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Abstract

We explore a simple spherical model of optically thin accretion on a Schwarzschild black hole, and study the
properties of the image as seen by a distant observer. We show that a dark circular region in the center—a shadow
—is always present. The outer edge of the shadow is located at the photon ring radius by, = V27 rg, wWhere
r, = GM /c? is the gravitational radius of the accreting mass M. The location of the shadow edge is independent of
the inner radius at which the accreting gas stops radiating. The size of the observed shadow is thus a signature of
the spacetime geometry and it is hardly influenced by accretion details. We briefly discuss the relevance of these
results for the Event Horizon Telescope image of the supermassive black hole in M87.

Unified Astronomy Thesaurus concepts: Black holes (162); Accretion (14); Strong gravitational lensing (1643)

1. Introduction

Recently, the Event Horizon Telescope (EHT) obtained an
ultra-high angular resolution image of the accretion flow
around the supermassive black hole in M87 (The Event
Horizon Telescope Collaboration 2019a, 2019b, 2019¢c, 2019d,
2019e, 20191, hereafter EHT1-6). The image shows a bright
ring of emission surrounding a dark interior (EHT4). The
presence of such a dark central region was predicted by Falcke
et al. (2000), who termed it the “shadow of the black hole.”

The shadow phenomenon is caused by gravitational light
deflection—gravitational lensing—by the black hole. Lensing
by a black hole was studied earlier in the context of an
extended background source (Bardeen 1973) and for a
geometrically thin, optically thick accretion disk (Luminet
1979). When the accretion flow produces radiation all around
the black hole and the gas is optically thin to its own radiation,
Falcke et al. (2000; see also Jaroszyniski & Kurpiewski 1997)
showed that lensing still produces a dramatic signature in the
form of a shadow. They noted that the effect should be visible
in Sagittarius A, the supermassive black hole at the center of
our Galaxy, which is known to have a hot, optically thin
accretion flow. Similar hot accretion flows are found around
many supermassive black holes in the universe (Yuan &
Narayan 2014), including the black hole in M87. All of these
objects are natural candidates to reveal shadows in their
images. The discovery by the EHT of a shadow-like feature in
the image of MS87 is thus verification of a fundamental
prediction of general relativity in the regime of strong lensing.

As described in many previous studies, the outer edge of the
shadow in a black hole image is located at the “photon ring,”
which is the locus of rays that escape from bound photon orbits
around the black hole to a distant observer. The photon ring, as
defined here, was called the “apparent boundary” by Bardeen
(1973) and the “critical curve” by Gralla et al. (2019). The
latter authors questioned whether the EHT did in fact see a
shadow surrounded by the photon ring in M87; they presented
some models in which the details of the accretion flow seemed
to matter more than any particular relativistic phenomenon
such as the photon ring.

In this Letter we use a simple spherical model of black hole
accretion to study the properties of the shadow and the photon
ring. After some preliminaries in Section 2, we discuss in
Section 3 a Newtonian model to clarify the notion of the
shadow of an optically thin accretion flow in flat space. We
then consider in Sections 4 and 5 two general relativistic
models that use the Schwarzschild spacetime. We show that the
shadow is a robust feature of these latter models and that its
size and shape are primarily influenced by the spacetime
geometry, and not by details of the accretion. We conclude in
Section 6 with a discussion.

2. Terminology and Notation

We consider spherical accretion on a gravitating object of
mass M. We use r, = GM /c? as our unit of length and ¢* as our
unit of energy. In the case of the Newtonian model (Section 3),
we take the radius of the central mass to be 2r, and assume flat
spacetime exterior to the surface. We also assume that any light
rays that fall on the surface are completely absorbed.

For the general relativistic model (Sections 4 and 5), we
consider a Schwarzschild black hole with spacetime metric

ds* = g, dt* + g, dr* + r’d0? + r?sin’0 d¢?, (1)

where ¢ is time, r is radius, and
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The horizon of the black hole is at » = 2, and the spacetime has
an unstable circular “photon orbit” at radius

Tph = 3. 3)

A finely tuned photon at the photon orbit could, in principle,
orbit the black hole an infinite number of times. However, since
the orbit is unstable, any slight perturbation would cause the
photon either to fall into the black hole or to escape to infinity.
The photons that escape are seen by a distant observer to have
an impact parameter b, with respect to the mass M, where

bpn = 27 ~5.2. 4
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We refer to the circle in the observer’s sky with radius by,
centered on M, as the “photon ring.”

