
Enhanced Mixing in Magnetized Fingering Convection, and Implications
for Red Giant Branch Stars

Peter Z. Harrington and Pascale Garaud
Department of Applied Mathematics, Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

Received 2018 November 8; revised 2018 December 10; accepted 2018 December 12; published 2019 January 3

Abstract

Double-diffusive convection has been well studied in geophysical contexts, but detailed investigations of the
regimes characteristic of stellar or planetary interiors have only recently become feasible. As most astrophysical
fluids are electrically conducting, it is possible that magnetic fields play a role in either enhancing or suppressing
double-diffusive convection, but to date there have been no numerical investigations of such possibilities. Here we
study the effects of a vertical background magnetic field (aligned with the gravitational axis) on the linear stability
and nonlinear saturation of fingering (thermohaline) convection, through a combination of theoretical work and
direct numerical simulations. We find that a vertical magnetic field rigidifies the fingers along the vertical direction,
which has the remarkable effect of enhancing vertical mixing. We propose a simple analytical model for mixing by
magnetized fingering convection, and argue that magnetic effects may help explain discrepancies between
theoretical and observed mixing rates in low-mass red giant branch stars. Other implications of our findings are
also discussed.
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1. Introduction

Recent progress in quantifying transport by fingering
(thermohaline) convection in stellar astrophysics (see the
review by Garaud 2018) has reopened the debate on the origin
of post dredge-up surface abundance variations in red giant
branch (RGB) stars. It has been known for a long time that
stellar models that ignore non-canonical mixing do not predict
any evolution in the surface abundances on the RGB after the
first dredge up, but this prediction is at odds with observations
(Gratton et al. 2000). More specifically, lithium and CNO cycle
by-product abundances are observed to continue evolving with
time, especially at the time of the so-called luminosity bump,
which corresponds to the point at which the hydrogen-burning
shell begins to expand into the region that was previously
chemically mixed by the dredge-up event.

Charbonnel & Zahn (2007b) proposed that fingering
convection could be a natural explanation for this phenomenon,
and would arise from the inverse μ-gradient caused by the
reaction 2He 3 He4+2p at the outer edge of the hydrogen-
burning shell. Including the effect of fingering convection in
their stellar evolution code using the mixing prescriptions of
Ulrich (1972) and Kippenhahn et al. (1980); (which effectively
only differ by a multiplicative constant CM), they were able to
reproduce the observations provided that constant factor is
taken to be CM∼1000 as in the Ulrich (1972) model.
Unfortunately, this is now known to be inconsistent with the
fingering mixing rates measured in Direct Numerical Simula-
tions (DNSs), which all agree that CM∼10 at the most
(Denissenkov 2010; Traxler et al. 2011; Brown et al. 2013). In
other words, the basic state of fingering convection mixes
chemical species at a rate that is two orders of magnitude
smaller than what is required to explain RGB star observations.

More recent work by Garaud et al. (2015) investigated the
possibility that large-scale gravity waves or thermocomposi-
tional staircases might spontaneously form in fingering
regions (see Brown et al. 2013), which could cause an

enhancement in transport as they do in the tropical ocean
(Schmitt et al. 2005). However, they concluded that this could
not happen in the parameter regime appropriate for RGB stars.
Sengupta & Garaud (2018) later proposed that including the
effect of rotation might be the solution to the problem.
Rotating fingering convection in the regime appropriate for
RGB stars can give rise to the spontaneous formation of large-
scale vortices that greatly enhance transport by channeling
vertical flows. However, that possibility bears a number of
caveats, including the fact that vortex formation in rotating
DNSs appears to depend on the horizontal aspect ratio of the
domain (Julien et al. 2018) and the latitude of the region
considered (Moll & Garaud 2017). Whether rotation is indeed
the solution to the RGB problem therefore remains to be
confirmed.
In this Letter, we investigate an alternative possibility and

account for the effects of magnetic fields. We focus our
attention on the effect of vertical fields (i.e., fields aligned with
the direction of gravity). Section 2 presents the underlying
mathematical model, Section 3 presents a brief linear stability
analysis, and Section 4 presents our numerical results. As we
shall demonstrate, vertical magnetic fields rigidify the fingers
and greatly enhance their vertical transport properties. These
results also hold (at least qualitatively) in the inclined field
case. Section 5 discusses their implications for RGB star
observations, and more generally in stellar astrophysics.

