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Abstract 

 
This study depicts that to find the Analytical and numerical solutions of Diffusion – Convections Equations of 

Galactic Cosmic Rays (GCRs) by Finite Element method (FEM) and also to find the Energy Equation of 

GCRs by using a part of Parker’s transport equation. This considers moreover centres on the exactness and 

acknowledgment of the FEM strategy by utilizing dissemination blunder, scattering mistake and add up to 

blunder investigation. The comes about are depicted both graphically and in a unthinkable frame, which 
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essentially guarantees the method’s legitimacy and the algorithm’s proficiency to maintain the exactness, 

effortlessness, and nonlinear Convection-Diffusion Equation conditions.  The proposed method may be 

connected for tackling any nonlinear convection diffusion equation. We concentrate on assaying the 

confluence and stability of the nonlinear parabolic partial differential equation. This study focuses on the 

delicacy and acceptance of FEM method by exercising dispersion error dissipation error, and total error 

analysis.  

 

 
Keywords: Analytical solutions; numerical solutions; finite element method; convection-diffusion equation; 

Parker’s transport equation. 

 

1 Introduction 
 

Enormous beams of GCR are high energy particles or clusters of particles that are move through space at about 

the speed of light. They start from the Sun, from exterior of the Sun powered framework in our claim system, 

and form removed galaxies. Modelling authentic life and industrial quandaries by applying partial differential 

equations (PDEs) is challenging for researchers and scientists. Bosen.G [1] stated, a considerable number of 

quandaries arise from modelling nonlinear systems of differential equations. Researchers especially Kumar.A, et 

al. [2] have endeavoured to solve these quandaries analytically or numerically utilizing different methods, 

Leonard B.P. [3,4] and equations to obtain higher precision levels. Present study addresses the one-dimensional 

Convection-Diffusion equation, Dehghan M, [5], as this is a meaningful test to construct a novel discrete plan. 

As the base of Parker transport equation, we can evaluate the Analytical and Numerical solutions of Diffusion 

according to Pérez Guérrero JS [6,7] and Convection equation of Galactic Cosmic Rays, Basdevant C et al. [8]. 

Convection-diffusion equations, for instance, can represent real-world issues [9-14]. Because of the CD 

equation's significance, numerous researchers have developed various numerical techniques. Its prospective 

applications have drawn a lot of interest. The Finite Element Method (FEM) offers the most precise solutions to 

linear and nonlinear CD problems as well as parabolic equations among the methods listed above                              

[15-17]. Convection, diffusion, and reaction are significant because they may be used to explain a variety of 

physical issues, including how the three processes affect how the concentration of one or more chemicals 

distributed in a medium changes [18-22]. Convection shows how substances move as a result of the transport 

medium whereas reaction is contact. 

 

The Parker Transport Equation, Sadiq Akter Lima et al. [23] is to be written as  

 
  

  
   

  

  
  

   

   
 

 

 

  

  

  

  
 

 

  

 

  
      

  

  
                                                                     (1) 

 

Now, from the above equation we consider the convection- diffusion (C-D) terms based on C. Zoppou [24] and 

solve the analytical solution for Convection Diffusion (C-D) equation of GCR, Kumar.A, et al. [2] 
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t > 0 
 

0 < x < K 
 

Where   is diffusion coefficient and   is the GCR velocity in the x-direction. Now by applying boundary 

conditions 
 

          
 

                                                                                                        (3) 
 

By applying Initial conditions 

 

 (0, x)  
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At present convert the partial differential equation (PDE) to pure PDE by transformation method  

 

                                                                                                                             (5) 

 

Substitute the equation (5) in equation (1) we get 

 

                                                                                      (6) 

 

Dividing by D, we get 

  

             
    

  
 
    

 
       

       

 
                                                                (7) 

 

To get the pure diffusion PDE we require 

 

    
    

  
 
    

 
                                                                                  (8) 

 

    
       

 
                                                                                               (9) 

 

   
 

  
                                                                                               (10) 

 

The equation (10) has solution 
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Substitute the equation (10) in (8) we get         
  

  
 
                                 (12) 

 

   is a constant and we consider its value is 1 then we get  

    

      
  

  
 
                                                                                           (13) 

 

Substitute equation (13) in (11)  

 

        
 
   

  
 
  

  
 
                                                                                          (14) 

 

By using equation (14) which gives PDE to solve 

 
  

  
  

   

   
                                                                                           (15) 

 

By applying boundary condition from   to u which leads to 

 

           

 

D(t, 0).u(t, 0) = 0 
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and also consider the conditions 
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Applying initial conditions 
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By using variable separable method, the equation (15) become homogenous then let us consider 

 

                                                                                   (19) 

 

Where    is the steady state solution and        satisfies the PDE with boundary conditions 

 

              
 

 
 
  

   

  
 
  

  
 
                                                                                             (20) 

 

Substitute equation (20) in (15) we get 

 

                                                                                                              (21) 

 

This PDE with homogeneous boundary conditions along source term is 

 

        
 

  
                                              (22) 

 

Now our intension is to find the value of       , as we know the solution to diffusion is given by the following 

eigen function expansion 

 

             
 
                            (23) 

 

Where      
  

 
    are eigen values for n =1, 2, . . . and            are eigen function. Substitute equation (23) 

in equation (21) in order to get an Ordinary Differential Equation to solve for       which gives 

 

   
     

                        
 
                              (24) 

 

Now we expand        in favour of eigen functions 

 

             
 
                     (25) 

 

By applying orthogonality, we get 
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But 
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From (26) we can find  
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To solve the above equation with the integrating factor         then 

 

             
 

 
                 

                (30) 