3. Newtonian Model

In Newtonian gravity, the potential energy of accreting gas
varies with radius r as —1/r. Hence, we consider the following
physically reasonable model of the power per unit volume Py
(erg cm—3 s~!) radiated by the gas:

Px(r) = r>=2. 5)

4mrt’
This is bolometric power, integrated over frequency. The total
luminosity Len;(r) emitted between radius r and infinity is

Lanir) = [ Pt 4’ = © (©)
r r
i.e., proportional to the total potential energy drop from infinity
to r, as is reasonable for accretion. The luminosity of an
accretion flow depends of course on the mass accretion rate, so
we ought to multiply Py by a proportionality constant.
However, under the fully optically thin conditions we consider
in this Letter, none of the results depend on the constant, so for
simplicity we ignore it. The emission coefficient per unit solid
angle jy (erg cm 3 s~ ! ster™!) in this model is
Py(r)y 1

4r(ster) 1674’

Since the gas is optically thin, rays can travel arbitrarily large
distances without being absorbed or scattered. However, not all
of the emitted radiation escapes to infinity; any ray that
intersects the “surface” of the central object at r =2 is
absorbed and lost. In the Newtonian approximation considered
in this section (flat space), rays travel in straight lines. Hence,
for radiation emitted at radius r, the solid angle corresponding
to rays that are lost is 27w (1 — cos#), while that of rays that
escape to infinity is 27 (1 + cos ), where sind = 2/r. Thus,
the net luminosity observed at infinity is

_ <. 4 2
LOC_L NG 27r[1 v - r—2]47rr dr

_Ly T ous (8)
4 16
We are interested in the image that a distant observer, located
say on the z-axis, would see. For this, we compute the observed
intensity I(b) (ergcm~2s~!'ster™!) as a function of impact
parameter b. For b > 2, this is given by

I(b)=ffojN(«/b2+z2)dz= ! b>2, (9

327b3°

while for smaller impact parameters it is given by

Jn@) = r>=2. 7

1(b) = fm (B + 22)dz
A — 12
- tan~—! b _ N4 b,b<2.
32723 Ny 1287252
(10)

The black curve in Figure 1 shows the radial intensity profile
I(b) for this Newtonian model, and the left panel in Figure 2
shows the two-dimensional image seen by a distant observer.
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Figure 1. Left: the intensity profile I(b) as a function of the impact parameter b
as seen by a distant observer for a spherically symmetric problem. The curves
correspond to the Newtonian model (black), Schwarzschild spacetime with
radiating gas at rest (green), and Schwarzschild spacetime with radially
freefalling gas (red). Right: the two Schwarzschild models shown on an
expanded vertical scale.

The intensity increases monotonically with decreasing impact
parameter as 1/b°, until it reaches a maximum value equal to
1/2567 at the edge of the central object (b =2). Inside this
critical impact parameter, the intensity drops suddenly by a
factor of 2 since the line of sight terminates on the surface of
the central mass and one no longer sees emission from the far
side. It then continues to decrease inward and reaches a value
of 1/3847% ~2.64 x 10°* at b = 0. The intensity at the
center is 4.7 times lower than the peak intensity at b = 2.

The dark region inside b = 2 is what we term the “shadow”
in the image. It is not a totally dark shadow with zero intensity,
such as would be observed if the radiating gas were entirely
behind the mass. Since we have radiating gas all around the
mass, the image has some intensity even for lines of sight that
intersect the surface of the central mass. Nevertheless, the
shadow is a distinct feature. Its radius is well defined and could
be measured by a distant observer with sufficiently good
angular resolution. In this Newtonian problem, the shadow has
a radius equal to 2.

4. Schwarzschild Spacetime with Gas at Rest

We now carry out a general relativistic analysis for a
Schwarzschild black hole. In this section, we assume that the
radiating gas is at rest. As in the Newtonian model, we assume
that the net emitted luminosity between r and infinity is 1/r
(this is approximate, but is good enough for our purposes). To
translate to the power per unit volume Pg(r) emitted in the
proper frame of the gas, we note the following: (i) The proper
length corresponding to the coordinate interval dr is /g, dr. (ii)
Every unit of energy emitted in the local frame at r corresponds
to /=g, units of energy at infinity. (iii) A time interval dr in
the local frame corresponds to an interval df/,/—g, at infinity.
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Figure 2. Image seen by a distant observer for the same models as in Figure 1: Newtonian model (left), Schwarzschild spacetime with gas at rest (middle), and

Schwarzschild spacetime with radially infalling gas (right).

