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Power electronic transformers (PET) are a new type of power electronic
equipment with a multi-port flexible dispatch function, which can play the role
of a power hub in a system composed of multiple AC-DC hybrid distribution grids
for interactive sharing of power in multiple regions. In this study, a two-stage
robust optimization operation model of a hybrid AC-DC distribution network with
PET is proposed based on PET power transmission and transformation
characteristics. The stochastic uncertainty of the distributed renewable energy
output in the AC-DCgrid is handled by a two-stage robust optimizationmethod to
determine the minimum total system operation cost under the worst case of
distributed renewable energy output. Finally, a constrained column generation
algorithm is used to solve the two-stage robust optimization model in the min-
max-min form and verifies the validity of the model in this study.
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1 Introduction

With the development of power technology, new energy sources represented by wind
and photoelectricity are increasingly connected to power systems and generally belong to
distributed generation (DG). The DC part of the AC/DC mixed current distribution is
compatible with these DGs, and DC transmission can reduce the number of energy
conversions and improve energy utilization, while the AC part is compatible with
existing power equipment, saving costs. The AC-DC hybrid distribution grid also has
advantages in terms of new energy consumption, peak shaving, and valley filling, and is a
feasible solution to cope with future grid development.

A power electronic transformer (PET) consists of a power electronic converter and
conventional high-frequency transformer, which allows for more flexible conversion of
electrical energy through power electronics technology (Liu et al., 2017; Wang et al., 2017).
Generally, power electronic transformers are classified into AC/AC- and AC/DC/AC-type PETs,
depending on whether they contain a DC component (Li et al., 2018). PET plays the same role as
a traditional voltage source converter (VSC) in an AC/DC distribution network, connecting the
AC andDC components of the interactive distribution network. Compared with traditional VSC,
PET has some unique advantages, such as its ability to contain multiple AC-DC converter ports,
connect multiple AC and DC subgrids simultaneously, control the power and voltage of each
port, and achieve power quality control, fault isolation, and energy interaction between ports
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simultaneously. Therefore, PET can play the role of an energy hub in the
AC-DC hybrid distribution network.

Pu et al. (2018) provided an overview of the technology and
framework for the optimal operation of PET-based hybrid AC-DC
systems, and illustrated the advantages of PET-based AC-DC
distribution networks over other power conversion units, such as
VSC-based AC-DC distribution networks. Yi and Wang, 2021
proposed a day-ahead economic operation strategy for multi-port
PET-based AC-DC distribution networks, reflecting the flexible
regulation capability of PET, and established a PET energy flow
model. Guo et al. (2019) applied multi-port PET to AC-DC hybrid
distributed energy systems, fully consuming renewable energy and
reducing system operation cost by using the power regulation
function of PET. However, most of the above models do not
fully consider the uncertainty of the renewable energy power
output, whose random uncertainty significantly affects the power
interaction of PET and safe operation of the AC-DC distribution
network with access to large-scale scenic power sources.

Owing to the access of a large number of distributed renewable
energy sources such as photovoltaic (PV) and wind power, the
power supply of the grid has more uncertainty and volatility, posing
new challenges for optimal dispatching of the distribution network.
The commonly used uncertainty optimization methods include
stochastic and robust optimization.

The probability distribution of random variables must be set in
stochastic optimization, but the assumed probability distributionmodel
may not be able to accurately portray the variation pattern of the actual
uncertainty factors when they are more complex. Zhang et al. (2022)
proposed a stochastic optimization model for the impact of new energy
uncertainty on the operation results of AC-DC distribution networks
containing power electronic transformers. Xu et al. (2021) combined
stochastic optimization and conditional value-at-risk theory to propose
a stochastic operation optimization method for active distribution
networks containing smart soft switches considering risk
management. Robust optimization does not require prior knowledge
of the specific probabilistic prediction information of uncertain
quantities and uses uncertainty sets to model uncertainty and pursue
theminimum total cost of system decision options under the worst-case
scenario with uncertain variables. Liu et al. (2018) considered the
uncertainty of new energy and load, developed a min-max-min two-
stage robust optimization model, and regulated the model
conservativeness by introducing uncertainty regulation parameters.
Fu et al. (2019) proposed a reactive voltage control method for AC-
DC distribution networks based on a two-stage robust optimization
model and examined the results of themodel under different prediction
errors. Liao et al., 2020 proposed a two-stage robust optimization
strategy for an AC-DC distribution network with an optical storage
consortium and used a hierarchical approach to set two objectives to
solve it. Zhang et al. (2022) proposed a two-stage robust optimization
model incorporating both distribution network reconfiguration and
reactive power optimization. Zhong et al. (2022) introduced game
theory into the two-stage robust optimization model for AC-DC
distribution networks and constructed a master-slave game
optimization model. However, few of the above models apply the
two-stage robust optimization method to the optimal operation of
hybrid AC-DC distribution networks with PET, and further research is
required to combine the robust modeling idea with the optimal
operation of AC-DC distribution networks with PET.