 
Put equation (30) in (20) we lead to 
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By applying initial conditions t =0, the equation (31) becomes 
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Applying orthogonality 
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Since          then    value becomes 
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Now we covert to       , the final solution becomes 
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Fig. 1. Analytical solution of convection-diffusion equation at 1
st
 second 

 

 
 

Fig. 2. Analytical solution of convection-diffusion equation at last (30
th

) second 
 

2 The Equation of Energy 
 

By considering the law conservation of kinetic energy and integrating under the given limits 
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To evaluate the last term by using integral by parts then the energy equation reduces to 

 
 

  
   

  

 
     

 

 
     

  

  
  
 

  
 

 
         (39) 

 

This is the energy decay associated with diffusion, the time needed to reach zero velocity at each and every limit 

so integrate equation (2) 
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Which results to the equation 
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U represents the average velocity. Successively we get 

 

U(t) =     
  

  
      

  

  
        

 

 
        (42) 

 

3 Finite Element Methods 
 

The Convection – Diffusion equation defined by Abdelkader  Mojtabi [25], takes the form of  

 
  

  
   

   

   
    

  

  
          , 

 

(x, t)                      (43) 

 

Where f(   is the equation source, by setting    ,     and f(   = -   in the equation(43) with the domain 

       , we get numerical simulation as follows 

 
  

  
 

   

   
 

  

   
 = -   , 

 
                                (44) 

 

Along with this, by applying the boundary and initial condition we come across the equations (45 and (46) 

respectively 
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The analytical solution of the Diffusion – Convection equation is   

 

                     (47) 

 

The trial solution of equation (43) is 

 

                  
 
           (48) 

 

Here, comparing exact solution with approximate solutions of equation (44). In that case, Finite number of 

elements [ is n = 5 and two linear shape functions are represented by 
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;                 (49) 

 

The convenient matrix form of equation (49) is given by 

 

                        

  

                     
 
      

  

      
      

  
 
      

  
   , F(t) = [ 

   

  
                     

      

  
      

    

 

                     
 
     

 

We obtain approximate results at regular intervals in spatial distribution by numerical computation. 
 

Table 1. Exact and approximate solutions of (44) at h =∆t = 0.001 
 

x Exact Finite Element Method (FEM) Error 

0.0 1.0010 0.9903 1.0       

0.5 0.6846 0.6811 3.5       

1.0 0.3682 0.3719 3.6       

1.5 0.2519 0.2533 1.4       

2.0 0.1355 0.1348 7.0       

2.5 0.0922 0.0925 3.0       

3.0 0.0498 0.0501 3.0       

3.5 0.0341 0.0342 1.0        

4.0 0.0183 0.0183 1.0        

4.5 0.0126 0.0126 1.0        

5.0 0.0068 0.0068 1.0        
 

 
 

Fig. 3. Graph of exact and FEM solutions for equation (44) 
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Table 2. Exact and approximate solutions of (44) at h =∆t = 0.01 

 

x Exact Finite Element Method (FEM) Error 

0.0 1.0101 0.9026           

0.5 0.6909 0.6553          
1.0 0.3716 0.4079          
1.5 0.2542 0.2688          
2.0 0.1367 0.1297          
2.5 0.0935 0.0915          
3.0 0.0503 0.0532          
3.5 0.0344 0.0357          

4.0 0.0185 0.0181          

4.5 0.0127 0.0126          
5.0 0.0068 0.0070          

 

 
 

Fig. 4. Graph of exact and FEM solutions for equation (44) 

 

Table 3. Exact and Approximate solutions of (44) at h =∆t = 0.05 

 

x Exact Finite Element Method (FEM) Error 

0.0 1.0200 0.8052          

0.5 0.6977 0.6265          

1.0 0.3753 0.4478          
1.5 0.2067 0.2860          
2.0 0.1381 0.1241          
2.5 0.0945 0.0903          
3.0 0.0508 0.0565          
3.5 0.0348 0.0372          
4.0 0.0187 0.0179          

4.5 0.0128 0.0125          

5.0 0.0069 0.0074          

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

Ø
(x

, t
) 

x 



 

 
 

 

Raghavendra and Kumari; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 133-145, 2023; Article no.JAMCS.99619 
 

 

 
142 

 

 
 

Fig. 5. Graph of exact and FEM solutions for equation (44) 

 

By combing the above three graphs we can get approximate similarity solutions of equation (44) 

 

 
 

Fig. 6. Similarity between exact and approximate solutions of equation (44) 
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4 Results and Discussion 
 

Table 1 makes it clear that the suggested strategy provides improved accuracy across the domain for various 

time periods. The features of the exact solution and the approximation have an interesting relationship. By 

applying the proven methodology of our proposed method, Figs. 1 and 2 can be generated from Eq. 44. The 

FEM shows how two graphs of approximate and exact results for various time steps agree. The mistake term can 

easily delete while still guaranteeing the validity and acceptance of our suggested method. The inaccuracy is, 

nevertheless, inherently plausible for comparably greater time steps.  

 

Let's build up the three-dimensional surface plot of the numerical solution to Eq. 44 for easier comprehension. 

It's difficult to tell apart from this kind of comparison. This is the reason the absolute error map over time t and 

space x are also included. In the end, it makes sense that this approach is better suited to solving a CD equation 

of this kind without any complexity and maintaining perfect agreement between this FEM solution and the exact 

answer for equation 46, with a somewhat imitable error that tends to zero for tiny time steps. This test indicates 

that, in comparison to previous numerical techniques, the introduced FEM represents rapid convergence. 

 

5 Conclusion 
 

From the above study one can understand the analytical solution to Diffusion and convection partial differential 

equation of GCR, the energy equation of Galactic Cosmic Rays (GCR) and by combining all the graphs we can 

get an idea that there must be rapid convergence in FEM than other numerical methods.  
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