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Alzheimer’s disease (AD) is the most common form of dementia, affecting two-thirds
of people with dementia in the world. To date, no disease-modifying treatments are
available to stop or delay the progression of AD. This chronic neurodegenerative disease
is dominated by a strong innate immune response, whereby microglia plays a central role
as the main resident macrophage of the brain. Recent genome-wide association studies
(GWASs) have identified single-nucleotide polymorphisms (SNPs) located in microglial
genes and associated with a delayed onset of AD, highlighting the important role of these
cells on the onset and/or progression of the disease. These findings have increased
the interest in targeting microglia-associated neuroinflammation as a potentially disease-
modifying therapeutic approach for AD. In this review we provide an overview on the
contribution of microglia to the pathophysiology of AD, focusing on the main regulatory
pathways controlling microglial population dynamics during the neuroinflammatory
response, such as the colony-stimulating factor 1 receptor (CSF1R), its ligands (the
colony-stimulating factor 1 and interleukin 34) and the transcription factor PU.1. We also
discuss the current therapeutic strategies targeting proliferation to modulate microglia-
associated neuroinflammation and their potential impact on peripheral immune cell
populations in the short and long-term. Understanding the effects of immunomodulatory
approaches on microglia and other immune cell types might be critical for developing
specific, effective, and safe therapies for neurodegenerative diseases.
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Abbreviations: AD, Alzheimer’s disease; GWASs, genome-wide association studies; Aβ, amyloid-β; LOAD, late-onset
AD; EOAD, early-onset AD; SNPs, single-nucleotide polymorphisms; CSF1R, colony-stimulating factor 1 receptor; ALS,
amyotrophic lateral sclerosis; CSF-1, colony-stimulating factor 1; IL-34, interleukin 34; TGFβ-1, transforming growth
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
and the most common form of dementia in the world,
contributing to 60–70% of cases. It is estimated that currently
over 50 million people are affected by dementia worldwide,
according to the World Health Organisation and the recent
report published by Alzheimer’s Disease International (ADI;
Alzheimer’s Disease International, 2019). The total number of
people with dementia is predicted to reach 82million by 2030 and
152 million by 2050, causing an estimated economic burden
of two trillion US$ globally (Alzheimer’s Disease International,
2019). AD is mostly diagnosed in people over 65 years-old,
termed as late-onset AD (LOAD), with around 5% of AD cases
being diagnosed in individuals under the age of 65, classified as
early-onset AD (EOAD; Mendez, 2012). Despite these alarming
figures, no disease-modifying treatment is currently available and
the cause of sporadic AD is still unclear.

Clinically, AD manifests as a gradual decline in cognitive
functions including loss of memory, dyspraxia, disorientation,
and aphasia, accompanied by behavioral changes such as
irritability, aggressiveness, anxiety, and social withdrawal
(Atri, 2019). Patients are usually diagnosed based on cognitive
assessments, assuming that AD neuropathologic changes
will be found post-mortem. However, from 10% to 30%
of patients clinically diagnosed as AD do not show AD
neuropathological changes at autopsy (Jack et al., 2018),
suggesting that cognitive symptoms are not the ideal method
to diagnose AD. According to the updated National Institute
of Aging and Alzheimer’s Association Research Framework,
AD should be diagnosed by the detection of biomarkers
indicative of neuropathologic changes, independently of
clinical symptoms (Jack et al., 2018). This characterization is
possible using PET imaging and/or assessment of biomarkers
present in cerebrospinal fluid (Jack et al., 2018), although these
methods are not currently being used broadly for individuals
with symptoms, instead of limited to early-onset, rapidly
progressive or atypical cases (Atri, 2019). The main features
of the pathology of AD are the accumulation of extracellular
amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles
of hyperphosphorylated Tau, dystrophic neurites, neuronal
loss and brain atrophy (Gjoneska et al., 2015). In the last
decades, several hypotheses have been explored to explain the
pathogenesis of AD, being the amyloid cascade hypothesis
the prevailing mechanistic theory so far. This hypothesis
postulates that the neurodegeneration in AD is caused by
an abnormal accumulation of Aβ protein plaques in several
regions of the brain, such as the pre-frontal cortex, temporal and
parietal lobe, and hippocampus, causing memory and cognitive
impairment and eventually leading to dementia (Hardy and
Higgins, 1992; Karran et al., 2011). Many drugs targeting this
pathway have been developed and entered clinical trials in
recent years. However, none of these therapies have yet been
successful in preventing the development or progression of
the disease. This is possibly due to the existence of alternative
pathways that are disrupted in AD and not directly considered
in the amyloid cascade hypothesis, which present a high

therapeutic potential as alternatives or in combination with the
current strategies.

