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Abstract

The Basic Matrix Modular Cryptosystem (BMMC) is a public-key cryptosystem, which uses
some matrix modular exponentiations in the matrix ring over the residue ring modulo n. The
aim of this article is to decrease the number of these exponentiations and consequently to
accelerate the execution of encryption algorithm. There are two ways to reach this aim. First
way is to determine the large abelian subgroup in general linear group over the large residue
ring and to choose the session keys in this subgroup, what will be to give the encryption
without exponentiations. Other way is to use random integral exponent of the given matrix in
the public key as session key and this will be the only exponentiation in encryption algorithm.
A discussion about the security of built modifications made in the article shows that the level
of security is high enough for an appropriate choice of parameters of the cryptosystems,
namely, the lower bound for the selection of secure modulus n is 40-bit integer. Both modified
cryptosystems are faster than BMMC and balanced with respect to a pair of security —
efficiency, and BMMC is much faster than RSA.

Keywords: Public key cryptosystem, matrix group, residue ring, automorphism.

1 Introduction

Security of some present-day public-key cryptosystems is based on computational complexity of
some number-theoretical problems. Two of these problems are used most often: the integer
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factorization problem and the discrete logarithm problem. These problems ensure the security of
the RSA and ElGamal cryptosystems, as well as of the corresponding digital signature schemes
[1]. In [2], randomized polynomial-time algorithms for computing discrete logarithms and integer
factoring were presented for the quantum computer. Nevertheless, some alternatives should be
proposed. One of possible approaches is to replace number-theoretical cryptosystems by such
algebraic cryptosystems that would be resistant to an attack on a quantum computer.

Let us now consider some scheme of cryptosystems, namely, cryptosystems of group rings. In the
author’s work [3], [3a] a scheme of group ring cryptosystems was proposed. The idea to apply
group rings in cryptography is based on the fact that if we fix the cardinality of a finite ring R, the
cardinality of the group ring RG for a finite group G is an exponent of the cardinality of the group
G. Then, a legal user can perform cryptographic transformations separately in the ring R and in the
group G using polynomial algorithms and the illegal user has to solve computationally difficult
problems in the group ring RG.

In [4] some generalization of group ring cryptosystem is considered in the case of quasigroup ring.
In [5] were proposed theoretical attacks on cryptographic schemes using automorphisms in the
case of cryptosystems of the matrix rings over finite-dimensional algebras. And although it is
questionable possibility of practical realization of these attacks to cryptosystems in the matrix ring
over the ring of residues modulo 7, this modulus is better to choose as a composite number.

The Basic Matrix Modular Cryptosystem (BMMC) is a public key cryptosystem, which was
developed in [6]. In the most important case for the use of public-key cryptosystems, namely, key
exchange protocols for symmetric ciphers, such as AES, the key length is usually equal to 128 or
256 bits. Protocol using BMMC was developed for the key exchande in [7].

BMMC realization needs three matrix modular exponentiations for key generation, three
exponentiations under encryption and two exponentiations under decryption for every data block.
One may to accelerate encryption by decreasing the number of exponentiations. To reach this aim
it is necessary to explore the centralizer of random matrix in the general linear group over residue
ring. The structure of this centralizer is unknown in general case. There are two ways for the
choice of the random element of centralizer. One way is to use a fixed large abelian subgroup G in
a such manner that one may easily to choose the random element x in G, then other random
element y in G will be an element of centralizer of x. Other way is to compute the random integral
exponent y of the fixed element x in the general linear group over residue ring, then y will be in a
centralizer of x and that is only exponentiation needs for encryption. Two different modifications
of BMMC are based on these two approaches, namely, Modified Matrix Modular Cryptosystem
One (MMMCI1) and Modified Matrix Modular Cryptosystem Two (MMMC2). Both
cryptosystems provide faster encryption than BMMC but their security have to be explored. On
the other hand, the mathematical basis of these cryptosystems security is the same hard
computational problem unlike BMMC whose security is based on the following two
computationally hard mathematical problems [6].

The transformation problem (two-factor conjugacy problem).