2. Mathematical Model

We consider a small stellar region whose vertical extent is
smaller than a pressure scale height, which allows us to use the
Boussinesq approximation for gases (Spiegel & Veronis 1960).
Using a Cartesian domain, whose z-axis lies in the vertical (z)
direction, the governing equations are

 =· ( )u 0 1
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where = ( )u u u u, ,x y z is the fluid velocity, = ( )B B B B, ,x y z is
the magnetic field, ρm is the mean density of the fluid, g is the
gravitational acceleration, p is the pressure, T is the temperature
field, and C is the compositional field, which can either
represent the mean molecular weight of the fluid, or the
concentration of a particular chemical species. The vertical
adiabatic temperature gradient dT

dz
ad is equal to - g

cp
, where cp is

the specific heat at constant pressure of the fluid. The kinematic
viscosity ν, and the thermal, compositional, and magnetic
diffusivities, κT, κC, and η, respectively, are assumed to be
constant. Here we assume that the magnetic permeability μ0 is
simply that of a vacuum, which is equal to 4π in cgs units.

The equation of state is assumed to be linear over the
domain, such that density perturbations ρ′ with respect to the
mean density ρm satisfy

r
r

a b
¢
= - ¢ + ¢ ( )T C , 7

m

where T′ and C′ are perturbations to their respective back-
ground fields, such that T=Tm+T′ and C=Cm+C′, where
Tm and Cm are constant. This model ignores the effects of
magnetic buoyancy. The coefficients α and β are constants of
thermal expansion and compositional contraction, respectively,
given by
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For both the thermal and compositional fields, we then
assume the existence of a constant background gradient along
the vertical direction, such that
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dT

dz
T , 90

¢ = + ˜ ( )C z
dC

dz
C. 100

In all that follows, we shall assume that T̃ , C̃ , u, and B are triply
periodic in the domain. The standard non-dimensionalization
chosen for fingering convection is based on the length scale d
associated with the width of the fingers, given by (Stern 1960)
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where NT is the local buoyancy frequency based on the
temperature stratification only. The non-dimensional units for
time and the remaining physical variables are then
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where B0 is the reference magnetic field strength. Carrying these
assumptions into the equations, our final, non-dimensionalized
system describing fingering convection in the presence of
magnetic fields is thus given by
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where from here onward, hatted quantities denote non-
dimensional ones and time and space variables have implicitly
been made non-dimensional as well. In Equation (14), êz

denotes the unit vector in the z direction.
The non-dimensional parameters controlling the system are

the Prandtl number Pr, the compositional and magnetic
diffusivity ratios τ and DB, respectively, the density ratio R0,
and the Lorentz force coefficient HB
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In the hydrodynamic limit (HB=0) the density ratio
characterizes the stability of the system. Indeed, as shown by
Stern (1960), a fluid is fingering unstable provided that
1<R0<1/τ. The parameter HB is the square of the ratio of
the Alfvén velocity to the characteristic finger velocity κT/d
used to non-dimensionalize the equations. In both the analytical
work and the numerical simulations that follow, we will vary
this parameter with the goal of testing a variety of field
strengths. We now briefly discuss what ranges of HB values we
might expect in stellar fingering convection.
The typical values of B0 that are likely to occur in stellar

interiors can vary widely both within a given star and between
different stars, depending on the stellar region under con-
sideration. The same is true for the local conditions of the fluid
(and thus the values of the other physical parameters). For
example, fingering convection occurs in RGB stars at the base
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of the convective zone, while in main sequence (MS) and white
dwarf (WD) stars it would occur near the surface following
accretion of planets or debris. We provide order-of-magnitude
estimates of ν, κT, ρm, and d in Table 1, for the regions of MS
stars, RGB stars, and WD stars where fingering convection
could occur. We see for instance that d is indeed always much
smaller than the pressure scale height Hp (hence the
justification of the Boussinesq approximation). Based on these
parameters, we can compute order-of-magnitude prefactors for
HB for these three scenarios, getting
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where all terms in the brackets are provided in cgs units.
We can therefore expect HB = 1 as long as field strengths

are limited to a few hundred G. While this may naively appear
to imply that magnetic effects are irrelevant in stars, we will
demonstrate in Section 5 below that even for situations where
HB is small, the effects of vertical background magnetic fields
can be significant nonetheless. This is because, at stellar
parameters, the actual finger velocities are much smaller than
κT/d (Garaud 2018), so even weak fields can affect them.

