPs using some piecewise polynomials through Galerkin method with
high accuracy. Thus, our aim is to solve both the linear and nonlinear BVPs of order tenth and
twelfth by a suitable and reliable efficient method.

In the present paper, we apply Galerkin method [24] with Bernstein [25] polynomials as basis

functions for the numerical solution of the general tenth and twelfth order linear differential
equations:

d"u d’u dtu d’u du d’u d*u d’u

g——+Ag——+ayg——=+a7——+ A ——+as ——+ Ay —— + a3 ——
10 dx'’ ’ dx’ 8 dx® 7 dx’ 6 dx® > dx® 4 dx? 3 dx®
d’u

ta,——+a ——+agu=r,a<x<b (1a)

dx dx

subject to the boundary conditions:
u(a)= Ay,u(b)= Bo,u'(a) =4 1;“’(]3) = Bl,un(a) = Az,u"(b) = B,,

u"(a)= A3,u” (b) = By,u™ (a) = 4,,u™ (b) = B, (1b)

and
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d"u d“u+a d10u+a d9u+a d8u+a d7u+a d6u+a d5u+a d*u
10 9 g tadg— s tTa;——F+adg—Ftads——5+tady—
dx'° dx’ dx® dx’ dx® dx® dx?

d*u d*u

?+a2?+al%+aou:r,a<x<b (2a)

subject to the boundary conditions:

u(a)= Ag,u(b) = By,u'(a) = A ,u' (b) = Bj,u"(a) = Ay,u"(b) = By,u"(a) = 43,
u" (b) = By,u™ (a) = 4,,u™ (b) = B4,u"(a) = 45,u" (b) = By (2b)

where 4;,B;,i =0,1,2,3,4,5 are finite real constants, @; (i =0,1,---,12)and 7 are all continuous and

differentiable functions defined on the interval [a, b]. However, we present a short description on
Bernstein polynomials in section 2. We also formulate Galerkin method in matrix form in section
3. Several numerical examples and their results are given in section 4 to verify the proposed
method. The numerical solutions, obtained by the present method, are compared with the results
of the methods available in the literature. The conclusions are described in section 5.

2 Bernstein Polynomials
The Bernstein polynomials, general form of degree n over the finite interval [a,b], is defined by
[25]:

B (x| "|EZ G0 i=012,....n.
i,n i (b_a)n

The first 17 Bernstein polynomials over the interval[0, 1], which will be used in this paper, are
given bellow:

By(x)=(1-x)"° Bo(x)=8008(1-2)"x" g (1) _1820(1—x)*x"
B,(x)=16(1-x)" x B,(x) =11440(1-x)° x” Byy(x) = 560(1—x)’x"3
By(0)=1200-0)"x?  By(x)=1287001-2)°'x" g (1) =120(1- x)2x'*
By(x)=560(1-0)"x*  By(x)=114400-)"x" g () _16(1—x)x'S
B,(x)=1820(1—-x)"2x*  B,,(x) = 8008(1 - x)°x'° Byg (x) = x'°
Bs(x)=4368(1-x)"'x> B, (x)=4368(1-x) x""

The Bernstein polynomials also satisfy the following properties:
@ Bi,n(x):() if i<0 ori>n.

(i) 3B, (x) =1
i=0
(iii) B,,(@)=B,,(b)=0, i=12,...n-1
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Thus, we use these polynomials in the trail functions of the Galerkin method, to be described in
the following section, since it satisfies the corresponding homogeneous form of the Dirichlet
boundary conditions.

3 Description of the Method

To solve the boundary value problem (1) by the Galerkin method we approximate u(x) as

i (x) = 0y (x)+ Y ; By, (x) 3)

i=1

and the corresponding weighted residual equations are

[fa d1017+a d9z7+a d817+a d7z7+a d617+a d5z7+a d4z7+a a3

o T e T T e T T T T s T S et
d%  di -

+a,———+a,—+agu —r |B. (x)dx=0 4

2 A ot } .0 (X) 4)

where 6,(x) is specified by the essential boundary conditions, (x)are the Bernstein

l n
polynomials which must satisfy the corresponding homogeneous boundary conditions such that
B; ,(a)=B, ,(b)=0 for eachi=1,2,...n. Integrating by parts the terms up to second derivative