Let a matrix P2 be conjugated with an unknown integral power of a matrix P1 for two given

R,P,eGL,(Z,)

matrices . Find all solutions of the equation with two unknowns Z and y:
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ZRZ ' =P”

>

where ZGGLz(ZH)’ _f(”)<y<f(n)
group GL,(Z,,).

, v 1s integer, f{n) be a cardinality of the

The hybrid problem.

Find all solutions of the equation with two unknowns Y and x

Y =2,

s

there Y220 €GL,(Z,,)

the group GL2 (Zn ) .

, — f(l’l) <x< f(n) , X 1s integer, f{n) be a cardinality of

Let us also consider two particular cases of hybrid problem:
GL,(Z
a) The discrete logarithm problem in a cyclic subgroup of the group 2 ( n )

GL,(Z
Let H= <YO> be a fixed cyclic subgroup of order j of the group 2( ”) with the

generator Yoand M € H be an arbitrary element. Find the unique solution X = X, of the

equation
Y =M

where x is an integer such that 0<x< ] .

GL
b) The problem of extracting a root of the ith power in the group 2 ( ”) (the matrix RSA
problem)

. MeGL(Z,)

L be an arbitrary element, iO be a fixed integer satisfying the condition

0<iy < f(n) ma GCD(iy, f (n))=1.
Find all solutions of the equation with a single unknown Y:

Yo=M

>

YeGLZ(Zn).

According to the problem b), in turn, one can also discern the following problem.
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Z
The problem of square-root extraction in 2 ( n )

Find all solutions of the equation with a single unknown Y:

Y.MeGL(Z,)

whe

In the case of MMMCI1 and in the case of MMMC?2 it is a “random salt” conjugation problem.
Classical conjugation problem is the following: for the given elements 4, B in the group G to find
element X in the same group such that

X'AX =B

The “random salt” conjugation problem is the following: for the given matrices 4, B in the matrix

modular ring M 5 (Z n) over the residue ring Z , to find invertible matrix X in the same ring

and random fixed unit QU in the residue ring Zn by modulo n such that

X'"AX =aB

The random fixed “salt” QL can be found only under brute force attack and for large enough
modulus 7 this problem is becoming intractable.

It should be noted, that some other algebraic cryptosystems are given in [8-13].

The paper is organized as follows: after the Introduction (section 1) is described an abelian
subgroup G of the group GL2 (Zn) (section 2), then briefly is described the BMMC (section 3).

In sections 4 and 5 are given the description of MMMCI and an example of computations, and in
sections 6 and 7 are given MMMC?2 description and example of computations. The security and
efficiency of both modifications of BMMC studied in sections 8 and 9. In section 10 are given the
conclusions.

2 Subgroup G of the Group GL,(Z,)

Let G be the following set of 2x2 — matrices:

a b 2 2 *
G= 5 a,beZ, and (a”"-b")eZ,
a

* . . . .
Zn is an unit group of the residue ring Zn modulo 7.
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It is easy to verify that G is an abelian subgroup of the group GL2 (Z " ) :

a b c d
1) for K = b €eG and L = € G we have that

a d c

M:KLEG,

because

ac+bd ad+bc
ad +bc ac+bd

and determinant of KL is

det(KL) = (detK)(det L) e Z';

a b .
2) for K= c G, det K = VA Zn we have tha‘tKP1 e , because
a
v'a —y7'b :
K'= 1 | ,detK‘lzy_leZn;
—y'b vy a
a b c d
3) for K= €eG and L= €G we have that KL = LK,
b a d c
because
ac+bd ad+bc ca+db cb+da
KL = =

, L )
ad +bc ac+bd cb+da ca+db

Let a, b be the random elements of the ring Zn and let

a b
b a

be the corresponding element in the ring M 5 (Z n). What is the probability of the case that M is
not in the group G? In two special cases of » we may to give answer on this question.

M=
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Look at these two particular cases of n:

Hyn= pr, P is a prime number, 2<7risan integer
Or

2) n = pq ,pand g are primes.

