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ABSTRACT 
 
Monitoring the environment is a key task of remote sensing in particular in areas whose access is 
difficult or dangerous or where dense cloud cover obscures optical information. This study proposes 
an assessment of landscape changes related to large refugee camps, where information about 
environmental conditions is needed by both humanitarian organizations and regional 
administrations. Our intention is to provide a robust workflow which is applicable for an operational 
use. The study area is located in Western Kenya hosts a total number of 350.000 people. Images of 
ERS-2 and Sentinel-1 are used for the assessment of land degradation in a semi-arid savannah 
between 1997 and 2014.  
We expect a relationship between the existence of the refugee camps and the degradation of 
surrounding landscapes. For this purpose we present an approach which objectively reveals 
developments in natural resources based on six land-use / land cover classes integrating their 
relative importance for the ecosystem given by expert-based weights. 

Original Research Article  



 
 
 
 

Braun et al.; JGEESI, 4(2): 1-17, 2016; Article no.JGEESI.22392 
 
 

 
2 

 

An index of Natural Resource Depletion (NRD) is calculated using a Random Forest algorithm in 
order to classify a time series of SAR images and their textures at different spatial scales                        
(r² = 0.71). Especially large-scale textures turned out to contribute to the classification.  
Or results showed a continuous increase of bare soil areas within a radius of five kilometers around 
the refugee camps and a total decrease of natural resources by 11.8% in the study area. Although 
the produced NRD maps reveal hot spots of landscape change for selected periods, a clear pattern 
of land degradation could not be identified and an evident interrelation between the expansion of 
the camp and the decrease of natural resources has still to be provided.  
The proposed approach is applicable to images of other radar sensors as well, such as Sentinel-1 
of the European Space Agency which currently collects a multitude of scenes in high spatial 
resolution. It is therefore suitable for an operational use for the monitoring of land degradation 
around refugee camps. 
 

 
Keywords: Remote sensing; refugee camps; land-cover classification; Synthetic Aperture Radar 

(SAR), land degradation; ERS; Sentinel-1. 
 
1. INTRODUCTION  
 
According to the United Nations High 
Commissioner for Refugees (UNHCR) the 
number of people forced to leave their home 
reached nearly 60 million in the second half of 
2015 [1]. The reasons lie in natural disasters 
such as droughts, floods and land degradations 
caused by climatic changes as well as in social 
factors such as poverty, prosecution and armed 
conflicts [2]. One of the main phenomena 
challenging the regions affected by immigration 
are refugee or internally displaced people (IDP) 
camps where large numbers of displaced people 
settle down, often close to border at random sites 
which were not prepared for such enormous 
influx [3]. Especially in African and the Middle-
East camps and temporary settlements are a 
widespread phenomenon since in the last 
century [4]. Due to the spontaneous nature of 
migration host countries often lack the means to 
plan effective camp structures, while otherwise 
both refugees and the host population would 
benefit from a strategic design of infrastructure 
and social facilities by non-governmental 
organizations or the UNHCR [5]. In addition, the 
exact numbers of dwellings and people, the size 
of the camp and the conditions of the 
surroundings are not documented throughout 
and need to be estimated. But the integrity of the 
environment plays a crucial role for sustaining life 
in the camp: Not only do the immediate 
surroundings provide essential resources such 
as drinking water, firewood, and soils for 
agricultural use, but also has the refugees' 
wellbeing and health been found to be 
dependent from the proximate natural conditions 
they perceive and are exposed to [6,7]. Further 
looking, information about the development of 
both the camp and the environment may better 

assist the planning process of decision-makers 
when it comes to land-use and the carrying 
capacity and vulnerability of ecosystems in the 
affected regions [8]. 
 
While the interdependencies of refugee camps 
and their social and political environments are 
already investigated well [9-13], their impacts on 
the natural surroundings are quite unexplored 
yet. Although it seems obvious that large camps 
accelerate land degradation, a clear evidence of 
their potential adverse effects is currently being 
discussed [14,15]. This is due to the lack of clear 
evidence on a relationship between the assumed 
impact of a camp and other influences on the 
natural surroundings like climatic or seasonal 
variations [16]. 
 
Remote sensing can provide valuable 
information about the condition of the earth's 
surface in general and on the raise and influence 
of ephemeral settlements such as refugee camps 
in particular [17]. The ability to collect data 
through different wavelengths emitted, absorbed 
and backscattered by surface materials helps 
observe and monitor large area from space 
within a short time. One of the most continuing 
sources for land cover information is the Landsat 
continuity mission [18]. It started in 1972 and 
almost constantly delivers images from space 
since then. Their use for the land-use and land 
cover classification (LULC) has been widely 
demonstrated in the past decades [19-24]. 
Especially the analysis of a series of images over 
a longer period reveals promising results a 
thorough understanding of the ongoing 
processes [25,26]. However, especially regions 
hosting refugee camps such as Eastern and 
Equatorial Africa or the Middle East are often 
affected by a high degree of cloud cover [27-29] 
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(also see section 2.1.1) that prevent effective 
time series analyses of land cover change [30]. 
  