on the left hand side of (4), we obtain

b
b leN d d®i d> d’ d’ d°
Iam 20 e (x)dx =— E[amBj’"(x)]KZ + a2 — 4108, (x)] u ayB;, n('x)] u

y dx’
d* > d d*u ds i
+|:E[a103j,n(x)]#:|a Ll alOB; n(x)] xZ L l:d [aloB; n(x)] xZ l
7 2P b 9
{(j 7 [aIOB/ n(x)]dxlzt :| |:5 aIOB (x):ld;:l 5 9 [aIOB/ n(x)] dx (5)

b % 77 2 61" 3 5~70
J.a9d ]n(x)dx— |:i a‘)Bj n(x)]d ::l +|:d [a9Bj n(x)]d :| |:d [a9B/n(x)]d u:|
dx’ dx dx? dx® x> B

a a

dx’ dx®

7 8
—LZ, layB ,m]dd +b;ig a8, (0} ©)

a

d4[B ]d“ﬁb dS[B ]du d6[B ]dzﬁb
et j,n(x)dx_4“ ayB; ,(x) a+ ayB; ,(x) o |
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d8N d d%u ’ d? i ’ a3 d*u ’
f"g g D [ b0 5 dx® L{dx st 0l ax’ L_Lfﬁ st dx* }
d* Cil [ & d? d’ d
+[W[a8Bj,n(x)]XZ:|a _|:dx [aSBj n(x)] - :Ia +|:dx6 [aS j n(x)] z:la

_[us8,, (x)]Z—de @)

b d7
I
b b b
d’i d i d? d*i d? a3
Ia7 dx’ jn(X)dx__[ brs o0l x? L [dx e xﬂ L’x sl xz:l

a a

4 2~ 5 6 ~
+{Zc—4[a73j,n(x)]2xgl Ljs[zh ,n(x)]duL ‘!;ZCG [a7 j,,(x)]dxdx ®)

d%i d[ ]d4ﬁ "l [ ]d%? Vs 4 ]dzﬁ ’
faGd B; ,(x)dx =— agBj ,(x) e + e agB ,(x) 3 a— 3 agB; ,(x) 2 )

a

d* d ” d? di
{dx laB;., 0] ”} I s (0] ©)
b b b
b @3 d i d? d*i a3 dii
{ZaS dx_SBj’n(X)dx:_I:E[aSBj’n(X)]d?L +|:dx [aSB]’n( )] L —L]x [asBj’n(x)] XL
bg* dii
+£F[a53j,n(x)]gdx (10)
ja d417 (x)dx = - ia B; (x)]d b + a? [a B; (x)] dit b—
44 dx j}’l dx 42 j n . dx 4P . n dx )
b g3 dii
lfl?[awj,n(x)]d—zczx (11
b 3 d ai” b a?
;[a3 ?ZBj,n(x)dx = _|:E[a3Bj,n(x)] - :l + J._[a3B] n(x)] (12)
b g%y b g dii
lj;azﬁBj’n(x)dxz—lj;a[asz’n(x)]d—de (13)

Substituting the eqns. (5) — (13) into eqn. (4) and using approximation for #(x) given in eqn. (3)
and after rearranging the terms for the resulting equations we get a system of equations in matrix
form

le a;=F;,j=12,... ,n (14a)
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where,

9 8
D= ?{{—[ig[awl?jm(x)]+[is 4 Bj,n(x)] 7[“831 n(x)]+* a;B;, n(x)] [%BJ n(x)]+ [as Bj,n(x)]
d? d? d
dx

o]l 0]l b 0B OB )+ 0B ,,,(x)B,,,m}dx

- [j o0 0 [B,n(xﬂ} y +[j o0 0 [B,n(xnl a +[Z: e L) ],
{j o800 [Bmu)]} : —Lj’ o8 0 [Bln(xn} {j 08,0} 8,01 _
+k”i4 108, ,,(x)] (B, (x )]} b—LZ: [amB,,,(x)] (B, (x )1} —{j a8, [B,n(xni )
+[Zc[a98,-,n(x)];§7[B[,m)]} : +[:: [agBMu)] (B, ()] } ) —[:: [aoB,n(x)] B, ()] :
—_”f 8,0l [Bm(x)]} b{f 8,0} [Bl,,(x)]} —[j o005 " 5y 001] y
{dd lacB, n<x)] .y ,,(xn} i {52 o, 0 [B,n(x)]} _b—LZ: o8, 0 [B,n<x)]_ _
—[;’[ B ,,,<x)]} {jx[aﬁ,-,n(x)]i;[Bi,,,<x>1} (14b)