In view of these scalings, a natural choice for Pg, as well as the
emission coefficient per unit solid angle js, is the following:

1

|gn|\/grr47rr4
1

r

=4mjs(r), r> 2. arn

Ps(r) =

The precise functional form and the normalization are
unimportant for what follows. The only virtue of the particular
choice made here is that it enables easy comparison with the
Newtonian problem discussed in Section 3. For instance, the
net emitted luminosity in this model, measured at infinity, is

Lo = [ I PsG dmr? fgrar = =, (12)
r r

the same as in the Newtonian problem.

As before, only a fraction of the radiation emitted at any given r
escapes to infinity. The solid angle of the escaping rays is equal to
27(1 + cos ) for r > 3 and 2w (1 — cos ) for r < 3, where 6
is given by* (we use the solution for which 0 < 6 < 7/2)

3/2 1/2
sinf = 3—(1 — %) . (13)

r r

Counting only escaping rays, the net luminosity observed at
infinity is
Ly = 9 ~ 0.32. 14)
60

This is about 70% of the luminosity at infinity in the Newtonian
problem. The reduced luminosity is because of gravitational
deflection of light rays, which causes a larger fraction of the
emitted radiation at any r to be captured by the black hole.

To calculate the intensity profile I(b), we need a ray-tracing
code (we use the code described in Zhu et al. 2015; Narayan et al.
2016). The result is shown by the green curves in Figure 1, as well
as the 2D image in the middle panel of Figure 2.

4 This result can be obtained by using the fact that the critical rays that barely
escape have specific angular momentum equal to that of the photon
Ol"bitj |kc‘)/kt|cril = Iko/ktlph = \/27

5 The results presented here are most readily verified in a fully covariant
treatment of radiative transfer using a separable plasma-frame emissivity
Js(r) @, where [dug, = 1.

Qualitatively, the image in this general relativistic model is
similar to the previous Newtonian image, with intensity
increasing rapidly with decreasing b, reaching a peak at a
finite b, and then dropping to lower values inside the peak.
However, there are important differences. First, the peak is not
at b = 2, the radius of the inner edge of the emitting gas, but is
at the radius of the photon ring by, which corresponds to the
lensed image of the photon orbit r,,. Thus, the shadow is
significantly larger than in the Newtonian case. Second, the
peak intensity at b = by, technically goes to infinity. This is
because it is possible for rays with b = b}, to make an infinite
number of orbits around the black hole and to collect an
arbitrarily large intensity®; because of numerical limitations, the
actual computed intensity never goes to infinity. In any case,
the divergence of the intensity at the photon ring is only
logarithmic (Gralla et al. 2019; Johnson et al. 2019; but similar
results go back many years, e.g., Darwin 1959; Luminet 1979),
so the excess flux due to this divergence is small. Finally, the
central intensity /(b = 0) is only 25% of that in the Newtonian
problem: 1/15367% ~ 6.60 x 10>

5. Schwarzschild Spacetime with Infalling Gas

We now consider a more realistic model of an accreting
Schwarzschild black hole: we allow the radiating gas to move
in toward the black hole, as in a real accretion flow. In the spirit
of our spherical model, we assume that the motion is purely
radial. To make a specific choice for the radial velocity, we
assume that the gas freefalls on to the black hole from infinity.
Thus, we set u, = —1, which corresponds to a velocity
8= \/Z_/r and Lorentz factor (1-2/ r)_l/ 2 as measured by an
observer at rest at radius r. For simplicity, we take the radiation
power and emission coefficient, as measured in the rest frame
of the infalling gas, to be the same as in Equation (11).

The ray-traced intensity profile I(b) corresponding to this
model is shown by the red curves in Figure 1, and the 2D
image seen by a distant observer is shown in the right panel in
Figure 2. As before, the intensity increases toward smaller b,
reaches nearly infinite intensity at b = by, and then drops in
the interior. A major new feature is that, because of inward gas
motion, radiation that is emitted isotropically in the rest frame
of the gas is beamed radially inward in the Schwarzschild
frame. The beaming is especially large at small radii. Thus, a
larger fraction of the radiation is lost into the black hole. The

6 This is true under the assumed optically thin conditions. In reality, the
intensity is limited to a finite maximum value because of optical depth effects.
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Figure 3. Example geodesics for a Schwarzschild black hole. Color indicates
the effective emissivity along the ray for the case of radial infall, including
Doppler effects. Rays are shown for impact parameters of » = 0-10 in steps of
unity, with additional rays shown from b = 4.8 to 5.6 in steps of 0.2 to
highlight contributions near byp,. The color scale is linear.

effect is particularly strong in the shadow region, which is now
significantly darker than in the previous two models. For
instance, I(b = 0) in this model is ~4.16 X 1076, which is a
factor ~16 less than when the gas is at rest.