Instead, satellite images acquired by synthetic 
aperture radar (SAR) are neither affected by 
cloud cover nor dependent from daylight. With 
wavelengths considerably longer than those of 
optical sensors, using SAR data we detect 
additional properties of the earth's surface [31]. 
Their operational use since the 1990ies 
supported the classification and monitoring of 
land cover information from space by radar 
technology [22-35].  
 
To complement the weather- and daylight-
depending availability of optical data, this study 
investigates the potential of SAR data in 
assessing the environmental conditions around a 
cluster of refugee camps in Kenya. It presents a 
strategy for multi-temporal land cover 
classification to quantify and evaluate the 
influence of refugee camps on their environment. 
It closes the gap between qualitative, non-spatial 
approaches [8,16,36-38], impact assessments 
using optical satellite data [39-41] and studies 
based on single-date SAR images [42,43]. 
Furthermore, the proposed method demonstrates 
how to use multi-temporal C-band SAR data for 
LULC classification. This is of particular interest 
when ESA's Sentinel-1 (S1) satellite data started 

in the middle of 2015 covers time-series of 
several years. 
 

2. MATERIALS AND METHODS  
 
2.1 Study Area  
 
Dadaab is a settlement in Garissa County, 
Western Kenya, consisting of five separate 
refugee camps (see Fig. 1, main map). The first 
of them were constructed in the early 1990s as a 
consequence of the civil war in Somalia. They 
are located approximately 100 kilometers from 
the Somali border and today host a total 
population of 350.000 people, which made them 
the largest refugee camp in the world in 2015 
[44] (see Fig. 1, overview map). The climate can 
be described as hot and arid with constant 
temperatures above 30 degrees (BWh according 
to the Köppen-Geiger classification scheme). 
There are two rainy seasons from March to April 
and September to January with up to 5 rainy 
days per month. Due to a total annual rainfall 
amount of 370 mm most rivers are only 
seasonal. The terrain is flat and has sandy and 
nutrient-poor soils [45] mainly covered by 
deciduous bush land consisting of Acacia-
Commiphora shrubs and thicket with scattered 
patches of grassland and seasonally swampy 
areas [46]. 

 

 
 

Fig. 1. Study area: Location and extent of datasets 
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2.2 Data 
 
2.2.1 Satellite imagery 
 
Optical satellite data in this region is often 
affected by cloud cover. We investigated all 
available Landsat images of our study area since 
1972. A total number of 388 scenes are found in 
the archive of the US Geological Service 
(USGS). 373 of them show a cloud cover below 
80%, 286 are below 50% and 82 scenes remain 
with a cloud cover below 5%. While altogether 
this is still a considerable number (21%), it 
means that statistically every fifth scene suits 
well for the envisaged classification purposes. 
For this reason our study aims to use SAR data 
alone. We chose the European Remote Sensing 
Satellites ERS-1 and ERS-2 launched in 1991 
and 1995 by the European Space Agency [47]. 
The mission was officially declared completed in 
2011 when ERS-2 ran out of fuel. Covering 20 
years of image acquisitions the data archive 
provides sufficient records to address our 
research aims. In addition, a Sentinel-1 scene 
dated 2014 was used due to the fact that the 
camps in Dadaab region are still in operation. 
Both Sentinel-1 and ERS are C-band radar 
sensors operating at a VV polarization and 
therefore deliver comparable imagery [48]. 
 
We tried to ensure that the images of each study 
area remain comparable in terms of seasonal 
variation. With SAR backscatter being dependent 
from soil moisture we selected images acquired 
during or close to the rainy seasons (see Table 
1). Since no data is available before 1997 the 
setup of the camps since 1991 could not be 
completely documented. The Sentinel-1 image 
was acquired in ascending mode while all others 
were acquired in descending mode. This has an 
impact when comparing and interpreting results 
gathered from these data.  
 
2.2.2 Preprocessing 
 
ERS scenes were provided by ESA as Single 
Look Complex Image products (SLC). The 
following preprocessing steps were performed: 
Removal of Antenna Pattern (including removal 
of replica pulse power and ADC correction) and 
radiometric terrain flattening (resulting in terrain-
flattened Gamma-Naught (γ0 [49]). This 
operation minimizes distortions in backscatter 
intensity caused by the incidence angle on local 
topography. The scenes were orthorectified by 
the Range-Doppler algorithm which corrects 
geometrical distortions caused by the side-

looking geometry of the sensor [50]. We did not 
apply any speckle filtering in order to preserve 
the original image textures. In classifications 
based on SAR texture alone accuracies have 
been reported to drop when speckle removal was 
employed [51,52]. During the reprojection all 
scenes were resampled to a common ground 
resolution of 12.5 meters.  
 