Neuroinflammation associated with AD was long
considered a consequence of the pathology. However, it is
now well accepted that neuroinflammation is a key player
in several neurodegenerative diseases, including AD. The
neuroinflammatory process that takes place in these diseases
is characterized by strong activation of the innate immune
system, in which microglia plays a central role as the main
resident macrophages in the brain (Simon et al., 2019).
Microglia can respond to harmful stimuli in the brain
including Aβ proteins, acting as the main regulators of the
neuroinflammatory response associated with brain disease
(Gomez-Nicola and Perry, 2015). In response to damage,
microglia shows an activated phenotype accompanied by
an increase in their proliferation and increased expression
of inflammatory markers (Olmos-Alonso et al., 2016). This
activation process is critical and postulated to play a beneficial
role in the acute neuroinflammatory response, resulting
in the engulfment of debris and dead cells to minimize
and repair the brain damage (Cai et al., 2014; Calsolaro
and Edison, 2016). However, the sustained activation of
microglia observed in neurodegenerative diseases leads to a
chronic neuroinflammatory response and an overproduction of
inflammatory mediators, such as pro-inflammatory cytokines
and reactive oxygen species, which are known to cause damage
and neurodegeneration (Cai et al., 2014; Lyman et al., 2014;
Calsolaro and Edison, 2016). The generated damage keeps
microglia in an over-activated state, thus preventing these cells
from returning to their homeostatic and beneficial functions
and worsening the disease. It has been shown that TREM2 is
critical in regulating the balance between the homeostatic
and the disease-associated microglial states (Nichols et al.,
2019), stimulating phagocytosis and suppressing cytokine
production and inflammation (Guerreiro et al., 2013). Genetic
studies have recently identified mutations of this receptor
strongly associated with the risk of AD (Guerreiro et al.,
2013; Jonsson et al., 2013), supporting the idea of a causative
link between inflammatory cells and neurodegeneration. It
has been suggested that non-steroidal anti-inflammatories
have a protective role in the onset or progression of AD
(Hoozemans et al., 2011), although most clinical trials to
date have failed to show this beneficial effect. However, this
idea is strongly supported by recent genome-wide association
studies (GWAS), which have identified new single-nucleotide
polymorphisms (SNPs) in immune-related genes associated
with AD risk, such as the above-cited Trem2 (Efthymiou and
Goate, 2017; Huang et al., 2017; Hansen et al., 2018; Verheijen
and Sleegers, 2018). Most of these SNPs encode for proteins
that are mainly expressed in microglia, strongly supporting a
causal involvement of microglial cells in the development and
progression of AD. These findings have attracted the effort
of drug discovery programs aimed at targeting microglia-
associated neuroinflammation as a potentially disease-modifying
therapeutic approach for AD. In this review, we provide an
overview of the main pathways controlling microglial activation
and proliferation during the neuroinflammatory response
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and their contribution to the pathophysiology of AD. We
also summarize the current therapeutic strategies to modulate
microglial-associated neuroinflammation through targeting
proliferation and highlight their potential impact on other
immune cell populations in the systemic compartment.

REGULATION OF MICROGLIAL
PROLIFERATION AND
NEUROINFLAMMATION IN
HEALTH AND AD

In recent years, GWAS studies have identified over 25 genetic
loci associated with risk of LOAD, many of them related
to neuroinflammation and mainly expressed in microglial
cells, such as ApoE, Spi1, and Trem2 (Corder et al., 1993;
Guerreiro et al., 2013; Jonsson et al., 2013; Huang et al.,
2017). These findings directly implicate microglial and
immune genes as key players in the development and
progression of AD (Efthymiou and Goate, 2017). The
neuroinflammatory response in AD is characterized by the
increased number of microglia cells showing an activated
phenotype (Akiyama et al., 2000; Edison et al., 2008; Heneka
et al., 2015; Olmos-Alonso et al., 2016), increased expression of
pro-inflammatory cytokines and chemokines (Dickson et al.,
1993; Fernández-Botrán et al., 2011) and an impairment in
their phagocytic activity and Aβ clearance (Cai et al., 2014;
Wendt et al., 2017).

Targeting CSF1R in AD
The main system controlling the differentiation, maintenance,
and proliferation of microglia in both healthy and pathological
conditions is the colony-stimulating factor 1 receptor (CSF1R)
pathway. CSF1R is encoded by the c-fms proto-oncogene
(Sherr et al., 1985) and belongs to the type III tyrosine
kinase family (Pixley and Stanley, 2004). This receptor is
highly expressed by myeloid cells and its activation through
the phosphorylation of the tyrosine residues stimulates many
downstream signaling pathways (Pixley and Stanley, 2004;
Stanley and Chitu, 2014; Wang and Colonna, 2014; Rojo
et al., 2017). CSF1R genetic variants have been found
by genetic screening in neuropathologically confirmed AD
patients and these mutations are strongly associated with
LOAD susceptibility (Sassi et al., 2018). Moreover, CSF1R
upregulation and an increase in microglial proliferation have
been found in post-mortem samples from patients with AD
(Akiyama et al., 1994; Gomez-Nicola et al., 2013; Olmos-Alonso
et al., 2016). Studies published by our group showed that
microglial proliferation increases progressively in proximity to
Aβ plaques in the APP/PS1 murine model of AD, suggesting
that microglial activation and proliferation is triggered by
Aβ deposition (Olmos-Alonso et al., 2016). It has also been
shown that the pharmacological inhibition of the tyrosine
kinase (TK) activity of CSF1R decreases microglial proliferation
and impedes the degeneration of synapses, ameliorating the
progression of the disease without modifying the levels of
Aβ in the APP/PS1 model (Olmos-Alonso et al., 2016).
Similar effects have been also shown in several experimental

models of neurodegenerative disease, including prion disease
(Gomez-Nicola et al., 2013) and amyotrophic lateral sclerosis
(ALS; Martinez-Muriana et al., 2016). These results are also
observed after the administration of a potent CSF1R inhibitor
leading to partial depletion of the microglial population
in the 3xTg (Dagher et al., 2015) and 5xFAD models
(Spangenberg et al., 2016; Sosna et al., 2018) of AD-like
pathology. Microglial depletion strategies were also tested in
aged Tg2510 mice with no effect on tau pathology (Bennett
et al., 2018). However, a recent study from our group has
validated the inhibition of CSF1R as a disease-modifying
mechanism in the P301S mouse model of tauopathy. This
report demonstrates that inhibition of CSF1R reduces the
expansion of the microglial population and the expression
of pro-inflammatory cytokines such as IL-1β and TNFα at
mRNA and protein levels (Mancuso et al., 2019). Blockade of
microglial proliferation and the repolarization of these cells
to a homeostatic phenotype attenuate neuronal degeneration
and ameliorate tau pathology (Mancuso et al., 2019). This
repolarization of the microglial inflammatory profile to a
homeostatic phenotype has been also observed after the
inhibition of CSF1R in the APP/PS1 model of AD (Olmos-
Alonso et al., 2016) and other models of neurodegenerative
diseases such as multiple sclerosis (Nissen et al., 2018) and a
model of Parkinson’s disease (PD; Neal et al., 2020). Together,
these studies provide evidence that reducing the number of
microglia, or depleting them, have advantageous consequences,
independently of the Aβ load, demonstrating that a disease-
modifying approach for AD is achievable through targeting
microglia alone.