9
Fj = ?{VBL” (x) +|:: [alOBj n (x)] x [a9Bj n (x)]+ [aS j n (X)] [a7 j n (X)]

5 3

t—= d [a6Bj l’l(x)] [aSBj n(x)]:| d [a4Bj n(x)] [a3B] n(x)] d [aZBj,n(x)]
dx’ dx* dx® dx

do d a0, | d dto, |
—alBj’n(x)]d—xO—aoﬁij’n(x)}dx+|:E[alij’n(x)] dx80 - < lanB,. n(x)] o
[ a2 e, | | a? d’e, | L %o, |
—| —|a108; ,(x) 0 +| —|a10B; (%) 0 +| —=|a10B; (%) 0
_dx2 [ 1077, ] dx7 1. _dx2 [ 107, ] dx7 11 x3 [ 1077, ] dx(’ 1,
L dce, | [ a* ao, | | at d%o, |
—|—=la108; , (%) 0 —|—la10B; ,(x 0 +| —|a1B; ,(x) 0
_a’x3 [ 1077, ( ] dx® Jiu _dx4 [ 1077, ( )] dx’ 1ich _dx4 [ 107, ( ] dx’ Jics

d d’e d d’e d* d°o
+| —laoB; (x 0 —|—lagB;  (x 0 a X 0
|:dx|: 9 J,n( )] dx7 :|Xb |:dx|: 9 _1,n( )] dx7 :|xa |:dx2 [ 9 7, n( )] dx6 .
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2 d° 3 3 d° 1
Lf laoB,, ()% 90} {j o8, ()] 90} {d 4B, ()] 90
x=a x=b

d 3
d d°e, d d°e, d? 40, |
+ agB . agB X a X
|:d [ 877, n( )] )C :|‘Ch |:d 8 /n( )] :|Xa |:d 2 [ 8 7, n( )] dxs 1.,

5 [a7B/ n (x)] d xHO

d? ) d V)
+|:dx_2[asBj,n(x)] dx50 La J'{d az(x)B;, n(x)] 0:|x;, |:
ds
+{E[“103j,n(x)]}
,

d¢ d
+|——|a;B; (x x AL+
|:dx6 [ 10 _/,/1( )]:I 3 |:dx

X=a

5 6
XB 4= {% [aIOBj,n(x)]} x4 4~ {% [aIOBj,n(x)] XB
x=b x=a dx=b
., _
[alij n (x)]} XB - {% [aIOBj,n (x)] x4,
x=b

Hx=a

[ s6

l:jgg [amB (X)]:| x B 1+|:58 [alOB (x)] xA - { : [agB (x)] xB,
: dx=b x=b
+ dTi[%B/,n(")] x A 4-{ a9BJ n(x)] { a9B (x)]}
dx=b

d d
—|—=aoB; , (x x B ,+ aB X X A+
dxﬁ [ 9 j,n( )] 2 927, n( )] 2 dx

[ 47

_%[%Bj’n(x)] ><A1+{ lasB, (x)]} ><B4—{:T33[a8Nj’n(x)]} <A,

F e
—4[a8Bj’n (x)] x B 3-I— aSBJ " (x)]} X A3+ | —
X dx®

|—| f__‘
S
)
o
N =
= s
~~
=
.
| E—
=
Il
>
X
>
LS}

5
L;i lagB, (x)]} XA, L‘jx lasB, (x)]} x B+ 5

X=a

2
{5 a;B,, (x)]lth 4{; a,B,, (x)]} x A 4+

; 4
- {% [a7Bj,n(X)]} x A 3= L;i a8, (x)]} Byt
s 5
+|:%[a73j’n(x)]} x B 1—{%[61731-,”(96)]} x A+ [%[Q6Bj,n(x)] xB ,
x=b _