In order to derive additional information layers for 
classification, we computed image textures 
based on the Grey-Level Co-Occurrence Matrix 
(CLCM) [53]. Texture images consist of simple 
(Cluster Prominence, Cluster Shade, Correlation, 
Energy, Entropy, Haralick Correlation, Inertia and 
Inverse Difference Moment), advanced 
(Difference Of Entropies, Difference Of 
Variances, IC1, IC2, Mean, Sum Average, Sum 
Entropy, Sum Variance and Variance) and higher 
order (Grey-Level Nonuniformity, High Grey-
Level Run Emphasis, Long Run Low Grey-Level 
Emphasis, Low Grey-Level Run Emphasis, Run 
Length Nonuniformity, Run Percentage, Short 
Run High Grey-Level Emphasis and Short Run 
Low Grey-Level Emphasis). We used kernels of 
3, 25 and 69 pixels for the generation of these 
textures, leading to patterns emerging at different 
spatial scales. In order to select the most suitable 
information layers in the subsequent steps, we 
computed a total of 79 texture images for each of 
the five data sets for the analysis of the 
respective time step. 
 
As Table 1 shows, we used two optical scenes 
from the Landsat mission for training purposes. 
We chose the year 2000 for Landsat because of 
the small temporal gap between the scene and 
the SAR image (5 days) and its comparably low 
cloud cover (26%). We then manually collected 
1500 sample points for six different land-use and 
land cover classes (see section 2.3). They were 
evenly distributed over the whole study area and 
thus representative for the statistical spatial 
occurrence of each class. 
 

Table 1. Data sets used in this study 
 
Date Satellite Remarks 
04 Oct1997 ERS-2 descending 
18 Sep 2000 Landsat TM reference for  

18 Sep 2000 
23 Sep 2000 ERS-2 descending 
17 Sep 2005 ERS-2 descending 
09 Jan 2010 ERS-2 descending 
27 Dec 2014 Sentinel-1 ascending 
07 Jan 2015 Landsat 

OLI/TIRS 
reference for  
27 Dec 2014 
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2.3 Image Classification 
 
For the definition of land-use and land cover 
classes we chose the Land Cover Classification 
System (LCCS) proposed by the FAO [54]. It is 
scale-independent, standardized and widely 
approved for mapping purposes. Table 2 lists the 
classes used for our study area. As the 
vegetation in the study area is widely 
homogenous in the scale of investigation we only 
discriminated between non-vegetated classes 
(built-up areas, bare soils and intermittent 
streams) and natural vegetation cover of different 
densities: While floodplain is restricted to 
temporarily flooded areas around the stream 
channel and covered by single short bushes, 
shrubland refers to terrestrial woody vegetation 
with a coverage below 65% and thicket above 
65% respectively. Between the bushes patches 
of grass and mosses can occur loosely. SAR 
information can cope with ecosystems of this 
type due to its sensitivity to roughness and 
wetness of the surfaces as well as to the volume 
of the objects such as the described bushes 
[55,56]. 
 
The additional texture layers described in section 
2.2.2 reveal a variety of surface characteristics 
and patterns on different spatial scales. The use 
of various filter sizes enhances structures 
ranging over a multitude of pixels and therefore 
creates information inherent in the image which 
is not visible to the human eye at first sight. Still, 
as some of the texture measures are based on 
related geometrical and mathematical principles, 
the produced layers also bear redundant 
information. We therefore employed a 
classification method that fulfills the following 
criteria: (1) incorporation of raster information of 
different units and therefore different ranges of 
values, (2) handling of large numbers of datasets 
in an efficient and time-saving way, and (3) 
selecting those parts of probably redundant 
information which are of best use for the 
classification. 
 
Machine learning techniques detect patterns 
within ordinal data (the training data set) for a 
later classification of untrained data [57]. In order 
to make best use of the many input rasters we 
chose the Random Forest (RF) algorithm [58]. 
Our training data set consists of the 1500 sample 
points which contain the assigned class as well 
as the texture images. By creating a large 
number of different and uncorrelated regression 
trees [59], the training data is systematically 
searched for statistical patterns in order to split 

the input values into separable classes. 
Outcomes of different regression trees are then 
ensembled to a final result. We used 50 separate 
trees for training purposes with each tree 
composed of 9 randomly selected input layers 
(as the rounded up square root of the total 
number of 79 input rasters). Herewith, RF 
identifies those raster layers that describe the 
training data best. A model is then created which 
can be applied to the input texture rasters in 
order classify each pixel according to its texture 
statistics. 
 