In all that follows, we assume the existence of a uniform
background field aligned with the vertical direction, and
consider perturbations b̂ to this background, so that

= +ˆ ˆ ˆ ( )B e b. 23z

This model is consistent since we anticipate that any ambient
magnetic field in a stellar radiative zone would vary on length
scales that are much larger than the finger scale d, which is at
most ∼100 m (see Table 1). The case of arbitrarily inclined
background fields will be studied in detail elsewhere (P. Z.
Harrington & P. Garaud 2019, in preparation). We now
proceed first to analyze the stability of the fluid to infinitesimal
perturbations using linear stability analysis, then study the
nonlinear saturation of the fingering instability in the presence
of a large-scale vertical field in Section 4.

3. Linear Stability

We study the linear stability of the system in
Equations (14)–(18), using triply periodic boundary conditions.

Then, as in the analysis for hydrodynamic homogeneous
fingering convection (e.g., Baines & Gill 1969), perturbations
must be of the form
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=ˆ ( ˆ ˆ ˆ )k k k k, ,x y z is the wave vector, and = ( )x x y z, , .
Linearizing the governing equations assuming that the

perturbations q̂ are small, and substituting the ansatz above,
yields, after some algebra, an equation for the non-dimensional
growth rate l̂ of the form
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We can see immediately that in the hydrodynamic limit

(HB=0), the relation for ordinary homogeneous fingering
convection (e.g., Baines & Gill 1969) is recovered. Interest-
ingly, the same is true for the elevator modes ( =k̂ 0z ), showing
that the fastest-growing fingering modes are unaffected by the
presence of a vertical field. The region of parameter space
unstable to fingering convection therefore remains 1<
R0<τ−1 (as in the non-magnetic case, see Stern 1960). The
only effect of increasing HB, or equivalently, increasing the
background magnetic field strength, is that modes with higher
∣ ˆ ∣kz are suppressed (see, e.g., Charbonnel & Zahn 2007a), but
the fastest-growing modes, which have =k̂ 0z , remain
unchanged.

4. Numerical Simulations

4.1. Simulation Parameters

To study the nonlinear saturation of the fingering instability,
we have modified the triply periodic, pseudo-spectral PADDI
code (Stellmach et al. 2011; Traxler et al. 2011) to include
magnetic fields and solve Equations (14)–(18). The initial
conditions for each simulation have the fluid completely at rest,
under a uniform vertical magnetic field of unit strength (i.e.,

=ˆ ˆB ez), and randomly generated small-amplitude perturba-
tions in the T̂ and Ĉ fields.
The simulations presented here have fixed values of the

governing parameters in Equation (19), except for HB. Realistic
values for Pr, τ, and DB are very small in stellar interiors, and
are numerically unachievable with current technology, so we
choose Pr=τ=DB=0.1 in order to easily compare them
with the existing body of non-magnetic simulations of
fingering convection (e.g., Traxler et al. 2011; Brown et al.
2013; Sengupta & Garaud 2018). The density ratio is chosen to
be R0=1.45, which lies in the region of parameter space fairly
close to standard overturning convection. The suite of
simulations presented here tests a wide range of background
field strengths, with HBä{0.01, 0.1, 1, 10, 100}.
Each simulation has a spectral resolution of 963 Fourier

modes in each coordinate direction (which corresponds to an
effective spatial resolution of 2883 mesh points) for a cubic
domain of size (100d)3, except for the HB=100 run, which

Table 1
Order-of-magnitude Estimates for Various Governing Parameters within the
Expected Fingering Convection Regions of MS Stars, RGB Stars, and WDs

Star Type kT ν rm
= k n⎜ ⎟

⎛
⎝

⎞
⎠d

N

1 4
T

T
2 Hp

MS 107 10 0.1 103.5–104 1010

RGB 109 100 100–0.1 103.5–14.5 1010

WD 102–106 10–100 10–0.1 100.5–101.5 105

Note. The ranges represent values from the lower radius to the upper radius of
the fingering region. Note how, in all cases, d Hp. All units are in cgs.
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quadrupled the vertical extent of the simulation box (and
proportionally reduced the length of the y-direction) in order to
accurately model the highly elongated fingers that arise in
that case.