xX=a

a7B (x)] X B 4

ko]
i

la,8,. (x)] A,

2 2 ]
{5 [aéBj n (X)]lql XA 4~ {:; [aéBl " (x)]lb X B 3+ l:jx—z [a6qun(x)] XA,
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} 4
+ {% [asBj,n(x)]} x B ,— { asBj 2 (%) ] x A y— l:% [a6Bj’n(x)]:| xB,
x=b x=b
4
+{%[a63j,n(ﬂ]} ><Al+{ asB, n(x)]} x B 53— [% asB; n(x)]} x A4
’ 3
_{% [a5Bj,n(x)]} xB 2J{ asB; n(X)]:| {% [asBj,n(x)]}
x=b
3
_ l:% [GSB,/',n (x)]:| x A 1+ [% [a4Bj’n(X)]i| x B = [% a4B n(x) i|
x=a x=b
2 2
{Zc_Z [a“Bj,n(x)]} X B+ {% [“4Bj,n(x)]} x A IJ{dx a;B; n(x)ﬂ
x=b
) [% [“331”"(’“)]} A (14c)

Solving the system (14a), we obtain the values of a; which are then used into (3) to get the

approximate solution of the BVP (1). In the same way, we can construct a system for twelfth order
BVP stated in eqn. (2a) with the boundary conditions described in eqn. (2b).

In the case of nonlinear BVP, we first calculate the initial values from the system (14) on
neglecting the nonlinear terms and then Newton’s iterative method is exploited for the next
approximation. This procedure is described via the numerical examples in the following section 4.

4 Test Examples

To verify our proposed method we consider some linear and nonlinear BVPs consisting of both
tenth and twelfth order differential equations. All the calculations, in this section, are performed

by MATLAB 10. Let i, (x) be the approximate solution of n polynomials and let & < 10713 , then
the convergence of linear BVP is calculated as

E =i, (x) i, ()] < 6
The convergence of nonlinear BVP is given by

~N+1 ~N
u, —Uu,

<0

where & is less than 107! and N is the Newton’s iteration number.

Example 1: We consider the linear BVP of tenth order [14]:

644



Islam et al.; BJIMCS, 5(5): 637-653, 2015, Article no.BJMCS.2015.047

d"u
0
u(-1)=2sinl, u(1) =0, u'(-1) =—2cos1—sinl,u'(1) =sinl,
u"(-1)=2cosl1—2sinl,u"(1)=2cos1, u"(-1)=2cosl+3sinl,u"(l) =-3sinl,
u™ (~1) = —4cos1+2sinl,u™ (1) = -4 cos1

—(x* =2x)u=10cosx—(x—1)*sinx, —1<x<1

(15)

The analytical solution of this BVP isu(x) =(x—1)sinx. The maximum absolute errors, using
different number of polynomials, by the present method and the previous results obtained so far,

are summarized in Table 1.

Table 1. Maximum absolute errors of example 1

Our method using Bernstein polynomials Siddiqi and Akram [14]
No. of polynomials ()

12 8.647x107'°

13 7.961x1073 .

14 50081014 2.13x10

15 7.772x107"°

Now the exact and approximate solutions are depicted in Fig. 1 of example 1 forn =15.

A
2k
L
15F ®
» o
g o Exact Solution
E 1k )
g o © Bernstein Approx.
o
% ©
< o.sp
< o
& ©°
° o -]
0 L-4 ©. o L-4
©—0—0—0—9
-0.5 —? <
-1 -0.8 —0.6 —0.4 —-0.2 (o] 0.2 0.4 0.6 0.8 X

Fig. 1. Graphical representation of exact and approximate solutions of example 1
Example 2: Consider the linear BVP of tenth order [13,14,15]:

10
CU = —10(2xsinx—9cosx), —1<x<1
Al

u(-)=u()=0, u'(-1)=-2cosl,u’'(l) =2cosL,u"(-1) =2cos1—4sinl,
u"(1)=2cosl—4sinl,u"(—1) = 6cosl+6sinl,u"(1) = —6cos1—6sin1,
u™ (=1) = —12cos1+8sin1 =1 (1)

(16)