Our RF model was built with the training samples 
collected from the optical information of the 
Landsat TM scene from 18 Sep 2000 with a 
training accuracy of 65.8%. The latter means that 
the algorithm can explain the distribution of the 
training classes by about 66%. This seems 
comparably low, but it is caused by semantic 
similarities of the classes containing vegetation, 
while the critical classes (camp vs. shrubland) 
remain distinct.   
 
The created RF model was subsequently applied 
to the input rasters of the years 1997, 2005                  
and 2010. The S1 scene had to be trained 
separately by additional training samples 
collected from a Landsat scene due to 
radiometrical discrepancies and the descending 
track.   
 

Table 2. Land-use and land cover classes 
 
Class name LCCS  

Code 
Relative  
importance  
(see 2.4) 

Refugee camp  
or settlement 

5003-13 0,000 

Bare rocks or soil 6005-6 0,059 
Intermittent streams  
and channels 

8003-1   0,235 

Floodplain 40011 0,176 
Shrubland 20021 0,235 
Thicket 2001 0,294 

 
2.4 Assessing the Environmental Impact 
 
We chose two measures for assessing the 
environmental impact of the camps. The first one 
is the change in area covered by bare soil. As 
observable in the vicinity of the camps this is a 
first indicator of land degradation around the 
settlements. We digitized a line around the 
camps, reaching from Dagahaley in the north 
over Ifo2 and Ifo along the road to Hagadera in 
the south. Camp Kambioos was excluded in this 
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case as it did not exist until 2011. The line was 
then buffered by a distance of 5000 m to 
delineate an area under likely direct influence 
around the refugee camps. Amnesty 
International reports that refugees cover 
distances up to 10 kilometers around their camps 
for the collection of firewood [60,61].  
 
The second indicator is a slightly modified 
version of the Weighted Natural Resource 
Depletion Index (NRDw index) proposed by 
Hagenlocher et al. [39]. It aggregates the 
percentages of land-use classes on a coarser 
spatial scale and evaluates their temporal 
change based on weights according to their 
social and ecological importance. In our case, we 
focused on the latter, ecological importance, and 
did not explicitly consider social aspects. The 
weights given in Table 1 were assessed by two 
regional experts with ecological and 
humanitarian background as follows: Each of the 
five land-use / land cover classes was assigned 
a value from 0 to 5 according its relative ecologic 
importance in the study area, while zero means 
no particular ecological relevance and 5 reflects 
a very high relevance: Refugee camp or 

settlement (0), bare rocks or soil (1), intermittent 
streams and channels (4), floodplain (3), 
shrubland (4) and thicket (5). Each weight was 
then divided by the sum of all weights in order to 
get each the relative importance (RI) of each 
class. 
 
We used an analysis grid with a spacing of 1250 
meters (one hundred times the spatial resolution 
of the input SAR textures) and assessed the 
relative area of each land-use and land cover 
class per grid cell. Areas and RIs of each class 
occurring in a grid cell were then multiplied and 
aggregated to a single index value of natural 
resources (NR) per grid cell. Accordingly, the 
development of land-use and land cover is no 
longer analyzed at the pixel level but at an 
aggregated spatial index of 1250 meters 
representing the relative presence of inherent 
classes. Changes in the ecological value of a 
grid cell can then be described by an increase or 
decrease of the NR (natural resource depletion, 
NRD). An example of this calculation is given in 
Fig. 2. Negative NRD values indicate loss of 
resources while positive values represent gain 
within the corresponding grid cell. 

 

 
 

Fig. 2. Calculation of the weighted Natural Resource Depletion (NRD) index 
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This approach has several advantages: (1) 
output maps can be interpreted quick and easily 
while detailed knowledge about the initial land-
use classes is no longer required, (2) single 
misclassified pixels as often shown by SAR 
images due to speckle have little to zero effect 
on the NR of a cell, and (3) expert-based weights 
(RIs) are integrated and adjustable according to 
the research questions (environmental vs. social 
impact). Additionally, as all RIs shown in Table 1 
sum up to 1, NR values can be directly 
interpreted as percentages of positive or 
negative ecological development. In our case, a 
decrease by 100 % would indicate a cell formerly 
covered by thicket alone (most valuable class) 
which was completely substituted by a refugee 
camp (least valuable class) within one time step. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Image Classification 
 
The r² of the trained RF model is 0.65 and gives 
a fist estimate of the reliability of the algorithm. 
As already discussed in section 2.4 coarse 
misclassifications cannot be expected. Fig. 3 
gives three visual examples of the classification 
at selected places. Their locations within the 
study area are indicated as yellow squares in 
Fig. 1. The RF model based on SAR textures 
was able to clearly discriminate camp areas from 
their local environment which is bare soil in most 
cases. It furthermore accomplished to detect 
shrubland of different densities and soil 
conditions. It can also be observed that the SAR 
based results still contain some pixelated areas, 
which can be explained by the use of textures of 
different sizes. These mostly occur at transitions 
between two similar classes such as 'stream 
channels' and 'floodplains' or shrubland and 
thicket. As these transitions are also a continuum 

in nature, sharp borders would not be desirable 
in any case. 
 