The cardinality of the residue ring and its unit group in both cases is the following:

=p(n)=p"(p-1)

)]

or

2)

Z |=

.| = P4, o(n)=(p-(g-1).

(0} ( I’l) is an Euler function.

Then the probability P of the case that matrix M is not in the group G is the following:

o | pp- 1

Hl- -
h p p
or
-Dig-1) 1 1 1
) (p=Dg-D 111
n pq p 49 pPq
If bit length of the primes p and ¢ will be 80 bits or bigger, then we have:
HP<2®
or
) P<277.

In both cases probability P becomes negligible small and therefore one may to suppose that in

these two cases random matrix M over Zn

a b
M = ,a,bel,
b a

with overwhelming probability is in the group G.

Note. In the case if modulus 7 is 64-bit integer one needs to verify that random matrix
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a b
M = ,a,bel,
b a

belongs to the group G.

3 Basic Modular Matrix Cryptosystem (BMMC) [6]

Let us consider the matrices in the matrix ring M 5 (Z) and its unit group Glz (Z) , which

contains the free subgroup G(OL, B, ’Y) of rank 3 with free generators

110 1B -y | vy

A=\ 7| BB =577 ] €= =+

where OL,B,’Y €7 and |OL| > 3, |B| > 3, |y| > 3 [14]. For instance, if 0L = B =YY= 3, we

have the matrices

AIO 13C—23
_313_01 |34

which generate the free group G = G (3, 3, 3) of rank 3.

3.1 Key Generation

Alice doing the following:

1) picks the random large positive integer n;

+ + 1
2) picks the random words W(X) and W(U) in the alphabet AJrl , B ﬂ, C+ in a free rank
3 group with free generators A, B , (OF

3) computes the non-commuting matrices X ,and U , by replacing the symbols

A, B, C in the words W(X),W(U ) with corresponding matrices

1 0 1 3 -2 3
A= B= C=
3 1 0 1 -3 4

and performing matrix computations by modulo 7 , if X , and U , commute, then return to 2) ;
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4) let f(n) be a cardinality of the group GL2 (Z n) , then Alice picks random integers £,s,/

wehtnat — (M) <k,s < f(n), 2<1< f(n). f(n) = |GL(Z)|.
5) Alice public key is(n,E,Pz,f;):(n,X, U’;SXkU:,U’i), her private key
is(Un,k,S).

3.2 Encryption

Bob does the following:
for a plaintext meM ) (Zn ) picks r,teZ " and  computes  the

ciphertext(c1 ,C, ) = (P3_FP]tP3r, m- P3_"P2_t]:;r )

3.3 Decryption

Alice computes using her private key:

CU,CiU, =m

4 Modified Matrix Modular Cryptosystem One (MMMC1)
Descryption

4.1 Key Generation

Alice doing the following:

1) picks a random prime number p;
2) makes a choice between
2.1) picks a random integer 2<7 and computes 1 = pr;
2.2) picks a random prime number ¢ # p and computes 1 = p( ;

3) picks four random integers @, b, ¢, d € Zn ;

4) composes two random matrices

a b c d
V= and W = ;
b a d c
5) verifies the membership of these matrices to the group G;
6) if at least one of these matrices not belongs to G, then return to 3).
Note 1. If expected value of modulus 7 is 64-bit integer, then the preferred value of parameter

ris ¥ =2 and p is 32-bit prime number.
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Note 2. If modulus 7 is 160-bit integer or bigger, then with overwhelming probability the
membership of these matrices to the group G is accepted without verification.

7) Alice defines two commuting inner automorphisms of the ring M ) (Zn) :
oa:D—V'DV, B:D—>W'DW
for every matrix [) € ]\42 (Zn )

Note 3. Matrices V', W € G and therefore automorphisms OL, B commute. Of course
this may be checked directly.