Two independent ligands can activate CSF1R with high
affinity, the colony-stimulating factor 1 (CSF-1; Stanley and
Heard, 1977), and interleukin 34 (IL-34; Lin et al., 2008). Both
ligands have been shown to promote microglial proliferation
(Gomez-Nicola et al., 2013) but also show differential
spatiotemporal expression patterns and have complementary
biological functionality (Nandi et al., 2012; Wang et al., 2012).
Mice lacking IL-34 (Il34LacZ) displayed an acute reduction
of microglial cells in the brain and Langerhans cells in the
skin, showing that IL-34 is crucial for the development and
maintenance of these populations (Greter et al., 2012; Wang
et al., 2012). However, the administration of anti-CSF-1 and
anti-IL-34 antibodies during development or in postnatal
ages revealed that CSF-1 is necessary for the colonization and
maintenance of microglia population in the embryonic brain,
whereas IL-34 is mainly required for microglial maintenance
later during adult life (Easley-Neal et al., 2019). In adulthood,
CSF-1 is widely expressed and produced by many different
mesenchymal and epithelial cell types (Dai et al., 2002;
Jones and Ricardo, 2013), whereas the expression of IL-34
is more tissue-restricted, mainly produced by keratinocytes
located in the epidermis and neurons in the brain (Wang
and Colonna, 2014), showing minimal overlap with the
expression pattern of CSF-1 (Wei et al., 2010; Nakamichi
et al., 2013). The role of IL-34 and CSF-1 in the maintenance
of microglial cells during adulthood has been investigated in
several studies during recent years. IL-34 was first shown to be
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required for the maintenance of microglia in the adult brain,
whereas CSF-1 seemed to be mainly involved in replacing
microglial cells after inflammation (Greter et al., 2012; Wang
et al., 2012). However, two recently published reports have
shown different effects on the microglia population after
peripheral administration of specific anti-IL-34- and anti-
CSF-1- monoclonal antibodies in adult mice. In the first
one, Lin et al. (2019) conclude that IL-34 is crucial for the
maintenance and differentiation of microglial cells in the
gray matter of adult mice, whereas CSF-1 is a key player in
maintaining macrophage homeostasis in several peripheral
tissues such as colon and liver. However, Easley-Neal et al.
(2019) show that the blockade of both molecules leads to the
depletion of different microglia populations in the brain of
adult mice. The anti-CSF-1 blocking antibody depleted the
microglia located in the white matter more effectively, while
the anti-IL-34 blocking antibody depleted the microglia in
the gray matter more efficiently, phenocopying the regional
expression pattern of each ligand (Easley-Neal et al., 2019).
Taking together, all this evidence suggests that CSF-1 and IL-34
are required differentially during development and for the
maintenance of the microglial population in the adult brain.
In AD and AD-like transgenic mice, CSF-1 was shown to be
upregulated and played an essential role in the proliferation
of microglia occurring as a consequence of the pathological
activation in disease (Murphy et al., 2000; Vincent et al., 2002).
Regarding IL-34, Mizuno et al. (2011) showed that IL-34-
treated microglia attenuates the neurotoxic effects of Aβ in
neuron-microglia co-cultures by promoting microglial uptake
and metabolism of Aβ. The neuroprotective role of IL-34 in
this system seemed to be regulated by transforming growth
factor β-1 (TGFβ-1). The inhibition of the TGFβ-1 receptor
results in an increased microglial proliferation driven by IL-34
and the suppression of the observed neuroprotective effect
of IL-34-treated microglia. These observations suggest that
TGF-β produced by these cells acts as a negative regulator of
microglial proliferation, improving the neuroprotective feature
of microglia (Ma et al., 2012). In the APP/PS1 model of AD, the
administration of IL-34 in the brain ameliorates the impairment
of associative learning (Mizuno et al., 2011). These studies
provided evidence that modulation of these cytokines may
also be an approach to control the microglia population in the
context of neurodegenerative diseases, as an alternative method
to CSF1R modulation.

Role of PU.1 in the Modulation of
Microglial Proliferation and Activation
The transcription factor PU.1 is also an important player in
the development, proliferation, and maintenance of microglia.
PU.1, encoded by the gene Spi1, belongs to the ETS-family
of transcription factors and is a master regulator of myeloid
and lymphoid development and function (Scott et al., 1994;
McKercher et al., 1996; Dakic et al., 2005). This transcription
factor binds to a purine-rich DNA sequence (PU.1-box) located
upstream of the promoter of its targets and activates the
expression of a great number of downstream genes (Pham
et al., 2013). PU.1 is necessary for the correct development