In order to further proof the accuracy of our 
approach we manually digitized 600 further 
validation points based on the Landsat scene 
from the year 2000. This was undertaken by a 
different person from the one who collected the 
training samples as described in section 2.2.2 in 
order to grant for an unbiased and objective 
interpretation. Table 3 shows the confusion 
matrix based on validation samples and the 
classified map for the year 2000. It reveals an 
overall accuracy of 71 % which is acceptable for 
a classification based on SAR data alone [62]. It 
furthermore shows high user's accuracies (also 
interpreted as reliability of the map) for the two 
classes camp and bare rocks or soil. Most of the 
misclassified samples result from the similarity of 
shrubland' and thicket or stream channels and 
floodplain. As already mentioned, these errors 
however only play a minor role for the later 
calculation of the natural resources (NR). 
 

3.2 Area Affected by the Refugee Camps 
 

Fig. 4 shows the temporal development of land-
use and land cover classes within the direct 
vicinity of the camps. It considers all areas within 
a distance of 5000 meters from the demarcation 
line as described in section 2.4 and includes an 
area of 360 km² (see Fig. 1). As one main 
indicator for land degradation a continuous 
increase of bare rocks or soil can be attested. It 
rises from nearly 60 km² in 1997 to 83 km² in 
2014. This can be explained due to progressive 
soil degradation directly around the camps (see 
Fig. 3a). A similar but less pronounced 
development can be observed for the camps 
themselves which increase from 15 km² to 21 
km². The outlier in 2000 can be explained by an 
overestimation of camp areas due to slightly 
different moisture conditions which strongly affect 

 

 
 

Fig. 3. Selected examples of the land-use / land cover classification. a) Camp Dagahaley 
(2010), b) Floodplain and temporary streams (1997) and c) Transition from dense to open 

shrubland and temporarily moist areas 



the contrast between the signature of the camp 
and its surrounding bare soils. Additionally, a 
nearly steady increase of shrubland
observed. 
 
Indifferent temporal behavior is shown by the two 
classes related to hydrology. As already shown 
in Table 3, these classes can change during the 
year according to rainfall and water disc
Accordingly, no clear trend can be attested. 
 
Regarding thicket a significant decrease is 
observable from 2010 to 2014. This may be 
accredited to the different sensor (S1 instead of 
ERS) and the ascending pass which generally 
underestimated closed shrubs in the whole 
image. Consequently, the share of all other 
classes in 2014 could in fact be slightly smaller.
 
3.3 Environmental Impact 
 
Fig. 5 shows the calculated NRD values between 
each of the investigated image pairs. Contrary to 
our expectations, there is no clear trend visible at 
first sight. Still, due to the imbalanced spatial 
distribution of classes in our study area certain 
areas reveal larger changes than others. At first, 
land degradation is expressed in the regions 
around the camps, especially Ifo2 and Hagadera. 
These negative values are mostly expressed by 
the extension of bare soil areas account of 
floodplains and shrubland. Further dynamics can 
be observed at the edges of the braided river 
system. Changes in the hydrological system lead 
to decreasing and increasing of the floodplain as 
well as to variations of the stream course. 
Positive development seem widely restricted t

Fig. 4. Change of class areas around the refugee camps from 1994 to 2014
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the contrast between the signature of the camp 
Additionally, a 

shrubland can be 

Indifferent temporal behavior is shown by the two 
classes related to hydrology. As already shown 
in Table 3, these classes can change during the 
year according to rainfall and water discharge. 
Accordingly, no clear trend can be attested.  

a significant decrease is 
observable from 2010 to 2014. This may be 
accredited to the different sensor (S1 instead of 
ERS) and the ascending pass which generally 

shrubs in the whole 
image. Consequently, the share of all other 
classes in 2014 could in fact be slightly smaller. 

5 shows the calculated NRD values between 
each of the investigated image pairs. Contrary to 

there is no clear trend visible at 
first sight. Still, due to the imbalanced spatial 
distribution of classes in our study area certain 
areas reveal larger changes than others. At first, 
land degradation is expressed in the regions 

ally Ifo2 and Hagadera. 
These negative values are mostly expressed by 

areas account of 
. Further dynamics can 

be observed at the edges of the braided river 
system. Changes in the hydrological system lead 
to decreasing and increasing of the floodplain as 
well as to variations of the stream course. 
Positive development seem widely restricted to 

the shrubland areas in the eastern part of the 
study area where open shrubs grow into more 
dense ones and vice versa. 
 