In this study, a two-stage robust optimal operation model of a
hybrid AC-DC distribution network with PET is proposed. By
connecting the AC-DC part of the distribution network and the
super grid through PET, the utilization rate of distributed renewable
energy is improved, and the safe and economic operation of the AC-
DC distribution network is ensured. A two-stage robust
optimization method is used to address the stochastic uncertainty
of the renewable energy output and seek the minimum total system
operation cost under the worst case scenario. Finally, a constrained
column generation algorithm is used to solve the two-stage
optimization model in the form of min-max-min.

Compared with the examples mentioned in the previous section,
the two-stage robust optimization method used in this paper has the
following advantages: first, compared with the traditional robust
optimization method and the stochastic optimization method, the
method used in this paper inherits the advantages of robust
optimization such as strong accuracy and low out-of-bounds rate,
and achieves the purpose of controlling the conservativeness of the
model by adding uncertainty adjustment parameters. Secondly,
compared with other two-stage robust optimization methods, the
method used in this paper sets both spatial and temporal uncertainty
adjustment parameters, which can control the number of bad
scenarios taken in one cycle and the number of bad scenarios
taken at the same time respectively, so that the conservativeness
of the model can be controlled more flexibly and accurately to
achieve better optimization results.

2 Two-stage robust operation model of
AC/DC distribution network with
power electronic transformers

2.1 Hybrid AC/DC distribution network
structure with power electronic
transformers

The hybrid AC-DC distribution network can be divided into three
parts according to its composition: AC and DC distribution networks
and VSC. The model in this paper used PET to replace the traditional
VSC, which connects the DC, AC, and super grids and plays the role of
power conversion. In the AC part, the micro turbine (MT), AC load,
and energy storage (ES) are connected, and in theDCpart, the PV,wind
turbine (WT), DC load, and other parts are connected. The AC andDC
parts are connected to the superior grid through PET. Figure 1 shows a
schematic of the AC-DC hybrid distribution network. Compared with
the traditional AC-DC distribution network, that with PET can directly

FIGURE 1
Schematic diagram of AC/DC distribution network with PET.
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interact with the superior grid through PET, owing to the multi-port
nature of PET, avoiding the loss caused by the interaction through the
AC grid. Because the power can be freely interacted with in three ports,
it improves the flexibility of power dispatching in the distribution
network. Compared with traditional VSC, it improves the response
speed and network flexibility and reduces the power conversion link,
which is more suitable for distribution networks with uncertain DG (Pu
et al., 2018; Li et al., 2021).

2.2 Equations

The optimization objective was to minimize the total operating cost
during the dispatch cycle of the system. This entailed finding the
operating solution with the lowest cost during the dispatch cycle by
adjusting the purchased power from the higher grid, generation capacity
of the micro turbine, and power of the energy storage equipment.

minf � CM + CMT + CES + CPV + CWT (1)
Among them,

CM � ∑
t∈T

cMt P
M
t Δt (2)

CMT � ∑
t∈T

∑
i∈BMT

cMT
1 PMT

i,t( )2 + cMT
2 PMT

i,t + cMT
3( )Δt (3)

CES � ∑
i∈BES

∑
t∈T
(cES(ηPch

i,t −
Pdis
i,t

η
))Δt (4)

CWT � ∑
i∈BWT

∑
t∈T
(cWT(~PWT

i,t − PWT
i,t ))Δt (5)

CPV � ∑
i∈BPV

∑
t∈T
(cPV(~PPV

i,t − PPV
i,t ))Δt (6)

where f is the operation cost of the distribution network; CM and
CMT are the costs of electricity purchased from the upper grid and
generated by micro turbines, respectively; CES is the cost of energy
storage; and CWT and CPV are the costs of abandoned wind and
light, respectively. T is the operating period; BMT, BES, BWT, and BPV

are the sets of micro turbine nodes in the distribution network,
energy storage nodes, wind turbine nodes, and photovoltaic nodes.
cMt is the price of electricity purchased from the superior grid at time
t; PM

t is the power purchased from the superior grid by the
distribution grid; and cMT

1 , cMT
2 , cMT

3 are the cost coefficients of
micro turbine generation. PMT

i,t is the power output of micro turbine
at node i at time t; cES is the cost coefficient of energy storage
charging and discharging; η is the charging and discharging
efficiency; Pch

i,t is the charging power of energy storage node i at
time t; and Pdis

i,t is the discharging power of energy storage node i at
time t. CWT and CPV are the wind and light abandonment penalty
coefficients, respectively; ~P

WT
i,t and ~P

PV
i,t are the predicted values of

scenic output; and PWT
i,t and ~P

PV
i,t are the actual scenic output values.