and functional maintenance of the microglial population since
it is continuously expressed from erythromyeloid progenitors
to adult microglia (Kierdorf et al., 2013; Smith et al., 2013).
PU.1-deficient mice show a complete loss of microglia and
other myeloid cell types such as macrophages and monocytes,
indicating that PU.1 regulates key genes involved in the
differentiation and the maturation of hematopoietic cells and
also microglia (McKercher et al., 1996; Beers et al., 2006).
Satoh et al. (2014) identified 5,264 Spi1 target protein-coding
genes in the mouse microglial cell line BV2 by chromatin
immunoprecipitation (ChIP)-seq analysis, including Spi1 itself,
the transcription factors Irf8 and Runx1, Aif1 (Iba1), Csf1r and
its ligands Csf-1 and Il-34. Interestingly, two-thirds (63%) of
the genes that define the microglial sensome are PU.1 targets,
suggesting that PU.1 plays a pivotal role in the regulation of
specific microglial functions (Satoh et al., 2014) such as cell
survival, phagocytosis, antigen presentation, and morphology.
Recently, a GWAS study has identified a common haplotype,
rs1057233 (G), located in a previously reported AD risk locus
(CELF1), which displays a reduced expression of PU.1 in human
myeloid cells associated to delayed age of onset of AD (Huang
et al., 2017). The alteration of PU.1 levels in mouse and
human microglial cells affected the expression of many AD
risk genes (Huang et al., 2017) and their phagocytic activity
(Smith et al., 2013; Huang et al., 2017; Rustenhoven et al.,
2018). The activation of microglia through PU.1 is critical
for the progression of Alzheimer’s disease (Gjoneska et al.,
2015), emphasizing the role of microglia at the onset of the
disease. Similarly, the activation of microglia through PU.1 is
observed in response to mutant Huntingtin aggregates present
inHuntington’s disease, hypoxic-ischemeic insults and traumatic
injury-induced neurodegeneration (Walton et al., 2000; Crotti
et al., 2014; Zhou et al., 2019). Moreover, a recent study
published by Litvinchuk et al. demonstrated that PU.1 and
the transcription factors Irf8 and Runx1 were significantly
upregulated in FACS-isolated microglia in the PS19 mouse
model of tauopathy and AD (Litvinchuk et al., 2018). Together,
these findings suggest that changes in the expression level of
PU.1 may be a shared feature underlying several neurological
disorders and highlight its modulation as a potential mechanism
to control neuroinflammation. Studies using PU.1−/− mice
have shown that complete loss of function of PU.1 results
in stem cell failure (Antony-Debre et al., 2017), multiple
hematopoietic abnormalities and, ultimately, developmental
mortality (McKercher et al., 1996), highlighting the importance
of achieving partial inhibition of PU.1 to understand its
potential roles in disease. Newly described pharmacological
PU.1 inhibitors have been recently developed (Munde et al.,
2014; Stephens et al., 2016) and tested in murine and human
acute myeloid leukemia (AML; Xeno) transplantation models,
decreasing leukemia progression without affecting normal
hematopoietic differentiation (Antony-Debre et al., 2017). These
small molecules disrupt the interaction of PU.1 with its binding
sites next to the promoters of target genes and lead to the
downregulation of PU.1 transcriptional targets, holding a high
potential as tool compounds for evaluating the role of PU.1 in
neurodegenerative diseases.
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CURRENT THERAPEUTIC STRATEGIES
TARGETING MICROGLIA POPULATION
DYNAMICS AND POTENTIAL SIDE
EFFECTS ON PERIPHERAL POPULATIONS

To date, drugs available for AD are restricted to relieve
its symptoms, with no treatments able to stop or delay
the progression of this disease. The cognitive problems in
early-to-moderate AD are treated with Acetylcholinesterase
inhibitors (Donepezil, Rivastigmine, and Galantamine) which
block the degradation of acetylcholine and enhance cholinergic
neurotransmission, deficient in AD. Additionally, patients are
treated with Memantine which protects against the glutamate
excitotoxicity seen in neurodegenerative disorders such as AD.
Currently, there are an estimated number of 132 agents in clinical
trials for the treatment of AD, 30 in phase I of development, 74 in
phase II, and 28 in phase III. Among these agents, 96 (73%) are
disease-modifying therapies; 38 (40%) and 17 (18%) of these have
amyloid and tau as the primary target, respectively (Cummings
et al., 2019). However, multiple failures to stop AD using similar
strategies in the past have considerably increased the interest
in other targets, such as those related to neuroinflammation,
with three agents currently in phase II and two agents in phase
III clinical trials (Cummings et al., 2019). Also, recent genetic
evidence links microglia function to AD pathogenesis, placing
the spotlight on microglia as a potential target to treat AD.

Several microglial genes identified as robustly-associated with
the risk of LOAD are now under investigation as potential
targets for drug development, such as APOE, TREM2, CD33,
and CR1, amongst others (for review see; Biber et al., 2019;
Hemonnot et al., 2019). Despite the importance of the above-
cited targets and their strong link with AD pathogenesis, here
we focus on those related to the modulation of the dynamics of
the microglial population. Microglial cells share many functions,
genes, and developmental lineage with other cells of the myeloid
lineage across different organs (Hoeffel and Ginhoux, 2018),
which are required for the proper functioning of the immune
system (Figure 1). Because these gene expression signatures
are conserved, it is extremely important to evaluate the impact
of anti-neuroinflammatory agents on the broader immune
system. The therapeutic benefit of influencing a given cellular
function in a given pathology may result in the alteration of the
natural balance of the broader immune system, with unknown
consequences frequently not taken into consideration. Here,
we review the potential side effects of manipulating immune-
related pathways on other populations of immune cells, located
in different organs of the systemic compartment.