An overall decrease of natural resources by 
11.8% could be detected in the study area 
between 1997 and 2014. The largest depletion of 
resources between two observations can be 
observed within the first period with a NRD sum 
of -8.17. It is followed by -7.96 for the period 
between 2010 and 2014 and a clearly lower 
value of -3.29 for 2000-2005. From 2005
the sum of all NRD values is even positive with 
8.13. According to these numbers, the strongest 
loss of natural resources should have happened 
during the first 10 years since the opening of the 
camps which seems plausible. The positive value 
from 2005-2010 indicates that some parts of t
environment were able to recover. According to 
Fig. 5 these were mainly within the shrubland 
areas where the vegetation cover became 
denser again. Since extreme NRD values could 
also result from rough misclassifications, they 
strongly influence these sums which therefore 
should be interpreted with respective caution.
 

Fig. 6 shows the sum of NRD values for all time 
increments taken together. It no longer considers 
temporal evolution in steps but summarizes the 
whole investigated period. It supports the 
indications that the largest loss of natural 
resources was restricted to the areas directly 
around the mines. Based on the analysis 
grid an 'impact radius' of two to four cells 
around each camp can be est
corresponds to 2.5 to 5 kilometers.
strongly affected areas (more than 10% loss) are 
restricted to the floodplain in the north.
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Fig. 4. Change of class areas around the refugee camps from 1994 to 2014 
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The figure additionally shows that most of the 
shrubland areas suffered from a slight decrease 
(light green) and only gained ecological value 
within the thicket in the eastern part (dark green 
and blue). The recovery between the camps Ifo2 
and Hagadera indicates dismantling of built-up 
objects along the road connecting these sites but 
it does not seem to correspond to a specific date 
when compared to the maps of Fig. 5. 
 
3.4 Validation 
 
The presented results are dependent on several 
circumstances. With respect to the input data, 

most reliable results can be achieved when the 
images are acquired by the same sensor in the 
same mode during the same time of the year. 
Due to the fact that SAR sensors area especially 
sensitive to soil moisture, the role of the seasonal 
period or even date is essential for image 
acquisition. Not only do landscapes change 
within one hydrological year but also can small 
rainfall events strongly influence the 
backscattered signal and therefore the derived 
textures. In our case we had to rely on                
available scenes from the ERS archive and               
tried to minimize the 'seasonal window' in                   
which the images were taken. Additionally,

 

 
 

Fig. 5. Environmental developments expressed by the Natural Resource Depletion (NRD) index 
 

 
 

Fig. 6. Severity of Natural Resource Depletion (NRD) per grid cell for the period between 
1997 and 2014 
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Table 3. Accuracy assessment for the map of 2000 validation data 
 

   Camp Bare soil Stream Floodplain Shrubland Thicket UA 

m
ap

 
p

re
d

ic
ti

o
n

 camp  70 7 1 2 0 0 87,5% 
bare soil 5 80 1 1 0 0 92,0% 
stream 1 0 69 27 7 0 66,3% 
floodplain 0 3 16 53 13 1 61,6% 
shrubland 11 0 3 6 67 32 56,3% 
thicket 3 0 0 1 33 87 70,2% 

 PA 77,8% 88,9% 76,7% 58,9% 55,8% 72,5% 71,0% 
* PA: Producer's accuracy; UA: User's accuracy 

 
constant time intervals are advisable. 
Unfortunately, no images were acquired before 
and during the arising of the camps in the region 
beginning in 1991. These would have been 
supportive in characterizing the undisturbed state 
of the environment before the human impact. 
Despite these inconsistencies at the input data 
level our results are satisfactory. The currently 
growing archive of SAR data collected Sentinel-1 
will serve as an extremely valuable source of 
information in the future. 
 
Table 4 shows the 15 most important input layers 
for the generation of the RF model. Their feature 
importance is expressed as the relative rank of 
an information layer used as a decision node in a 
tree, accordingly their importance with respect to 
the predictability of the target classes [63]. For 
the sake of readability they were scaled against 
the value of the most important layer, variance 
3x3 in our case. Even though a list of the 
different textures does not reveal much 
information about the generation of the RF 
model, the large proportion of textures of larger 
scales (25 and 69 pixels) indicates that they are 
of special use in our case. Generally they help to 
discriminate classes occurring at larger scales, 
especially when they are of similar texture such 
as open and closed shrubs. This was already 
found out by Woodcock and Strahler in 1987 
[64]. 
 