The analytical solution of the BVP is, u(x)=(x*—1)cosx. Using the method outlined in
section 3, the maximum absolute errors and the existing results obtained in [13,14,15], are shown

in Table 2.
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Table 2. Maximum absolute errors of example 2

Our method using Bernstein polynomials References results

No. of polynomials (#) Results

12 9.341x10™° 2.65x107; Siddiqi and Twizell [13]
13 8.034x10™"2 8.85x107%; Siddiqi and Akram [14]
14 8.999x10713 4.24x107"; Siddiqi et al. [15]

15 9.992x107'6

Example 3: Consider the linear differential equation of twelfth order [16,17]:

12
Yo xu=—(120+23x+x")e", 0<x<1 (17a)
dx12

subject to the boundary conditions
w(0)=u1)=0,u'(0)=1,u"(1) =—e,u"(0)=0,u"(1) = —4e,u"(0) = -3,u" (1) = e,
u™(0) =-8,u™ (1) = ~16e,u (0) =15, (1) =25 (17b)
The analytic solution of the above problem is, u(x) = x(1—x)e". The maximum absolute errors by

the present method are summarized in Table 3. We depict the exact and approximate solutions in
Fig. 2 of example 3 forn =17.

Table 3. Maximum absolute errors of example 3

Present method using Bernstein References results
No. of polynomials () Results
14 8.532x 107 5.582x 107 ; Siddigi and Twizell [16]
15 8.327x1071¢ 7.38x107" ; Siddiqi and Akram [17]
16 7.216x107'°
17 4.163x107"
A
OS5
0.4F
§ 0.3F — Fxact Solution
‘g‘: © Bernstein Approx.
-
‘g’ 0.2
Jis|
0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1> X

Fig. 2. Graphical representation of exact and approximate solutions of example 3
Example 4: Consider the tenth order nonlinear differential equation [21]

d"u

dxlO

=ule™¥,0<x<1 (18)
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subject to boundary conditions

u()=Lul)=e, u'(0)=Lu'()=c,u"(0)=Lu"(H)=c,u”(0)=1Lu"(I)=e
. ) (19)
u™ ) =1,u™ 1) =e,u™ (0)=1u" (1) =e

The exact solution of this BVP is, #(x) = e” . To solve the differential equation (18) numerically

we approximate the solution of #(X) as

i(x) =G (x)+ > a; B, (x), n>1 (20)

i=1
Here 6,(x)=1-x(1—e) is specified by the essential boundary conditions in (19). Also
B; ,(0)=B; ,(1)=0for eachi=12,...,n. Using (20) into equation (18), the Galerkin weighted

residual equations are

L 104
[ 255 B,y =0,k =12, e
0 X

Integrating first term of (21) by parts, we obtain
Lg%

| xl’;‘ B, (x)dx = {

0

1 1
dB, ,(x) d%i 1+ d’B,,(x)d"i| |d’B,(x)d%
dx dx® dx? dx’ dx’ dx® .

NEENOYE: ' [a'B, (x) d4~ d* B,M(x) i |
dx? dx’ . dx’ .

1 1

d'B,, () i | |d°B,()di| | Bk ,(%) du

- - = | + I dk
dx dx . drx® dx 0

(22)

Putting (22) into equation (21) and using approximation given in eqn. (20), we obtain

n |t d°B, (x)dB,, n dB, ,(x)d B, ,
ZU {dfc’;(x)’(x)woe"Bi,n(x)Bk,n(x)Zaj(Bi,n<x)Bj,n<x)Bk,n(x)>e*}zx{ 6 4 B, (")}
1 x=1

8
0 dx = dx dx

i=

dx dxt dx? dx’ dx? dx’ dx? dx

LB B0 ||
. dx* dx® 0 '

+{dBk,n(x)d"B,-,n(m} +{d%,n(x)d’B,-,n(x)} {dsz,nmd’B,-,n(x)} {WB,C,,,(x)d"B,-,n(x)}
x=0 x=1 x=0 x=1

d*By ,(x) d°B; ,(x) d*B ,(x) d°B; ,(x)
+ 3 6 + 4 5
dx dx - dx dx
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d°B, ,(x dBy ,(x) d?® dBy ,(x) d 8 d*B, ,(x) d’
kn( )deO HOZeIBk’,,(x)]dx+{ ko (x) d 980} { on(X) d 90} Az( ) d 370
dx ax® | | dx 0 dx .