Importantly, people with dementia usually have
co-morbidities ranging from two to eight health conditions
(Nelis et al., 2019). It is accepted that people with dementia have
an average of four co-morbidities, compared to an average of
two in people without dementia of similar age (Poblador-Plou
et al., 2014). A recent study across various care settings has
reported that 61% of the people with AD had three or more
co-morbidities (Nelis et al., 2019). Over 90% of people with
dementia have at least one co-morbidity, with some of these

being often undiagnosed (Browne et al., 2017). Some of the
main co-morbidities significantly associated with dementia are
cardiac arrhythmia, hypertension, congestive cerebrovascular
disease, diabetes, and depression (Nelis et al., 2019). A common
feature of several co-morbidities is a dysfunctional immune
response. For example, obesity-related metabolic disorders,
which are also risk factors for AD, are associated with alterations
in the inflammatory status (Nguyen et al., 2014; Saltiel and
Olefsky, 2017). Similarly, increasing evidence in recent years
has demonstrated the important role of inflammation in the
pathophysiology of diabetes (Tsalamandris et al., 2019), an
age-related chronic disorder highly prevalent in AD patients
(Newcombe et al., 2018; Nelis et al., 2019). Two of the most
prevalent conditions associated with normal aging and dementia
are cardiovascular disease and hypertension, both closely
related to the above-cited metabolic disorders (Lopez-Candales
et al., 2017; Nelis et al., 2019). Similar to those, recent studies
have supported the causal role of chronic inflammation in
the development of these cardiovascular conditions (Lopez-
Candales et al., 2017; Ruparelia et al., 2017). Also, the incidence
of systemic infections, such as urinary tract infection (UTI) and
gum disease, is increased in Alzheimer’s, further accelerating
the cognitive deterioration (Doraiswamy et al., 2002; Dominy
et al., 2019). Psychiatric disorders with elevated prevalence in
AD, such as depression, have also been related to peripheral
and central chronic inflammation, which seem to drive changes
in neurotransmitters leading to depressive symptoms (Felger,
2019). On the opposite spectrum, a growing body of evidence
suggests an inverse link between the incidence rates of cancer and
AD, even though both are age-related disorders with significant
immune involvement (Majd et al., 2019). Taken together, this
evidence highlights the fact that the co-existence of age-related
comorbidities is a crucial aspect to consider in the development
of immunomodulatory therapeutic strategies for treating AD,
which in turn may compromise the responsiveness and immune
control of these co-morbidities.

Inhibiting CSF1R in AD: Target Validation
Studies
The therapeutic potential of inhibiting CSF1R has been
proposed for inflammatory diseases, autoimmune disorders,
bone diseases, and cancer (Burns and Wilks, 2011). Targeted
inhibition of CSF1R signaling has the potential to treat a
wide variety of neurodegenerative diseases associated with
chronic neuroinflammation such as AD, PD, Huntington’s
disease, ALS, multiple sclerosis, and psychiatric disorders.
CSF1R can be blocked by at least two different approaches:
(i) using small-molecule inhibitors targeting the TK activity
of the receptor or (ii) antibodies that bind the receptor
and block the interaction between CSF1R and CSF-1/IL-34.
The first neutralizing monoclonal antibody against CSF1R,
AFS98, was produced by Sudo et al. (1995) and was shown
to be effective in the control of CSF1-related functions
in pathology. Some examples of its effectiveness are the
reduction of macrophage accumulation in atherosclerotic
lesions and diabetic nephropathy, the reduction of infiltrating
macrophage proliferation in renal allografts and damaged
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skeletal muscle (for review see Hume and MacDonald, 2012),
and the local inhibition of microglial proliferation in the
prion disease model ME7 (Gomez-Nicola et al., 2013). In
contrast with these results, prolonged treatment with a different
monoclonal anti-CSF1R antibody, M279, selectively removed
tissue macrophages, including macrophages inside the tumors,
but had no protective effect in several models of inflammation
(MacDonald et al., 2010). This antibody is incapable of crossing
the blood-brain barrier (BBB), depleting microglia in the retina
but not affecting the brain (Hume and MacDonald, 2012).
It has also been shown that after prolonged treatment with
M279 bone density and trabecular volume are increased due to
the ablation of osteoclasts, preventing the reduction in bonemass
observed in female mice with age. This long-term effect on bone
remodeling suggests that M279 could potentially be used as a
treatment for osteoporosis (Sauter et al., 2014). Importantly, a
side effect of CSF1R blocking antibodies is related to the role
of CSF1R in the clearance of CSF-1 from the circulation by
endocytosis (Hume and MacDonald, 2012). CSF1R blockade
causes amassive increase in the concentration of circulating CSF-
1, and rebound monocytopoiesis (Hume and MacDonald, 2012).
However, this effect does not occur when the TK activity of
the receptor is blocked by kinase inhibitors, since this activity
is not required for the internalization of CSF-1 (Hume and
MacDonald, 2012). One of the most important features of
kinase inhibitors, compared to antibodies, is that small molecules
can block autocrine actions of endogenous CSF-1, which is
highly expressed in some mouse inflammatory macrophages
and drives the expression of inflammatory cytokines (Hume
and MacDonald, 2012). One of the most selective and best
characterized of the available TK inhibitors probably is GW2580.
GW2580 inhibits the growth of CSF1-dependent tumor cells
(Conway et al., 2005) and the recruitment of macrophages into
growing tumours (Priceman et al., 2010). It has also been shown
to exhibit antitumor activity in AML by blocking paracrine
production of hepatocyte growth factor and other cytokines
signaling from support cells (Edwards et al., 2019). GW2580 has
beneficial effects, by blocking microglial proliferation, in several
experimental models of multiple sclerosis (Crespo et al., 2011),
prion disease (Gomez-Nicola et al., 2013), AD (Olmos-Alonso
et al., 2016), ALS (Martinez-Muriana et al., 2016), spinal
cord injury (Gerber et al., 2018) and PD (Neal et al., 2020).
Using the APP/PS1 model of AD-like pathology, we found
diminished synaptic degeneration and improved behavioral and
performance and learning after chronic inhibition of CSF1R
with GW2580 (Olmos-Alonso et al., 2016). A different CSF1R
inhibitor with significant in vivo data available is Ki20227. This
inhibitor has been shown to reduce the number of macrophages
and associated pathology in models of inflammatory arthritis
(Ohno et al., 2008) and encephalomyelitis (Uemura et al., 2008).
However, Ki20227 reduced the numbers of Ly6G+ granulocytes,
an effect that generates concerns about its specificity. There
are some other TK inhibitors that block CSF1R but also have
affinity for other kinases, as the orally available JNJ-28312141
(Hume and MacDonald, 2012). This inhibitor has specificity
against CSF1R but also the related receptor FLT3 and has
been shown to reduce macrophage numbers and limit tumour