2.3 Constraints

2.3.1 Constraints of DistFlow branch currents in
AC-DC distribution networks

The DistFlow tidal model was planned to be used for both the
AC and DC parts of this model because part of this model contained

non-linear terms that were not favorable for solving the model using
software. To improve the solution speed, in this study, linearization
and second-order cone relaxation were used to transform the model
into a linear problem (Lavaei and Low, 2012), which was then solved
by a commercial solver to achieve an easy solution and increase the
solution speed as follows:

First, linearization transformation was performed through
variable substitution:

VAC
i( )2 � ~V

AC

i

IACi( )2 � ~I
AC

i

VDC
i( )2 � ~V

DC

i

IDC
i( )2 � ~I

DC

i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

The results of the second-order cone relaxation of the DistFlow
power flow model of the AC/DC hybrid distribution network were
as follows.

AC part:

PAC
j,t � ∑

k∈δ j( )
PAC
jk,t − ∑

i∈π j( )
PAC
ij,t + ~I

AC

ij,t rij( ) (8)

QAC
j,t � ∑

k∈δ j( )
QAC

jk,t − ∑
i∈π j( )

QAC
ij,t + ~I

AC

ij,txij( ) + bi ~V
AC

i,t (9)

~V
AC

j,t � ~V
AC

i,t − 2 rijP
AC
ij,t + xijQ

AC
ij,t( ) + r2ij + x2

ij( )~IACij,t (10)
2PAC

ij,t

2QAC
ij,t

~I
AC

ij,t − ~V
AC

j,t

�������������
�������������
2

≤ ~I
AC

ij,t − ~V
AC

j,t ,∀t (11)

PAC
j,t � PMT

j,t + Pch
j,t + PACPET

in,t − PACPET
out,t − Pdis

j,t − PACLoad
j,t (12)

QAC
j,t � QMT

j,t + QACPET
in,t − QACPET

out,t − QACLoad
j,t (13)

where δ(j) is the set of end nodes with j as the first node, π(j) is the
set of first nodes with j as the end node, BAC is the set of AC
subnetwork nodes, and LAC is the set of AC subnetwork branches.
PAC
ij,t , Q

AC
ij,t are the active and reactive power flowing from node i to

node j in the AC subnetwork, respectively; rij, xij, and bi are the
resistance and reactance of the branch ij and the shunt electrons at
node i, while PAC

j,t , Q
AC
j,t , ~V

AC
t,j , and ~I

AC
ij,t are the active power, reactive

power, voltage squared, and square of the current flowing through
branch ij in the AC subgrid injected into node j at time t,
respectively. PACPET

in,t , PACPET
out,t , QACPET

in,t , QACPET
out,t are the active

reactive power flowing into and out of the PET AC port.

DC part:

PDC
j,t � ∑

k∈δ j( )
PDC
jk,t − ∑

i∈π j( )
PDC
ij,t + ~I

DC

ij,t rij( ) (14)

~V
DC

j,t � ~V
DC

i,t − 2rijP
DC
ij,t + r2ij~I

DC

ij,t (15)
2PDC

ij,t

~I
DC

ij,t − ~V
DC

j,t

���������
���������
2

≤ ~I
DC

ij,t − ~V
DC

j,t (16)

PDC
j,t � PWT

j,t + PPV
j,t + PDCPET

in,t − PDCPET
out,t − PDCLoad

j,t (17)

where BDC and LDC are the sets of DC subnet nodes and branches,
respectively, and PDC

j,t is the active power injected into node j at time t
of the DC subnet. PDC

ij,t is the active power flowing from i to j on DC
branch ij; ~I

DC
ij,t and ~V

DC
j,t are the square of the current flowing through

the ij branch from i to j and the square of the voltage at i in the DC
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subnet, respectively; and PDCPET
in,t and PDCPET

out,t are the power flowing
into and out of the PET DC port, respectively.