Another essential point is the calculation of the 
texture layers. Antenna patterns may not be 
visible by the human eye but are necessarily to 
be removed before textures calculation. 
Otherwise they will be enhanced by the operator 
and cause extreme interference within the 
texture layers. These again will falsely train the 
RF classifier subsequently. This applies for both 
ERS and S1 data, but Single Look Complex 
(SLC) products of Sentinel-1 will instantly be 
corrected for azimuth bi-static delay, elevation 
antenna pattern and range spreading loss [65]. 
Lastly, also the integration of elevation data can 

enhance the accuracy, such as shown by Braun 
and Hochschild [42]. 
 
As the RF model of the year 2000 is applied to all 
other ERS scenes it is extremely sensitive to the 
values created. Accordingly, textures of all 
scenes must be calculated based on the same 
range of input values. In our case, we excluded 
the upper and lower 2.5% of the histogram of the 
scene from 2000 and used them as constant 
minimum and maximum values throughout all 
ERS input rasters. This assures that the value 
ranges of different textures remain the same for 
all input scenes and therefore stay transferable 
within the classifier [53]. 
 
The RF algorithm itself turned out to be helpful 
for the selection of both suitable textures and the 
integration of different kernels in order to model 
the distribution of the target classes. A crucial 
prerequisite is a sufficient number of training 
samples. These should not necessarily include 
all input classes to the same proportion but 
rather take their spatial occurrence into 
consideration. Thereby, a minimum sample size 
of 50 points per class is advisable and, as a 
matter of course, the larger the training data the 
higher is the power to detect finer differences 
[66]. 
 
Minor misclassifications are acceptable because 
they only slightly affect the later calculation of the 
NRD values of the corresponding cell. Each cell 
contains 10.000 classified pixels, so smaller 
errors caused by the nature of the SAR images 
mostly vanish within the resolution of the analysis 
grid. Additionally, as Table 3 demonstrates, most 
of the misclassifications occur between 
ecologically related classes which already have 
similar relative importance (RIs, see Table 2). 
 
The achieved overall accuracy of 71 % is 
acceptable but could be increased in further 
studies. One option lies within the IW mode of 
Sentinel-1 data which operates at VV and VH 
polarizations. 
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These deliver further information about the form 
and structure of surface elements and of course 
can both be integrated in the RF algorithm. 
Another option is the use of the interferometric 
coherence gained by two scenes within a short 
period (12 days in best case for S1). It detects 
temporal variation between the two acquisitions 
and could therefore additionally support the 
discrimination of static from dynamic land-use / 
land cover classes such as forest types or 
flooded for instance [67,68].  
 

Table 4. Feature importance of the input 
raster layers 

 
Raster name Size Importance 
Variance 3 100,0% 
Difference Of Entropies 69 73,7% 
Sum Variance 25 66,7% 
IC2 69 58,8% 
Energy 25 55,1% 
IC1 25 52,8% 
Haralick Correlation 25 50,3% 
High Grey-Level Run 
Emphasis 

69 43,6% 

Sum Entropy 3 38,3% 
Inertia 69 36,1% 
Cluster Prominence 25 33,4% 
Mean 25 31,1% 
Difference Of 
Variances 

3 30,1% 

Mean 3 30,1% 
Correlation 69 27,5% 

 
Table 5. Areas of severe degradation around 

the refugee camps  
 
 Beaodou et al. 2009  

(1997) 
This study  
(1997) 

Dagahaley 21,8 km² 27,2 km² 
Ifo 28,9 km² 28,9 km² 
Hagadera 19,3 km² 17,8 km² 
Dadaab 3,8 km² 4,2 km² 

 
Regarding the NRD maps we expected a clearer 
image of land degradation. Apparently, that 
refugee camps are progressively 'carving' into 
their environment is not the case in Eastern 
Kenya. There are obvious consequences such 
as the expansion of bare soil areas and a slight 
but gradual decrease of shrubland which could 
be observed from the maps. But except for 
certain hot spots around the camps and in 
hydrologically affected areas a clear image of 
loss in the whole study area remains 
unconfirmed. Certainly, a study area with more 
distinct classes, such as investigated by 

Hagenlocher et al. [39], would also produce NRD 
maps of higher contrast when changes do occur 
between more distinctive classes of similar 
ecological importance. In fact our study area 
offered less potential for drastic developments 
between the chosen types of land-use and land 
cover. Studies located outside savannas with 
more complex ecosystems and noticeable 
borders between ground cover and forests for 
example should therefore lead to more 
pronounced NRD maps. 
 