Figure 3 shows the emissivity contributions along represen-
tative null geodesics that travel toward an observer located to
the far right of the plot. Doppler beaming causes portions of the
geodesics that are moving in toward the black hole to be
significantly brighter than those moving outward. Because rays
with b < by, are always moving outward while those with
b > by, always have both an inward and an outward segment,
Doppler beaming causes a significant jump in the observed
image brightness at the edge of the shadow (rays with b > by,
are much brighter than equivalent rays with b < byy,). This
explains why the shadow in the right panel in Figure 2 is so
much deeper than that in the middle panel. For the same reason,
as we show below, one obtains a deep shadow even if there is
no emitting material at or near the photon orbit, rp, = 3.

To the extent that, among the various spherical models
considered in this Letter, the model with infalling gas comes
closest to a radiatively inefficient accretion flow in a low-
luminosity black hole, the shadow we compute in this section
may be viewed as the best analog of the image observed in
M87 (EHT4).

The most striking feature of the two relativistic model
images in Figure 2 (middle and right panels) is the fact that the
radius of the shadow is determined by the photon ring by,
which is a geometrical property of the spacetime. It is not
determined by the inner radius of the radiating gas, which is
located at the horizon, r, = 2. Effectively, the spacetime
geometry and lensing of photon trajectories erases details of the
accretion flow at small radii, and imposes on the observed
image a unique signature that reflects the properties of the
spacetime.

To emphasize this point, we show in Figure 4 ray-traced
images for six different models, all of which have radially
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infalling gas in Schwarzschild spacetime. The top left panel
corresponds to the model we just described, in which the gas
radiates all the way down to the horizon: ry, = 2. In the
remaining five models the emission is cutoff at progressively
larger inner radii: r, = 2.5, 3, 4, 5, 6. The first two of these
models, in which the inner edge is inside the photon orbit 7y,
have images that are virtually indistinguishable from the initial
model (they have slightly darker shadows, though it is hard to
tell visually; see Figure 5). The remaining models, in which
Yin > Tpp, show a weak feature in the image at the lensed
location of r;,. However, the most prominent feature in all six
models is the dark shadow in the middle. In each case the outer
edge of the shadow is located at the radius of the photon ring
bpn. The spherical accretion model thus provides a class of
counterexamples to the strong claim by Gralla et al. (2019) that
the size of the shadow is very much dependent on the emission
model.

The behavior of the image in the spherical model differs
from that of geometrically thin disks, where the disk inner edge
can have a prominent signature in the image, especially if the
edge is outside the photon orbit (e.g., see Luminet 1979).
However, the thin disk model is quite implausible for M877 or
other low-luminosity galactic nuclei, which are known to
contain geometrically thick hot accretion flows (Yuan &
Narayan 2014).

6. Discussion

The main result of this Letter is that, for a spherically
symmetric general relativistic (Schwarzschild spacetime)
accretion model with optically thin gas, the concept of a
shadow in the image is robust. The shadow is circular, and its
outer edge is located at the photon ring radius b,,, which is
uniquely determined by the spacetime metric. The outer radius
of the shadow does not depend on the details of the accretion
flow. In particular, the location of the inner edge ry, of the
radiating gas has very little effect. We demonstrate this in
Figures 4 and 5, where we consider models from r;, = 2 (the
radius of the horizon) to r;, = 6 (the radius of the innermost
stable circular orbit). We find that the shadow has an identical
size in all the models.

The intensity contrast between the interior of the shadow and
the emission just outside b,, depends on details of the
accretion. The contrast is not large when the gas is stationary,
but it is quite dramatic when the gas has a large inward radial
velocity (compare the middle and right panels in Figure 2).
Real accretion flows have inward motions, and the radial
velocity tends to be large precisely at the radii of interest for
shadow formation. Hence, the model with radially infalling gas
is most appropriate for comparison with the image of M8&7.

Real accretion flows are not spherically symmetric. The hot
accretion flow in Sagittarius A*, M87, and most other galactic
nuclei consists of a geometrically thick, quasi-spherical disk
(Yuan & Narayan 2014), whose characteristics lie somewhere
between the pure spherical model considered here and the
geometrically thin disks considered in earlier work (e.g.,
Luminet 1979; Gralla et al. 2019).