2.3.2 Operational constraints of distributed power
generation
(1) Upper and lower limit constraints of micro turbine output:

0≤PMT
i,t ≤PMTmax

i

0≤QMT
i,t ≤QMTmax

i
{ (18)

where PMTmax
i and QMTmax

i are the maximum values of active and
reactive power of the micro turbine, respectively. Because the step
size selected in this model was 1 h, the regulation speed of the micro
turbine was faster at this time scale, so the climbing constraint of the
model was not considered.

(2) Wind turbine and photovoltaic output constraints:

0≤PWT
i,t ≤ ~P

WT

i,t ,∀t,∀j ∈ BWTG (19)
0≤PPV

i,t ≤ ~P
PV

i,t ,∀t,∀j ∈ BPV (20)

where ~P
WT
i,t and ~P

PV
i,t are the predicted wind turbine and PV outputs,

respectively.

(3) Operational constraints of energy storage:

0≤Pch
i,t ≤Ui t( )P ch

max

0≤Pdis
i,t ≤ 1 − Ui t( )[ ]P dis

max

{ (21)

Ei,t � Ei,t+1 − ηPch
i,t +

Pdis
i,t

η
(22)

Ei
min ≤Ei,t ≤Ei

max (23)
where Pch

i,t , P
dis
i,t denote the charging and discharging power at node i

at time t; P ch
max , P dis

max denote the maximum charging and
discharging power of the energy storage device, respectively.
Ui(t) denotes the 0–1 correlation variable of the charging and
discharging states at node i at time t, and 1 is charging and 0 is
discharging. Ei,t, Ei

max denote the existing and maximum power
stored in the energy storage device at node i at time t, respectively,

and η denotes the charging and discharging efficiency of the energy
storage device.

2.3.3 Operational constraints of power electronic
transformers

In this study, we considered an AC/DC/AC-type PET with a DC
section, which can be connected to multiple AC/DC distribution
networks simultaneously because of its multi-port feature, and
realize the power interaction function between each sub-network
and the higher-level network through its AC/DC ports. Considering
the limitations of PET, the amount of power interaction between
each port was constrained.

Figure 2 shows a schematic diagram of the energy flow of the PET,
where PMPET

in,t and PMPET
out,t are the active powers exchanged between the

medium-voltage AC side port of the PET and the main network at
moment t; PACPET

in,t and PACPET
out,t are the active powers exchanged

between the low-voltage AC side of the PET and the AC
distribution network at moment t; and PDCPET

in,t and PDCPET
out,t are the

active powers exchanged between the low-voltage DC side of the PET
and the DC distribution network at moment t (Zhang et al., 2017).

Letting the loss factor of PET be kp and simplifying PET to a
node (Li et al., 2018; Li et al., 2019; Li et al., 2021), we obtain:

PACPET
out,t + PDCPET

out,t � kp PM
in,t + PACPET

in,t + PDCPET
in,t( ) (24)

The capacity constraints of PET ports are:������������������
PMPET
in,t( )2 + QMPET

in,t( )2√
≤ SMPET

max
(25)������������������

PMPET
out,t( )2 + QMPET

out,t( )2√
≤ SMPET

max
(26)�������������������

PACPET
out,t( )2 + QACPET

out,t( )2√
≤ S ACPET

max
(27)�������������������

PACPET
in,t( )2 + QACPET

in,t( )2√
≤ S ACPET

max
(28)

PDCPET
out,t ≤P DCPET

max (29)
PDCPET
in,t ≤P DCPET

max (30)

Linearizing the non-linear term in the constraint so that it is
transformed into a rotating cone constraint yields:

FIGURE 2
Schematic diagram of PET energy flow.
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PM
in,t( )2 + QM

in,t( )2 ≤ 2
SMPET
max�
2

√ S MPET
max�
2

√ (31)

PM
out,t( )2 + QM

out,t( )2 ≤ 2
SMPET
max�
2

√ S MPET
max�
2

√ (32)

PACPET
out,t( )2 + QACPET

out,t( )2 ≤ 2
S ACPET
max�
2

√ S ACPET
max�
2

√ (33)

PACPET
in,t( )2 + QACPET

in,t( )2 ≤ 2
S ACPET
max�
2

√ S ACPET
max�
2

√ (34)

where SMPET
max , S ACPET

max , and PDCPET
max are the power limits of the low-

voltage AC and DC ports in the PET, respectively.