8) Alice computes the following automorphisms of the ring M ) (Zn ) :

y=ao’B, o=0p’
v:D— (VW) DWW, ¢:D— VW) DIW?)

for every matrix D € M 2 (Z " )

Note 4. Automorphisms (P, \y commute and

-1 -1
yv=af o, p=a Py.
9) Alice picks a random invertible matrix

LeGL,(Z),

such that L does not belong to the subgroup G;
10) computes matrices:

L, o(L), w(L);
11) Alice public key is
(. 9(L). w(L™))
private key is

V., W).
4.2 Encryption

Bob doing the following:

1) presents the plaintext m as a sequence of 2x2- matrices over residue ring Zn :

m®, m? .. m™
(i)

2) forevery m, 1 = 1, 2,...,IN chooses a random matrix Y(i) S G;
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3) defines for every i=1,2,...,N the automorphisms
é(i) D> (Y(i))*lDy(i)
for every D € Mz(Zn);

4) computes for every i=1,2,....N matrices

i i -1 e (i )
£ (o(L)), €7 (W(L")), mVEV (p(L));
5)picks for every i=1,2,..,N random units Y, € Zn ("salt") and computes the
ciphertext :

C=(C?
G =7 € (L), G =ymVE N (9(L)),i=1,2,...,N.

‘ c®

e™, o=,

4.3 Decryption

Alice doing the following:

1) computes for every i=1,2,...,N using her private key:
i -1 i -1 —1g(i -1
20 = BC) = o B E (WL ),
2) computes for every i=1,2,...,N matrices:
CVz0 — (,Y m(i)&_,(i)((P(L)))Z(i) =m"
2 i .

. . 1 2 N
3) restores the plaintext m from the matrix sequence m( ), m( ), cees m( ) .

Note 5. Decryption correctness proof will be given later for two modifications.

5 Example 1 (MMMC1)

5.1 Key Generation
Alice doing the following:

1) picks the primes p=5, ¢ =7 and computes# = pg = 35;

2) chooses four random integers in the residue ring Z35 :

7,4,6,2;
3) composes the random matrices
7 4 6 2
V= W=
4 7 2 6

4) computes det V' =33, det W =32 and then computes
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(det V)" =17, (det W)™ =23
therefore V" and W are units in the matrix ;ing M ) (Z3 5) ;
5) defines two automorphisms of the ring M 5 (Z35) :
a:D—->V'DV, B:D>W'DW
for every matrix D € M, (Z,s) ;

6) computes the following automorphisms:
2 _ 2

y=0p, o=af’,

7) chooses the random matrix L € GL2 (Z35) :

1 2
L=
35
and computes matrix
(30 2
3 34)

8) computes matrices:

o ,. (34 34
o(L)=(w7) L(VW)=[6 7)

16 6

-1 2 -1 r—1 2 23 2j4
WLFWW)LWWF( J

9) Alice public key is

[n:35,(p(L)=(364 374]’\”([1):(?2 264]],

private key is

3k )

5.2 Encryption
Bob doing the following:

1) presents the plaintext as a matrix m € M ) (Z3 5) :
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35 (2 20
2) picks the random matrix ¥ = € G and computes Y = ;
53 20 2

3) defines automorphism & of the ring M ) (Z 35) :
£:D—>Y'DY
for every matrix D € M2 (Zss) ;

4) computes matrices:

evony -2 24
SeIN=Y"oL)¥ =

>

L'Y=YyL"Y= i
WL ) =Y y(L)Y = 16 16)

5) picks random unity € Z35 Y= 9, ’y71 =4.
6) computes the ciphertext C = (C1 , Cz) :

L § 17 26 9 2
Ci=y &y ))=(29 29) C2=ym§((p(L)):(16 28}.

>

5.3 Decryption

Alice doing the following:

1) computes matrix z, using her private key:

; 2 26
e B(Cl):(w 24)

2) computes then

11 2
C,z= =m.
o)
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6 Modified Matrix Modular Cryptosystem Two (MMMC2)
Description

6.1 Key Generation

Alice doing the following:
1) picks a random prime number p;
2) chooses one of the following two cases:

2.1) picks a random integer 2<7r and computes 71 = pr;
2.2) picks a random prime number ¢ # p and computes 1 = p( ;

3) picks a random matrix W € GL2 (Zn );
4) computes matrices

F=Ww? H=W’
and
F’H, FH?;

5) picks a random matrix L € GL2 (Zn);
6) defines the automorphisms:

o:D—>F'DF, B:D— H'DH

and then computes the automorphisms:

y=o’p, p=ap’,

for every matrix [ € ]\42 (Zn )
Note 1. Automorphisms OL,B,([),\V commute each with other because the corresponding

. 2 2 . .
matrices F , H . F°H . FH" are some integral exponents of matrix .
7) Alice computes matrices:

FH, o(L), w(L);
8) Alice public key is

(n,o(L),y(L™"),FH),

private key is

(F,H).