growth in several models of transplanted tumours as well as in a
FLT3-dependent subset of AML (Manthey et al., 2009). Despite
J&J had JNJ-28312141 in phase II clinical trials for the treatment
of rheumatoid arthritis (RA), this was discontinued and replaced
by JNJ-40346527. This CSF1R inhibitor has been recently
shown to repolarise microglia to a homeostatic phenotype and
attenuate tau-induced neurodegeneration resulting in functional
improvement in the P301S mouse model of tauopathy (Mancuso
et al., 2019). Currently, JNJ-40346527 is in phase II ongoing trials
for AML (NCT03557970) and phase Ib ongoing trials for AD
(NCT04121208). Recently, a novel family of inhibitors developed
by Plexxicon has been described to have a potent activity over
CSF1R. PLX3397 (Pexidartinib) was shown to inhibit the survival
of microglia and cause a fast depletion of the population in
the healthy brain (Elmore et al., 2014). PLX3397 was shown to
prevent neuronal degeneration, improving cognitive functions
in the 5xFAD model of AD-like pathology (Spangenberg et al.,
2016; Sosna et al., 2018). Similar results were obtained using
the inhibitor PLX5622 in the 3xTg AD model (Dagher et al.,
2015). However, PLX3397 also causes a potent inhibition of
c-kit and PDGFRβ (Patwardhan et al., 2014), which may
confound the observed effects on the microglial population.
The inhibition of PDGFRβ and loss of PDGFβ signaling would
affect the survival of NG2 pericytes, consequently damaging
the BBB and influencing neurodegeneration (Montagne et al.,
2017). Despite the unknown side effects of these molecules
in brain disease, PLX3397 is currently in phase II ongoing
trials for several types of tumours such as sarcoma and
glioblastoma (NCT01790503; NCT02584647). Another small
molecule in development for AD is Masitinib, a pan-kinase
TK inhibitor. AB Science SA is using Masitinib in phase III
trials for patients with mild to moderate AD (NCT01872598),
a wide variety of tumours such as gastrointestinal stromal
tumours (NCT01694277), ALS (NCT02588677; NCT03127267)
and multiple sclerosis (NCT01433497), based on the activity
of the compound over CSF1R or c-kit, depending on the
specific disease mechanism. In summary, many approaches
have been designed to target the activity of CSF1R under
neuroinflammatory conditions, and in the coming years, the field
will collect valuable clinical information about their potential
efficacy in AD.

The Systemic Impact of CSF1R Inhibition:
Can Selectivity and Safety be Improved?
According to the above-cited studies, blocking the expansion
of the microglial population results in a significant reduction
of neuronal degeneration, leading to an improvement in
the disease symptoms and survival. These results provide
strong evidence of the potential application of CSF1R tyrosine
kinase inhibitors as a promising approach to tackle microglial
proliferation in neurodegeneration. However, although many
CSF1R inhibitors are progressing to clinical trials, little is known
about the impact of these approaches on the innate immune
system. CSF1R is expressed in many cell types of the myeloid
lineage, including tissue-resident macrophages, dendritic cells,
and their precursors (Chitu and Stanley, 2017). Therefore, the
inhibition of CSF1R would not only affect microglia but also
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other tissue-resident myeloid populations, possibly causing an
immunosuppressive effect.

A potential approach to block this pathway more selectively
is by modulating the binding of its ligands, CSF-1 and/or
IL-34, to increase tissue specificity and reduce side effects.
This approach is based on the differential tissue-selectivity
and functions of CSF-1 vs. IL-34, reported in the literature
and discussed previously. The blockade of both ligands can
be achieved by the use of specific antibodies directed against
these cytokines, with beneficial effects in murine models of
arthritis, colitis, and ileitis (Lin et al., 2019). However, blockade
of both ligands, separately or in combination, leads to altered
macrophage homeostasis in healthy mice, reducing the numbers
of macrophages in the intestine, liver, kidney, skin, bone marrow
and microglia in the brain (Easley-Neal et al., 2019; Lin et al.,
2019). In contrast to these observations, a recent study from
our group shows that monocyte and macrophage populations
in peripheral tissues were not affected after the selective
blockade of IL-34 in healthy mice, except for the skin-resident
Langerhans cells (Obst et al., 2020). However, the number
of monocytes and macrophages were significantly decreased
after blockade of CSF1R, following the wider expression of the
receptor. Despite the microglial population was not affected
after systemic administration of anti-IL-34 antibodies, due to
their low brain penetrance, we observed a local reduction of
microglia proliferation after the intracerebral injection of anti-IL-
34 antibodies in mice infected with prion disease, showing that
IL-34 is a key driver of microglial proliferation in the context
of neurodegenerative disease (Obst et al., 2020). Our results
support that modulation of the microglial response via IL-34
blockade could be a potential and more selective therapeutic
approach in neurodegenerative diseases (Obst et al., 2020).
A similar therapeutic approach modulating the granulocyte-
macrophage colony-stimulating factor (GM-CSF) instead of
targeting its receptor is currently in phase II clinical trial for AD
(NCT01409915), which has been recently completed although
no results have been published yet. Testing of this recombinant
human factor, named as Sargramostim, for AD is based on
published results regarding GM-CSF role in AD mouse models,
in which GM-CSF seems to reduce brain amyloidosis and reverse
cognitive impairment by increasing microglial density and their
activation state (Boyd et al., 2010; Kiyota et al., 2018). However,
some studies have reported an increased expression of GM-CSF
in AD patients (Tarkowski et al., 2001) and a beneficial role of
blocking this factor using an anti-GM-CSF antibody in a mouse
model of AD (Manczak et al., 2009). Nevertheless, the potential
side effects of this approach on other myeloid populations are
unknown, supporting the idea that more studies are necessary
to understand the effects of modulating these molecules in
neurodegenerative diseases and their potential on-target effects
on tissue-resident macrophages.