Altogether the approach produces plausible 
results. Many points indicate that the 
classification and generation of the Natural 
Resource Depletion Index are correct. For 
example, Enghoff et al. [69] report that flooding 
due to clayey soils mostly occurs around the 
camps Ifo and Dagahaley. Referring to Fig. 5 
these are the areas with the highest positive and 
negative NRD values. They evidently occur due 
to temporarily flooding which causes an 
alternating of the classes bare soil and floodplain 
expressing in large fluctuations of the NRD. And 
maybe flooding is also the reason for the large 
overall increase of NRD for the period from 2005 
to 2010 portrayed in section 3.3: UN Habitat 
reports of large floods which affected nearly 
100.000 people of camp Ifo in the year 2006 [70]. 
These may have also had a larger effect on the 
surrounding floodplains and caused a wider 
ecologic profit in the study area which could 
cause the total NRD of 2010 to be not only above 
zero but also clearly positive (+8.13). However, 
although the number of people began to 
decrease since 2011 when a maximum of 
454.000 people was reached land degradation 
continued until today as seen in Fig. 5d [71]. This 
corresponds to the prediction of Enghoff et al. 
[69] who claimed that although a reduction in the 
camp population would permit natural 
regeneration, large-scale rehabilitation of the 
hosting area would neither be technically nor 
financially feasible. According to that, a 
significant ecological benefit cannot be expected, 
despite of the fact that Kenya, Somalia and the 
UNHCR signed a treaty in 2013 that coordinates 
the return of Somali into their home country [72].  
 
Looking at similar studies, Johannessen et al. 
[73], Füreder et al. [74] and Baker et al. [75] also 
used remote sensing images for the observation 
of areas with refugee camps, amongst others in 
Dadaab as well, but restricted their analyses to 
interpretations or classifications of camp 
structures based on very high resolution images, 
so the findings regarding environmental 
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conditions cannot be taken for comparison. 
Tachiiri and Ohta [76] investigated the 
environmental changes around Kakuma refugee 
camp in Northern Kenya where the landscape is 
comparably monotonous. They report a clear 
reduction of the Normalized Differenced 
Vegetation Index (NDVI) calculated from the 
NOAA/AVHRR satellite between 1989 and 1999. 
But they face distortions due to differences in 
precipitation as well. Beaudou et al. [77] 
assessed the area of degradation around the 
refugee camps for 1998. Their findings are 
presented in Table 3. A high general agreement 
with our results can be determined. Except for 
camp Dagahaley, where the area is 
overestimated by almost 25%, the outcomes of 
both studies are mutually confirmative. 
 

4. CONCLUSIONS 
 
This study presented an approach to assess 
changes in land-use / land cover and to estimate 
their ecologic impact. The used ERS data are 
free of atmospheric distortions and could 
therefore be compared due to thorough 
radiometrical and geometrical calibration. An 
additional scene from Sentinel-1 was used in 
order to include information of present 
conditions.  
 
The proposed method proved suitable for multi-
temporal analyses of changes within landscapes. 
Especially when there is a gain or loss in quality, 
the analysis grid can help to identify centers of 
transition between classes of different ecological 
importance. Still, the results are strongly 
dependent from the defined classes as well as 
the weights addressed to them. Of course, these 
weights could also address different domains 
such as agricultural suitability or livelihood 
security, for example. In our case land-use 
classes may have been to similar so the resulting 
maps of Natural Resource Depletion (NRD) did 
not directly explain a relation between the 
increasing number of refugees and the loss of 
ecological resources. 
 

Nonetheless, a general decrease of resources 
has been detected for the time between 1997 
and 2014, especially for certain hot spots. 
Additionally, an increasing of bare rocks and soil 
areas around the camps was observed. Their 
development not only reflects the growing of the 
camp areas but also corresponds to findings of 
other studies. Furthermore, the availability of 
fluvial water is essential in the study area as it 
controls the vegetation within the braided river 
system and the floodplain.  

The Random Forest classifier was trained for the 
scene from 2000 and applied to the others 
whereat large scale textures played a major             
role for the discrimination of classes. 
Misclassifications mostly occurred between 
ecologically related classes.  
 
The presented approach was developed for ERS 
data but also targets its later use with Sentinel-1. 
Since the middle of 2014 its number of freely 
available scenes in the Scientific Data Hub 
(https://scihub.esa.int) is gradually increasing. It 
can therefore be applied on S1 data for studies 
change detection or multi-temporal classifications 
of smaller time spans. However, this requires 
removal of antenna patterns and a reasoned 
selection of the used scenes: For studies 
covering several areas all images should be 
acquired within the same season, especially in 
arid areas with sparse precipitation. If the 
approach is used for a multi-temporal 
classification of single point in time importance 
should be placed on constant time intervals 
between the images and the incorporation 
scenes from both the dry and rainy seasons for 
best contrasts in SAR backscatter intensity. 
 
Under these conditions, the presented approach 
is suitable for an operational use of SAR data for 
the long-term monitoring landscape resources 
around refugee camps. 
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