Note 2. The following relations can be easily verified: @ = OLB71\|J, Y= (171BQ.

6.2 Encryption

Bob doing the following:
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1) presents the plaintext as a sequence of 2x2 - matrices over the residue ring Z -
mP,...,m"N;

2) for every matrix m(i) = 1,..., N picks random integer kl. and computes matrix
YV =(FH)"

3) defines automo;phisms:

g":D— "' DY"

for every matrix ) € MZ(ZH), i=1,..,N;

4) computes matrices for every i=1, ..., N:
EV(p(L)), &V (w(L™)), mE (o(L));

5) picks random units = Z;’ 1= 1,...,N and computes ciphertext:
c=c"|.|c™

CY=(C".CY).i=1,...N.
C" =y, 2w, CF =ym e (o(L)).

6.3 Decryption

Alice doing the following:

1) using her private key computes for every i=1,...,N:

@ _ -1 ) _ 1 —1e (i) -1 .
20 = o B(C) =a B(v e (w(L))):
2) computes matrices for every i=/, ..., N:

Cz(i)z(i) — m(i);
3) restores the plaintext m from the matrix sequence
m(l) m(N)

yeees .

Note 3. Automorphisms 2’;(1), I =1,...,N commute with automorphisms
o, B, ¢, .

Theorem. The decryption in cryptosystems MMMC1 and MMMC?2 is correct.

Proof. Automorphisms g(i), i=1,..., N commute with automorphisms O and B in both

cryptosystems, besides of definitions of one-named automorphisms are quite different in them.
Therefore proof deals with both cryptosystems.
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Under computations we have the following:

(1m0 (1)) = = (e (0(0) (o B (w( 1)) -
= (v m g (o) (£ (o B (w(2)))) =
— (E_.(i) ((p(L))) (Ef” ((p(L‘l))) — (§<i) ((P(L)(P(L_l))) —

_ m(i)é(i)(p(LL‘l) _ m“’Ef”(p([) —mD = m®
7 Example 2 (MMMC2)

7.1 Key Generation

Alice doing the following:
1) picks prime number p = 5 and computes 11 = p2 =25;

7 3
2) picks the random matrix W = (5 2j € GL2 (Zzs) ;

14 2 8 21
3) computes matrices [ = wW?* = , H= w3 =
20 19 10 23

.. (23 24 , (6 17)
and also matrices F'"H = , FH" = ;
15 8 20 11

9 4
4) chooses the random matrix L= [7 3} S GL2 (Zzs) ;

5) defines automorphisms OL, B, O,

6) computes matrices

FH_715 L_824 L71_38.
o 7’@()_17 4’W( )_710’

7) Alice public key is:
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e (8 ) (3 8y (715
n=2500)=| Lo, PYEDEL =

. . 14 2 8 21
her private keyis | F = ,H= .
20 19 10 23

7.2 Encryption

Bob doing the following:

. . 9 16
1) presents the plaintext as matrix ;5 = eM,(Z,,);
10 5

2) picks random k, for example, k=3 and computes matrix
. (18 5
Y=(FHY = :
0 18

3) defines automorphism &: D — Y DY
for every matrix 1) € M ) (Z 25 );

4) computes matrices

1314 Sy _[8 13 g8 10}
SOUEN=| 1, 5, ) SVED=( ) mé(cp(L))=[15 10)’

5) picks Y = 77 , then computes

L L (19 9 23 20
C =7 &y(L ))=(1 lsj,Cfvmﬁ((P(L)){s 20}

C= (Cl > Cz )-
7.3 Decryption

Alice doing the following:

1) computes matrix z using her private key:

4, 18 2
z=a B(C1):(6 16}

9 16
C,z= =m
[10 5)

2) computes
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8 Security of MMMC1 and MMMC2

Look at some of the attacks on the cryptosystems MMMC1 and MMMC2.