The functions of CSF-1, IL-34, and CSF1R in monocyte-
macrophage differentiation have been demonstrated through
the study of specific genetic mutations in mice, rats, and
humans (Hume and MacDonald, 2012; Chitu and Stanley,
2017). Mice and rats with Csf-1 loss-of-function mutations
have deficiencies in many tissue macrophage populations and

are severely osteoporotic, due to the lack of osteoclasts (Dai
et al., 2002). Pleiotropic effects including severe postnatal growth
retardation, neurological and reproductive deficiencies, highlight
the important trophic roles of CSF1-dependent macrophages
(Wynn et al., 2013). By contrary, IL-34 mutation is less severe,
only depleting microglia and Langerhans cells, consistent with
its restricted regional expression (Wang et al., 2012). CSF1R
knockout mice display a severe phenotype characterized by
limited survival after the weaning phase (Chitu et al., 2016).
Interestingly, a recent study has shown that genomic deletion
of FIRE, a highly conserved Csf1r enhancer, ablates specifically
microglia and resident macrophages in some tissues such as
the skin, kidney, heart, and peritoneum (Rojo et al., 2019).
They demonstrate that Csf1r∆FIRE/∆FIRE mice are healthy and
fertile, not showing the severe postnatal growth retardation
and developmental abnormalities observed in Csf1r−/− rodents
(Rojo et al., 2019). In humans, the hypomorphic mutation
in CSF1R causes hereditary diffuse leukoencephalopathy with
spheroids, a disease originated from the loss of myelin and
the destruction of axons (Wynn et al., 2013). Homozygous
mutations in CSF1R in human leads to premature death,
linked to severe brain abnormalities including hydrocephaly,
hypomyelination, and abnormal bone growth (Oosterhof et al.,
2019). Given the central role of macrophages in fighting infection
(Figure 1), long-term blockade of the CSF1R/CSF-1/IL-34 axes
could compromise the response to infection. Mice infected
with Listeria monocytogenes and treated with antibodies against
CSF-1/IL-34 were more susceptible to the bacterial infection,
showing that these approaches might be immunosuppressive
in the rodent Listeria model (Lin et al., 2019). Similar results
were obtained in a model of viral encephalitis, where the
inactivation of CSF1R using a tyrosine kinase inhibitor reduced
circulating antigen-presenting cells in the blood leading to a
higher susceptibility to lethal West Nile virus infection (Funk
and Klein, 2019). This study shows the importance of CSF1R
in myeloid cell responses that involve the restriction of viral
replication, and the local restimulation of recruited antiviral T
cells within the CNS (Funk and Klein, 2019). On the other
hand, a different CSF1R TK inhibitor showed good safety and
tolerability profile after 3 months of treatment in patients with
RA, causing only an alteration in Kupffer cell function (Figure 1;
Genovese et al., 2015). Kupffer cells may have a role in clearing
several serum enzymes, including alanine aminotransferase and
aspartate aminotransferase, which are often used as indicators
of hepatic injury during medical tests and clinical trials (Radi
et al., 2011; Lin et al., 2019). The reduction in the population
of Kupffer cells after treatment with anti-CSF-1/IL-34 antibodies
correlated with an increase of these enzymes in the serum of
rodents and monkeys, although no histopathological evidence
of liver injury was observed (Radi et al., 2011; Lin et al.,
2019). Importantly, the detection of high liver enzyme activity,
unrelated to a hepatocellular injury, may compromise clinical
monitoring of liver injury, an aspect to take into consideration
with therapeutics that target macrophages Lin et al., 2019).
Bone formation and resorption is also a process influenced by
CSF1-CSF1R signaling (Figure 1). CSF-1 is produced in the
bone marrow by osteoblasts, binding to CSF1R located on the
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FIGURE 1 | CSF1R/CSF-1/IL-34-dependent tissue-resident macrophage key functions. CSF1R-, CSF1- and IL-34-dependent macrophage populations perform
key functions to maintain homeostasis in different organs. Microglia, the main resident macrophages in the brain, is responsible for many critical functions during
development and adulthood including support of neurogenesis, synaptic formation, and pruning, and phagocytosis of apoptotic neurons and debris in the
extracellular space (Colonna and Butovsky, 2017; Li and Barres, 2018). In the lungs, alveolar macrophages are responsible of the clearance of inhaled pathogens
and particles (Maus et al., 2002; Davies et al., 2013), and they also play a critical role in the maintenance of alveolar homeostasis by clearing lipoprotein-containing
alveolar surfactant produced by alveolar epithelial cells (Dranoff et al., 1994; T’Jonck et al., 2018). Kupffer cells, the resident macrophages in the liver, are involved in
many immune and homeostatic functions such as clearing gut-derived toxins and pathogens from the blood, removal of damaged erythrocytes, as well as iron,
bilirubin, and cholesterol metabolism (Ganz, 2012; T’Jonck et al., 2018). The spleen contains multiple subsets of macrophages such as red pulp macrophages,
located in the red pulp of the organ. They play a vital role in the clearance of senescent red blood cells and iron recycling (Kurotaki et al., 2015; T’Jonck et al., 2018).
Next to red pulp macrophages, the spleen also contains marginal zone macrophages that are involved in the detection of antigens present in the bloodstream (den
Haan and Kraal, 2012; Kierdorf et al., 2015). Adipose-associated macrophages, present in the pancreas and adipose tissue all over the body, fulfill different functions
such as removal of dead adipocytes, regulation of adipocyte lipolysis, storage and release to the bloodstream of excessive adipocyte-released lipids, and
participation in the control of insulin sensitivity (Odegaard et al., 2007; Boutens and Stienstra, 2016; T’Jonck et al., 2018). Macrophages in the gastrointestinal tract
continuously interact with the intestinal microbiome and maintain intestinal homeostasis regulating the immune response to commensals and defending the tissue
against pathogens (Davies et al., 2013; Zigmond and Jung, 2013). Langerhans cells are resident macrophages in the skin, involved in tissue surveillance, and
uptake, and transport of antigens to the skin-draining lymph nodes (Chorro and Geissmann, 2010; Kierdorf et al., 2015; T’Jonck et al., 2018). Renal macrophages
play several roles such as surveillance of the environment, phagocytosis of pathogens, and debris present in the extracellular matrix as well as support for
nephrogenesis (Nelson et al., 2012). Circulating Ly-6Clo monocytes are the predominant macrophage subset in the blood, acting as “intravascular housekeepers” in
the clearance of endothelial cell debris as well as entering other tissues for the replenishment of tissue macrophage populations (Carlin et al., 2013; Gordon et al.,
2014). Finally, different types of macrophages play critical roles in the bone. Osteoclasts are large multinucleated macrophages in charge of maintaining bone
homeostasis and structure by resorption of the bone matrix produced by osteoblasts (Davies et al., 2013; T’Jonck et al., 2018), whereas bone marrow macrophages
support erythropoiesis and maintain hematopoietic stem cells in stem cell niches (Chow et al., 2011, 2013; Davies et al., 2013). Considering the shared myeloid
lineage of all these macrophage populations, it is anticipated that the immune and homeostatic key functions above described are susceptible to be affected by the
immunomodulatory strategies to reduce neuroinflammation.