=1

1
{
ZBk a7, |, d*By ,(x) d°0, d*By ,(x) d° 90 d* Bk n(x> d’ ao
At Y d® de® | A ]

d* Bk n(x) d’ 90 . d’By; ,(x) o B, | |d° B,(,,,(x) s d°By ,(x)
dx® dx® dx$ dx®
x=0 x=1 x=0 x=1 x=0

7 8 8
" d Bk,;t(x) Y e— d Bk,;z(x) _ d Bk,;t(x) % et d Bk,n(x) (23)
dx x=1 dx x=0 dx x=1 x

dx®
The above equation (23) is equivalent to the matrix form

=0

(D+B)A=G (24a)
where the elements of 4, B, D, G are a,,b, ; ,d; , and g, , respectively, given by

d’B x) dB. (x
digy =||- () 98 1.0 () —-20pe " B; ,(x)B; , (x) Jdx —[

dx° dx dx dx®

Sy —

dB , ,(x) ngi’n(X)l

=1

| @B d°B, Ax)} {#Bk ,() d7Bl-,n<x>1 _{dsz,,,(x) d7Bl—,n(x>1
=0 x=1 x=0

dx 8 2 dx’ dx? dx’

dx? dx® dx? axd

i B, ,(x) d 6Bln(x)} {d B, ,(x)d°B; n(x)} {d“B,{,n(x) dSBi’n(x)}
- +
x=0 x=1

d*B, ,(x)d°B,  (x
+ k,:( ) z,r;( ) (24b)
dx dx
x=0
n 1
biw == a; [ (B (B, (B, (x)e ™ dv (24c)
=t o
d’By,(x) d6, > o dBy ,(x) d*6, dBy ,(x) d*6, d’By (%) d’6,
= [|—== 22 g% B e + | — - — | —_—
8k = _ﬂ o o Qe kn(X)]x { o B o ad L o d ;

dx? dx’

{dsz,,,(x)d%} +|:d3Bk,n(x)d690} _|:d3Bk,n(x)d600} _|:d4Bk,n(x)d590}
x=0 x=1 x=0 x

~ dx? dx® dx? dx’ dx? dx’

c=1

d*By ,(x) d*6, d°B, ,(x) d°By (%) d°By (%) d°By (%)
+ 7 5 + = xe—| —— | ——| xe+|——
dx dx 0 dx » dx i dx . dx 0

d7Bk n(x) d7Bk n(x) ngk n(x) ngk n(x)
H— xe— = - X Xe+|——c— (244d)
dx » dx 0 dx » dx i
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The initial values of the parameters a; are calculated by neglecting the nonlinear term in (18). For
the initial coefficients we solve the system

DA=G (25a)

where,

o dx’ dx dx dx® dx dx 8

h d Bk n(x) dNt n( ) |\dBk,n(x) dsBi,n(x):l |>dBk,"l(x) d SBi,n(x)‘|
d; . :I dx — +
x=1 x=0

d’B, ,(x)d" B, ,(x) d’By ,(x)d" B, ,(x)
+ -
o ; dx ? dx ©

d*B; ,(x)d°B,,(x)
dx? dx’ dx? dx’ o - .

dx? dx’

d*By_,(x) d°B; ,(x) d*B,_,(x) d°B; ,(x)
+ . = + : :
dx> dx® - dx? dx®

4 5
{d Bi,(x) d Bi,n<x>1 (sb)
1 x=0

[ 4B (x) d6, dB,.,(x) d%0, dB,.,(x) d%6, d*B, ,(x) d"8, |
g = I—g dx + - - —
x=1 x=0

dx dx ax® dx dx?® ax’ dx’