8.1 A ciphertext only attack

Let C = (Cl , Cz) be a ciphertext for plaintext m, then
C=7"g(w(L), C,=ymE(o(L))

and therefore we come to the equation system with unknowns matrices m, ¥ and unknown unit
£
YEL,
~1y-1 -1
C=v Y y(l7,

(*)
C, =ymY 'o(L)Y.

For random unit Y cryptanalyst has not another way to solve this equation system as to suppose

concrete value Y =7, and to solve the conjugation problem: to find unknown matrix Y from the

equation:
1,C =Y W(LY.

Rewriting this matrix equation as system of four linear equations with four unknowns cryptanalyst

finds the set of solutions, depending on one or more parameters, each of which runs Z , -Then he

inserts each solution ¥ = Yo in the second equation of system (¥*) :
-1
G =yomY, (L)Y,

and finds corresponding solution 777 = 11, . Thus, for each fixed Y, cryptanalyst receives at least
n pairs of the form (Yo , mo) - Because Y, accepts (p(n) values, the cryptanalyst gets n(p(n)

triples of the form ('y 0> YO 5 mo). Consequently, if 7 is not less than 64-bit integer, then check,

. . 125 . . . . .
which of these non less approximately 2 triplets is a true solution, becomes infeasible.
Therefore, the lower bound for the selection secure modulus 7 is 40-bit integer, because in that

. 78 .
case one needs to check approximately 2 triplets.
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8.2 A Known-plaintext Attack

Let (m(l), C (1)), . (m(k), C (k)) be the pairs of the form plaintext-ciphertext. Cryptanalyst
needs to find unknown plaintext m(k”) from the corresponding ciphertext C (k+1). In our case
for the cryptosystems MMMC1 and MMMC?2 encryption uses the new random one-time key Y for

the new plaintext. Therefore knowledge of previous pairs of the form plaintext-ciphertext gives no
information to find the unknown plaintext from the corresponding ciphertext for a new pair.

8.3 A Chosen-plaintext Attack

There are the same arguments as for a known-plaintext attack.
8.4 An Adaptive Chosen-plaintext Attack

There are the same arguments as before.

8.5 A Chosen-ciphertext Attack

%

Let 7 be a random matrix in the group GL2 (Zn), C= (Cl, Cz) be a ciphertext for
*

unknown plaintext m. Cryptanalyst Connor computes 771 C2 and offers Alice to decrypt the

* * *
ciphertext C = (Cl, m Cz)- Then Alice finds corresponding plaintext 72 71 and sends it
to Connor. Finally Connor computes the initial plaintext as the following:

(m") " (m'm)=m.
8.6 Protection from a Chosen Ciphertext Attack

To prevent this attack one has to replace one-sided ciphertext with two-sided ciphertext. Namely,
one-sided ciphertext:

C= (Cl ,Cz)a Cl = y_lY_l\V(L_l)Ys Cz = 'me_l(P(L)Y

is replaced with two-sided ciphertext

C=(G,C), C =y Y WL, C,=yY 'o(L)YmY 'o(L)Y.

In this case decryption becames the following:

a) Alice computes Z = OLB_l ()
b) then computes ZCZZ =m.
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The chosen ciphertext attack in this case will not be successful, since the matrices ¥ and m in
general do not commute. These variants of the MMMC1 and MMMC2 will be called closed
cryptosystem variants.

Note. An attack with a chosen ciphertext breaks cryptosystems RSA, ElGamal and Rabin, but
attempts to build their modifications resistant to this attack, still resulted in a very inefficient
cryptosystems. As we can see, for the matrix modular cryptosystems situation is different, since
the closed variant differs from the usual only a few number of matrix multiplications.

9 Comparing Efficiency of Cryptosystems

For comparing the bit complexity of encryption and decryption algorithms considered in the paper
cryptosystems start with the known estimates of the bit complexity of basic operations in the
residue ring ([1], p. 72, Table 2.5).