4.2. Qualitative Results

The qualitative properties of magnetized fingering convec-
tion are illustrated in Figures 1 and 2. As expected from linear
theory, the instability initially grows exponentially at a rate that
is independent of HB, and eventually settles into a quasi-steady,
weakly turbulent state of small-scale fingering convection. As
the strength of the background magnetic field increases via HB,
the fingers become more coherent and elongated along the
vertical direction (see Figure 1). At the same time, the
temperature and compositional fluxes, as well as the rms
vertical velocity, all increase significantly (see Figure 2).

Figure 1 shows visualizations of the vertical component of
the fluid velocity once the fingering convection is in a
statistically steady state. The HB=0.01 case is indistinguish-
able from the non-magnetic case, with fingers that have a
roughly unit aspect ratio. As HB increases, we see an increasing
anisotropy of the fingers, which become coherent over long
vertical distances, as well as a marked increase in their vertical
velocities.

Qualitatively speaking, this can be explained by noting that
increasing the field strength rigidifies the initial fingers vertically
and delays saturation until a much higher rms vertical fluid
velocity is reached. This increase in the vertical velocities within
the fingers causes a substantial increase in the vertical turbulent
compositional fluxes, as measured by the compositional Nusselt
number NuC, defined by

t k
= - á ñ =ˆ ˆ ( )R

u C
D

Nu 1 , 26C z
C

C

0

where á ñ denotes a volume average over the domain and DC is
the effective compositional diffusivity (i.e., the sum of the
microscopic plus turbulent one). Figure 2 shows the evolution
of NuC over time for each of the simulations. We see that
stronger field strengths can significantly enhance the composi-
tional transport by up to a few orders of magnitude compared
with the non-magnetic case.

Also plotted in Figure 2 is the evolution of NuC for a
HB=10 simulation, with a background magnetic field inclined
at 45° from the z-axis. The behavior for arbitrarily inclined
background fields is more complex and is thus saved for a later
work (P. Z. Harrington & P. Garaud 2019, in preparation), but
preliminary results such as this one indicate that equally
significant enhancements of compositional transport rates are
not just attainable, but are to be expected.

5. Quantitative Analysis

We now provide a simple quantitative model for the increase
in thermocompositional fluxes caused by the presence of a
vertical field. Previous work has shown that the mechanism
responsible for saturation of ordinary fingering convection is
the development of a shear instability between adjacent up- and
down-flowing fingers (Radko & Smith 2012; Brown et al.
2013), so an obvious explanation for our results is that the
vertical magnetic field suppresses the shear instability. We now
revisit the Brown et al. (2013) model, and include the effects of
a vertical field.

Figure 1. Visualizations of the vertical fluid velocity component during the post-saturation, statistically stationary state, for runs with HB=0.01 (left), HB=1
(middle), and HB=10 (right). Increasing the strength of the vertical magnetic field (via HB) imparts greater vertical coherence to the fingering structures.

Figure 2. Compositional Nusselt number NuC (see Equation (26)) as a function
of time (in units of the thermal diffusion timescale) in simulations with varying
HB. The dashed purple line shows a case with a background field inclined at
45° from the z-axis, with HB=10, and the black dashed line shows a non-
magnetic simulation (HB=0).

4

The Astrophysical Journal Letters, 870:L5 (7pp), 2019 January 1 Harrington & Garaud



In the hydrodynamic limit, Brown et al. (2013) assumed that
the fingers saturate when the growth rate ŝ of shear instabilities
between up- and down-flowing fingers becomes commensurate
with the growth rate l̂f of the fastest-growing modes of the
basic fingering instability. That problem can be solved
analytically using dimensional analysis, since the growth rate
of the shearing instability must be s µˆ ˆ ˆw lf f , where ŵf is the
velocity in the fingers, and l̂f is their horizontal wavenumber.
Assuming that l s= =ˆ ˆ ˆ ˆC C w lf B B f f , where CB is a universal
constant, then provides an estimate for ŵf , namely

l=ˆ ˆ ˆw C lf f B f . This was verified to hold by Sengupta &

Garaud (2018), who found that »
p

CB
1

2
.

To compute NuC, Brown et al. (2013) then assumed that
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which was fitted against data from numerical simulations to
find that » 49K

C
B

B
2 , which means that KB;1.24.