Hx

7

{d 3 ,,(x) d 90} +{d3Bk’n(x) d690:| _|:d3Bk!ﬂ(x) dGQO} _|:d4Bk’n(x) 56, ]
x=0 x=1 x=0

dx’? dx® ax’? dx dr? x>

dx

a* B,( n(x) d’ 90 d’B,_,(x) d’B,_,(x) d®B; ,(x) d°B;_,(x)
+ Xe— — Xe+|————
o dx’ . dx’ - dx® » dx®

dx=0
d’B d’B d*B d*B
. k,,;(x) oo | Ba@ )[4 B 4B 250)
dx o dx " dx :1 dx -

Now, the initial values of a; are computed from eqn. (25a), then used eqn. (24a) to obtain new
estimation ¢; . Continuing this iteration process until the desired values of the parameters are
achieved. Now substitute these new values into eqn. (20) to obtain an approximate solution of the
BVP (18). Using 12 Bernstein with six Newton’s iterations, we summarized the values at different
points of the domain of the problem in Table 4 to compare with the existing modified
decomposition method [21]. In this case, our method is better than modified decomposition
method [21]. The exact and approximate solutions are depicted in Fig. 3 of example 4 forn =12.

AN
E(\
-
‘g | E Soluti -
= xact Solution
% % Becrnstcin Approx. A
’é: B 3 A
= A
g
= S
Be] J A
3
- S
],d- 0.1 0.2 0.3 O.4 0.5 0.6 0.7 0.8 0.9 I X
Fig. 3. Graphical representation of exact and approximate solutions of example 4
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Table 4. Numerical results of example 4 using 6 iterations

X Exact 12 Bernstein polynomials Modified decomposition method [21]
0.0 1.0000000000 0.000000E-000 0.00000
0.1 1.1051709181 5.436494E-012 1.41E-06
0.2 1.2214027582 7.342582E-013 2.69E-06
0.3 1.3498588076 9.542484E-012 3.70E-06
0.4 1.4918246976 1.738262E-012 4.35E-06
0.5 1.6487212707 4.990510E-012 4.58E-06
0.6 1.8221188004 2.407930E-012 4.36E-06
0.7 2.0137527075 4.307570E-013 3.71E-06
0.8 2.2255409285 7.753470E-012 2.69E-06
0.9 24596031112 3.203970E-012 1.42E-06
1.0 2.7182818285 0.000000E-000 2.00E-09

Example 5: Consider the nonlinear BVP of twelfth order [21]:

3

dx

(24a)

u@ =L ul)=eLu"0)=Lu"O)=e,u™ 0)=1u™ D =e,u® 0)=1,u" 1) =e!
w0y = Lu" W)=, u™ ()= Lu® 1) =e!

(24b)

The exact solution of this BVP is u(x)=e *. Following the proposed method illustrated in

section 3 as well as in example 4; the maximum absolute errors for this problem are summarized

in Table 5.
Table 5. Numerical results for example 5 using 6 iterations
X Exact 13, Bernstein polynomials Modified decomposition method [21]
0.0 1.0000000000  0.000000E-000 0.00000
0.1 1.1051709181  5.436494E-012 -1.41E-06
0.2 1.2214027582  7.342582E-013 -2.69E-06
0.3 1.3498588076  9.542484E-012 -3.70E-06
0.4 1.4918246976  1.738262E-012 -4.35E-06
0.5 1.6487212707  4.990510E-012 -4.58E-06
0.6 1.8221188004  2.407930E-012 -4.36E-06
0.7 2.0137527075  4.307570E-013 -3.71E-06
0.8 2.2255409285  7.753470E-012 -2.69E-06
0.9 2.4596031112  3.203970E-012 2.00E-09
1.0 2.7182818285  0.000000E-000

The exact and approximate solutions are illustrated in Fig. 4 of example 5 forn =13.
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2 0.8 ILxact Solution
g ¥ Bernstein Approx.
2 0.7
=
< 0.6
=
ﬁ 0.5

0.4

o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 X

Fig. 4. Graphical representation of exact and approximate solutions of example 5

5 Conclusion

In this paper, Galerkin method has been applied for the numerical solution of tenth and twelfth-
order linear and nonlinear BVPs with Bernstein polynomials as basis functions. The numerical
examples which are available in the literature have been considered for comparison. From the
tables and graphical representation, we observe that our proposed method provides better results
than the earlier results obtained by the various researchers. We may conclude that the approximate
and analytical solutions are coinciding when the few Bernstein polynomials have been used in the
trial function. The algorithm can be coded easily and may be applied to solve any higher order
BVP.
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