Table 2.5. Bit complexity of basic operations in ~—

Operations Bit complexity

Modular addition (a+b)modn O(lgn)

Modular subtraction (a — b) modn O(lg n)

Modular multiplication (ab) modn 0((1g 7’1)2)

Modular inversion a—l modn 0((1g n)z )

Modular exponentiation ak modn.k<n 0((lg n)3)
2

We now find the bit complexity of modular matrix operations used in compared cryptosystems.
9.1 Matrix Modular Multiplication

This operation consists of 8 modular multiplications and 4 modular additions. Considering only
the multiplication, we obtain the following estimate of the bit complexity of the matrix modular

multiplication: 8(lg I’l)2 C -bit operations for some constant C.
For 64-bit n we obtain the following estimate:

8(64)2 =2"=32x2" % 3,2x% 10*C -bit operations for some constant C.

9.2 Matrix Modular Multiplication in the Group G

This operation consists of 4 modular multiplications and 2 modular additions. Considering only
the multiplication, we obtain the following estimate of the bit complexity of the matrix modular

multiplication: 4(lg n)2 C -bit operations for some constant C.
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For 64-bit n we obtain the following estimate:

4(64)2 =2"=16x2" 1,6 x 10*C -bit operations for some constant C.

9.3 Matrix Modular Multiplication by a Scalar

This operation consists of 4 matrix modular multiplications, then we obtain the following estimate

of the bit complexity of the matrix modular multiplication: 4(1g I’l)2 C -bit operations.
For 64-bit n we obtain the following estimate:

4(64)2 =4x 212 =16x 210 X 1, 6 x 104 C -bit operations for some constant C.

9.4 Matrix Modular Inversion

This operation consists of 2 modular multiplications and 1 modular subtraction (computation of
the determinant), modular inversion and matrix modular multiplication by a scalar, then we obtain
the following estimate of the bit complexity of the matrix modular inversion:

3(1g 7’1)2 + 4(lg 7’1)2 = 7(1g n)2 C -bit operations (modular subtraction is ignored).
For 64-bit n we obtain the following estimate:

7(64)2 =7x2% =28x2" ~ 2,8 % 10*C -bvit operations for some constant C.

9.5 Matrix Modular Inversion in the Group G

a b

Recall that in group G matrices are of the form ) = , then we obtain:
a

3(lg n)2 + 2(lg n)2 = S(Ig n)2 C -bit operations.

For 64-bit n we obtain the following estimate:
5(64)2 =5x2%=20x2" = 2x10*C -bit operations for some constant C.

9.6 Matrix Modular Exponentiation

This operation consists of lg # matrix modular multiplications, then we obtain the following
estimate of the bit complexity of the matrix modular exponentiation:

lg n- 8(1g n)2 = 8(1g I/l)3 C -bit operations.
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For 64-bit n we obtain the following estimate:

8(64)° =8x 2" =2x2% =2x(2"")? x2x10°C bit  operations for  some
constant C.

Now we can compare the bit complexity of the encryption and decryption discussed in the paper
cryptosystems.

We first consider as a reference point the cryptosystem RSA. Encryption and decryption in RSA

consist of only modular exponentiation, then their bit complexity are (lg I’l)3 C -vit operations,
for 1024-bit n and 1024-bit plaintext block we obtain the following estimate:

1024° = (210)3 R (1 0’ )3 =10’ C -bit operations for some constant C.

Note. There are more efficient modifications of the RSA but we are now considering only
classical cryptosystem.

As another reference point consider fast ciphers, namely, symmetric or stream ciphers. It is known
that these ciphers are much faster than public-key cryptosystems, according to some estimates,
about 1000 times faster. So there is a very roughly estimate of the bit complexity of fast ciphers as

a range of 1 04 - 106 -bit operations. Now let's see whether the fall in this range at least some of
the discussed in the paper cryptosystems.