A vertical magnetic field, on the other hand, stabilizes the
fingers against shear instabilities, so that larger velocities are
required to trigger them. To see this, we studied formally the
stability of a sinusoidal shear flow of the kind ˆ (ˆ ) êw l xsinf f z
(which mimics the flow within the finger elevator modes) in the
presence of a constant vertical field of unit amplitude, by
extending the Floquet analysis of Brown et al. (2013; see their
Appendix A). While the details of this calculation are presented
elsewhere (Harrington 2018), the results are shown in Figure 3.
We find that the growth rate of the shear instability ŝ now
depends sensitively on the non-dimensional number
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( )H
H

w
, 29B

B

f
2

which decreases as the velocity in the fingers increases.
There are two sets of modes unstable to shear—a slowly

growing one, destabilized for * <H 1B , and a rapidly growing
one, destabilized for * <H 0.5B . The relevant threshold is
* =H 0.5B , which corresponds to equipartition between the

kinetic energy of the fingers and the magnetic energy of the
background field (i.e., dimensionally speaking, * =H 0.5B

implies r á ñ =
m

um z
B1

2
2

2
0
2

0
). For *HB below this threshold, the

shear modes have a vertical wavenumber of l̂0.2 f – l̂0.6 f , which
implies that the vertical wavelength of the instability is about
two to five times as long as the horizontal wavelength of the
fingers. We fit the branch with larger growth rate as a function
of *HB , getting
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As in the Brown et al. (2013) model, we then assume that
saturation occurs when ŝ is of the order of the growth rate of
the fingers l̂f , according to
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where CH is a universal constant. By demanding that the
* =H 0B (hydrodynamic) limit reproduces the proportionality

relation l=ˆ ˆ ˆC w lB f f f , we determine that = ( )C 0.42H
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can then express ŵf in terms of HB, yielding a relation that is
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1 2:

l
- =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ

ˆ
ˆ ˆ ( )w H C
l

w0.5
0.42

. 32f B H
f

f
f

2

3 2

1 2

We can immediately see two asymptotic regimes arising
from this relation. The first is for very small HB, where the
velocity in the fingers simply approaches that of the Brown
et al. (2013) hydrodynamic model. However, for very large HB,
the right-hand term becomes negligible and the velocity in the
fingers behaves roughly as =ŵ H2f B , which, as discussed
earlier, corresponds to an exact equipartition between the
magnetic energy of the background field and the kinetic energy
of the fingers. We call this the “magnetically dominated”
regime. The range of values of HB where the transition between
the two regimes occurs thus depends on the growth rate l̂f and
horizontal wavenumber l̂f of the elevator modes, which are in
turn dependent on the governing parameters (Pr, τ, R0).
We can solve Equation (32) numerically for ŵf as a function

of HB for various parameter values, the results of which are
shown in Figure 4. With t= = =DPr 0.1B , and R0=1.45,
as in the numerical simulations, we have l »ˆ 0.147f and
»l̂ 0.666f , and find that the numerical results for á ñûz

2 are well
predicted by ŵf

2 computed from Equation (32). We can see that
the transition between the low- and high-HB regimes for these
parameter values occurs around HB=1.
However, in stellar interiors, the Prandtl number Pr (as well

as τ) can be several orders of magnitude smaller than what we
are able to simulate numerically, and in this t ( )Pr, 1 limit,
we typically have (see Appendix B of Brown et al. 2013)

l
t t -

- -
  ˆ ( ) ( )

R R

Pr 1 1

1

Pr

1
1, 33f

0 0

which means the transition between low- and high-HB regimes
now occurs at a much smaller value of HB. In Figure 4, we have
also solved Equation (32) for l = -ˆ 10f

3 as well as l = -ˆ 10f
5

(keeping =l̂ 0.666f fixed since l̂f remains O(1) in the low-Pr
limit), which are representative values of what we would expect
in a WD or RGB star, respectively. These results show that the
magnetically dominated regime is  -H 10B

4 for WD stars and

Figure 3. Non-dimensional growth rate of the shear instability ŝ as a function
of *HB (blue crosses). The red line shows the fit given by Equation (30).
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 -H 10B
8 for RGB stars. Thus, based on our estimates in

Equations (21) and (22), it is reasonable to expect that fingering
convection in such stars can be significantly affected by
magnetic fields.