Real black holes are also expected to have nonzero spin. We
did not consider spin because the corresponding Kerr spacetime

7 Gralla et al. (2019) give one such implausible model for M87, a thin disk

terminating at the innermost stable circular orbit of a Schwarzschild black hole.
This is their only example in which the “effective radius” of the image is
significantly larger than the photon ring.
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Figure 4. Image seen by a distant observer for radially infalling gas in Schwarzschild spacetime. The emission is cut off at different inner radii r;, in the various panels,
extending from ry,, = 2 (top left) to r;,, = 6 (bottom right). All panels use a linear color scale from 0 to 107 (see Figure 2).
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Figure 5. Intensity profile /(b) as a function of the impact parameter b for the
models with radially infalling gas in Schwarzschild spacetime and varying
emission cutoff radius r;,, as shown in Figure 4. In all cases, the radius of the
shadow (the dark central region) is equal to by, =~ 5.2.

is not spherically symmetric, which complicates the model.
Analysis of emission profiles of semi-analytic models of
radiatively inefficient accretion flows around spinning black
holes, beginning with Jaroszyriski & Kurpiewski (1997),
produce qualitatively similar results (see their Figure 3,
noticing that the brightness profiles are averaged over position
angle). More broadly, our simplified spherical model captures
key features that also appear in state of the art GRMHD models
(EHTS), whether they are spinning or not: (1) close in, the
emissivity rises almost monotonically inward toward the
horizon; (2) infall at r ~ 2GM /c? leads to Doppler beaming
of the emission toward the horizon, resulting in (3) low surface
brightness on lines of sight that intersect the horizon: the
shadow of the black hole.

An important observable signature that constrains non-
spherical models is the presence of angular momentum in the
accreting gas. This causes a Doppler asymmetry in the intensity
distribution around the ring of emission outside the shadow. An
azimuthal brightness asymmetry exceeding 2:1 is clearly seen
in the observed image of M87 (EHT4) and also in model
images based on GRMHD simulations (EHTS). Because M87
is viewed largely pole-on (the inclination angle is estimated to
be 17°; see Walker et al. 2018), the brightness asymmetry from
rotation in a disk is relatively weak.
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Another feature of real accretion that is not captured by our
spherically symmetric model is the presence of outflows. Hot
accretion flows tend to have inward accretion in more
equatorial regions and outflows closer to the poles. Indeed,
MS87 has a powerful jet, which extends out to very large
distances (Walker et al. 2018). At radii of interest to us
(r ~ few), the outward gas velocity in the polar regions is
expected to be subrelativistic; in fact, if these radii are inside
the “stagnation surface,” the gas may even be flowing in toward
the black hole (e.g., Pu et al. 2017). Regardless, the Doppler
deboosting that causes the shadow to be so dark in our radial
infall models (Figure 4) will be less pronounced or even absent
in the polar regions. This might cause the contrast between the
shadow and its exterior to be less pronounced (examples may
be seen in EHTS).

Another practical matter is that observations never have the
infinite angular resolution needed to identify precisely the edge
of the shadow. With a finite resolution, one sees a blurred
version of the image, where the emission ring one observes
outside the shadow is a convolution of the intrinsic image
intensity distribution /(b) and the point-spread function of the
measurements. This often causes the peak of the ring to shift
outward to a somewhat larger radius (by about 10%) than the
photon ring radius byy,. This effect and its uncertainties can
be quantified using simulations, and EHT6 included it in the
estimation and error budget for the mass of the black hole
in M87.

Because our interest in this Letter is the shadow, we focused
only on the role the photon ring plays as the location where the
shadow terminates. Another property of the photon ring is that
it is a place where the image intensity can become large. An
enhancement of the observed intensity happens whenever there
is radiating gas in the vicinity of the photon orbit r,p, and the
gas is optically thin. This effect is seen, for instance, in the
green and red curves in Figure 1, in the three models with
Fin = 2, 2.5, 3 in Figure 5 (but not the other three models), and
also in simulation images in EHTS. The integrated excess flux
in the sharp intensity peak is not very large because the
divergence is only logarithmic. However, the sharpness of the
peak produces a strong and robust signature in Fourier space,
opening up the possibility of making precise measurements of
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the photon ring with very long baseline interferometry in space
(Johnson et al. 2019).
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