1. BMMC

Encryption in BMMC consists of 3 matrix modular exponentiations (can be neglected other
operations), then the bit complexity of the BMMC encryption is the following:

3. 8(lg I’l)3 = 24(lg I’l)3 C -bit operations for some constant C.

For 64-bit n and 256-bit plaintext block we obtain the following estimate:

24(64)’ =24-2" =6-2*° x 6x(10*)> = 6 x10° C -bit operations.

Decryption in BMMC consists of 2 matrix modular exponentiations, then the bit complexity of the
BMMC decryption is the following:

2- 8(1g I’l)3 = 16(1g n)3 C -bit operations.
For 64-bit n and 512-bit ciphertext block we obtain the following estimate:

16(64)3 =16-2"" =4x2%° 2 4x10°C -bit operations.
2. MMMCI

Encryption in MMMCI consists of 5 matrix modular multiplications, 1 matrix modular inversion
in the group G, 2 matrix modular multiplications by scalar and 1 modular inversion. Then the bit
complexity of the MMMCI1 encryption is the following:
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5-8(1g n)2 +5(1g n)2 +2-4(1g n)z +(Ig n)2 =54(lg n)2C -bit operations.
For 64-bit n and 256-bit plaintext block we obtain the following estimate:
54(64)* =54-2"7 =216x2"" 2 216x10° ~ 2,2 x 10’ C -bit operations.

Decryption in MMMCI1 consists of 3 matrix modular multiplications, 1 matrix modular
multiplication in the group G and 2 matrix modular inversions in the group G. Then the bit
complexity of the MMMCI decryption is the following:

3-8(lg I’l)2 +4(1g I’l)2 +2-5(1g I’l)2 =38(Ig I’l)2 C -bit operations.
For 64-bit n and 512-bit ciphertext block we obtain the following estimate:

38(64) =38-2"7 =142x 2" ~142x10° = 1,4 x10° C -bit operations.

3. MMMC2

Encryption in MMMC?2 consists of only matrix modular exponentiation (can be neglected other
operations), then the bit complexity of the MMMC?2 encryption is the following:

8(1g n)3 C -bit operations for some constant C.

For 64-bit n and 256-bit plaintext block we obtain the following estimate:

8(64)3 =8- 218 =2 220 ~ 2 X 106C -bit operations.

Decryption in MMMC2 consists of 4 matrix modular multiplications and 2 matrix modular
inversions. Then the bit complexity of the MMMC?2 decryption is the following:

4-8(1g n)2 +2-7(g n)z =46(lg n)2 C -bit operations.
For 64-bit n and 512-bit ciphertext block we obtain the following estimate:

46(64)° =462 =184-2'" ~184x10° ~ 1,8 x10° C -bit operations.

So, BMMC is a bit out of fast ciphers range, although significantly faster RSA. MMMC2
encryption is faster BMMC but a little outside of fast ciphers range and MMMC?2 decryption falls
within the range of fast ciphers. Finally, encryption and decryption in MMMCI1 fall within a range
of fast ciphers.

10 Conclusion

In paper two modifications of Basic Matrix Modular Cryptosystem (BMMC) are developed. Both
cryptosystems are faster than the BMMC and balanced with respect to a pair of security-
efficiency.

Replacing BMMC in non-commutative analogue of the Diffie-Hellman key exchange protocol on
the one of the modified matrix cryptosystems, we obtain plaintext (symmetric cipher key) as a 2x2

matrix over the residue ring Z , With 64-bit modulus n for 256-bit key, and for the case of the

128-bit key may be used advance arrangements half of the 256-bit string. As shown in the paper,
for such modulus » modified matrix modular cryptosystems are fast and secure, they can be used
in various applications, especially given the fact that the lower bound for the security of the
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modified matrix modular cryptosystems is a 40-bit modulus 7 of the residue ring Z , - The fastest

of the three ciphers discussed in the paper is a cryptosystem MMMCI, it is near the speed of
encryption and decryption to symmetric and stream ciphers. Decryption in MMMC?2 too fast, but
encryption is slightly inferior in speed to MMMCI. Finally, the encryption and decryption in the
BMMC inferior in speed to MMMC?2, although much faster RSA.
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