Using our model for ŵf
2, we can finally compute the

predicted turbulent compositional flux in magnetized fingering
convection via

t l t
= +

+

ˆ

( ˆ ˆ )
( )K

w

l
Nu 1 , 34C B

f

f

2

2

with the same value of KB as in Brown et al. (2013). The results
are summarized in the right panel of Figure 4, which shows
NuC as a function of HB, for the same three parameter regimes
(numerical simulations, WD stars, and RGB stars).

We find that the value of NuC measured in the statistically
stationary state in all of our simulations is well predicted by our
model. Crucially, we see that NuC scales like HB in the
magnetically dominated regime, which can easily be under-
stood since µ µŵ HNuC f B

2 in that case. This means that NuC
can increase by orders of magnitude depending on the
background field strength. In fact, using Equations (33) and
(28), together with the definitions of d and HB, our model
predicts that the turbulent compositional diffusivity due to
magnetized fingering convection should be equal to

r m

+

-
m

m
 ( )D K

B N N

N N
2 , 35C B

m

T

T

0
2

0

2 2

2 2

where a= -( )N g dT dz dT dzT
2

0 ad is the square of the
temperature-based buoyancy frequency, b= -mN gdC dz2

0 is
the square of the compositional buoyancy frequency (which is
negative since the compositional field is destabilizing), and
where we have assumed that l tˆ l̂f f , which is typically the
case for -R Pr0

1 2. Equation (35) should hold as long as we
remain in the magnetically dominated regime, which, as
discussed earlier, corresponds to the limit  -H 10B

4 in
WDs, and  -H 10B

8 in RGB stars.
Finally, note that the enhancement in the vertical finger

velocity by magnetic fields can also affect heat transport, which
is normally negligible in hydrodynamic fingering convection
(Traxler et al. 2011). We predict using similar arguments that
the equivalent Nusselt number for (potential) temperature

should be

l
= +

+

ˆ
ˆ ˆ

( )K
w

l
Nu 1 , 36T B

f

f

2

2

with a corresponding dimensional heat flux given by

r k r k= - + - -
⎛
⎝⎜

⎞
⎠⎟( )

( )

F c
dT

dz
c

dT

dz

dT

dz
1 Nu .

37

T m p T m p T T
0 0 ad

With Nu 1T , we note the potential for transporting heat
inward, as the right-hand term (which is usually small since
NuT is ordinarily close to 1) can be made significantly negative.

6. Discussion

Our results have obvious implications for the RGB star
abundance problem (Gratton et al. 2000). Figure 4 shows that
even a moderate magnetic field of ∼300 G (for which

~ -H 10B
6) would increase the value of the turbulent mixing

coefficient by two orders of magnitude compared with the non-
magnetic case, which would then be sufficient to explain the
observations (see Charbonnel & Zahn 2007b). Such magnetic
field strengths are not unreasonably large, and would indeed be
likely in RGB stars. Although our numerical results so far have
been limited to the vertical field case, we have also shown that
similar (or even larger) enhancements of the turbulent fluxes
are likely if the field is inclined, so we expect our conclusions
to be robust.
Our results may also help solve another RGB-related

“missing mixing” puzzle. Indeed, since the mixing coefficient
DC depends on the magnetic field strength, which in turn most
likely decreases with increasing radius within the star (e.g., if
the field is of primordial origin, or was created by a dynamo in
a prior core-convective phase), we predict that DC should
decrease sharply with radius away from the hydrogen-burning
shell. This might provide a more natural explanation for the
radially varying mixing coefficient required to explain
concurrent Li and C abundances in carbon-enhanced metal-
poor RGB stars (Henkel et al. 2018).
Beyond RGB stars, we also predict that moderate magnetic

fields could enhance fingering-induced mixing in WD (and
MS) stars, an effect that should be taken into account when
inferring the accretion rate of planetary debris onto the star, for
instance.

Figure 4. Volume-averaged squared vertical velocity á ñuz
2 (left, green squares) and compositional Nusselt number NuC (right, green triangles) as a function of HB from

the simulations. The different lines show the prediction from Equation (32) for l =ˆ 0.147f (black), corresponding to the parameters in the simulations; l = -ˆ 10f
3

(blue), representative of a white dwarf’s fingering convection environment; and l = -ˆ 10f
5 (red), representative of an RGB star’s fingering convection environment.
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