surface of osteoclast precursors, giving rise to the formation
of osteoclasts (El-Gamal et al., 2018). Mice lacking CSF-1 are
unable to generate osteoblasts, leading to low bone density and
osteoporosis (El-Gamal et al., 2018). However, CSF1R inhibition
would likely lead to increased bone density and abnormal bone
growth due to a decrease in osteoclast numbers. This may result
in the development of Paget’s disease, which is characterized
by enlarged and misshapen bones. Another effect of CSF-1
deficiency in the macrophage-deficient Csf1op/Csf1op model is
an insulin mass deficit due to the reduction of pancreatic β cell

proliferation and abnormal islet morphology in the pancreas
(Banaei-Bouchareb et al., 2004). The addition of CSF-1 to
embryonic pancreas explants caused a higher differentiation of
β cell and increased production of insulin (Geutskens et al.,
2005). However, macrophage ablation in the pancreas and
adipose tissue after long-term anti-CSF1R treatment (Figure 1),
had no effect on average size or distribution of β cells within
islets of Langerhans, detected by immunostaining for insulin
(Sauter et al., 2014). Despite the decrease in tissue resident
macrophages in many organs after the treatment with an
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anti-CSF1R antibody, Sauter et al. (2014) did not observe any
overt pathology in hematoxylin and eosin sections of different
organs (Sauter et al., 2014). In summary, CSF1R/CSF-1/IL-
34 blocking strategies have different effects on tissue-resident
macrophages and other cell types of the systemic compartment,
leading to a dysregulation of the tissue homeostatic functions
(Figure 1). Likewise, any therapeutic approach directed against
potential microglial targets, e.g., TREM2, inflammasome, among
others, is expected to have a comparable impact on peripheral
immune cell populations and organ function. Therefore, we need
further investigation of the potential side effects of manipulating
immune-related pathways to modulate the microglial population
during neuroinflammation, in order to design and develop highly
specific therapeutic agents.

CONCLUSION

Over recent years the field of study of the contribution of
neuroinflammation to AD has undergone a revolution. The
number and quality of preclinical studies have increased, leading
to some very promising early clinical studies, using agents
directed against neuroinflammatory targets. In the coming years,
this field will finally start to collect some critical clinical data,
which will allow, once and for all, to address the hypothesis
that neuroinflammation is a driver of neurodegeneration in
AD. These early promising studies should not distract the

field from trying to find better, more refined, approaches, to
overcome the anticipated significant impact over the broader
immune system. In the meantime, it is crucial to start to
understand the impact of targeting key neuroinflammatory
pathways on the function of other tissue-resident macrophages,
and the key organ functions they are responsible for. If any
of the postulated anti-neuroinflammation agents succeeded to
progress to longer trials or eventually to enter the market,
it is anticipated that the AD target population would be
exposed for very prolonged periods to agents influencing
their immune balance. Considering AD patients are often
multimorbid, this would have unknown consequences over their
responsiveness to infection or the control of their immune-
related co-morbidities.
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