2.3.4 Uncertainty set of wind turbine, photovoltaic
power output

Owing to the stochastic uncertainty of wind power and PV
output, we considered the uncertainty set to characterize the
uncertainty of the scenery output:

u � uWT
i,t , uPV

i,t[ ], t ∈ T

uWT
i,t � ûWT

i,t − ΔuWTmax
i , ûWT

i,t + ΔuWTmax
i[ ]

uPV
i,t � ûPV

i,t − ΔuPVmax
i , ûPV

i,t + ΔuPVmax
i[ ]

⎧⎪⎪⎨⎪⎪⎩ (35)

where uWT
i,t , uPVi,t are the actual wind and PV power, which are

uncertainties; ûWT
i,t , ûPVi,t are the predicted values of wind and PV

power; and ΔuWTmax
i , ΔuPVmax

i are the maximum deviation values
allowed for wind and PV power, respectively.

To regulate the uncertainty of the model to control the
conservativeness of the model, the time regulation parameters
ΓTWT, ΓTPV and spatial regulation parameters ΓSWT, ΓSPV were
introduced to represent the number of worst-case scenarios and
wind turbines and photovoltaic units in the worst case
simultaneously in one operating cycle, respectively. The specific
expressions are as follows:

uWT
i,t � ûWT

i,t − BWT
i,t ΔuWTmax

i

uPV
i,t � ûPV

i,t − BPV
i,t Δu

PVmax
i

∑n
i�1
BWT
i,t ≤ ΓSWT

∑n
i�1
BPV
i,t ≤ ΓSPV

∑T
t�1
∑n
i�1
BWT
i,t ≤ ΓTWT

∑T
t�1
∑n
i�1
BPV
i,t ≤ ΓTPV

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

where BWT
i,t , BPV

i,t indicate whether the ith wind power and PV unit
take the worst case at time t and are 0–1 variables.

3 Two-stage robust optimization
model

As mentioned above, the optimization objective of the
proposed model in this study was to minimize the cost of
running one cycle, and the objective function can be expressed
in the form of Eq. 1. Without considering the uncertainty of the
PV of the wind turbine, the compact form of the objective
function can be expressed as:

min
x,y

cTy

s.t.Dy≥ d# a( )
Ky � 0# b( )
Fx + Gy≥ h# c( )
Iuy � û# d( )
My
���� ����2 ≤ gTy# e( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(37)

where c is the column vector of coefficients corresponding to the
objective function; D, K, F, G, Iu, andM are the coefficient matrices
of the various constraint equations; and d, h, and gT are the column
vectors of constants in the constraints. Equation (a) is the set of all
inequality constraints known to be associated with y in the previous
section; Equation (b) is the set of all equation constraints known to
be associated with y in the previous section; Equation (c) is the set of
all inequality constraints containing both x and y; Equation (d) is the
set of all uncertainty constraints, which are represented by the
predicted values of each uncertain outflow in the deterministic
model; and Equation (e) is the set of all second-order cone
constraints.

Where x and y are optimization variables, and their
expressions are:

x � Ui t( )[ ]T
y � [PMT

i,t , PWT
i,t , PPV

i,t , P
ch
i,t , P

dis
i,t , P

MPET
in,t ,

PACPET
in,t , PACPET

out,t , PDCPET
in,t , PDCPET

out,t ]T
⎧⎪⎪⎨⎪⎪⎩ (38)

When the uncertain output of wind and light is considered, a
two-stage robust optimization approach can be used to find the
scenario with the lowest cost of operating one cycle when the
uncertain value of the scenery output is taken to the worst
operating scenario with a preset uncertainty concentration, which
is mathematically represented as follows:

min
x

max
u∈U

min
y∈Ω x,u( )

cTy{ }
st. x � x1, x2 · ··, x2T( )T
xi ∈ 0, 1{ },∀i ∈ 1, 2, · · ·, 2T( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (39)

where the outer layer is the first stage of the minimization problem
with x as the optimization variable, and the inner layer is the second
stage of the maximum minimization problem with u and y as the
optimization variables. The first layer of the minimization problem
was the objective function of this study, that is, the cost of running a
cycle was minimized, andΩ(x, u) represents the feasible domain for
a given set of x, u, y, whose expressions are as follows:

Ω x, u( ) �

y
Dy≥ d,→ α
Ky � 0 → β
Fx + Gy≥ h → γ
Iuy � û→ δ
My
���� ����2 ≤ gTy → λ, μ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(40)

where α, β, γ, δ, λ, and μ are pairwise vectors corresponding to each
constraint matrix.

4 Model solving

To facilitate the solution, the above optimization model must be
transformed into the form of a standard two-stage robust optimization
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model, which is a min-max-minmultilayer optimization problem and is
difficult to solve using general methods. In order to solve such problems,
the commonly used methods are Benders decomposition method and
Column and constraint generation (CCG) algorithm, and the CCG
algorithm has the unique advantages of shorter computation time and
fewer iterations compared with the Benders decomposition method, so
the CCG algorithm is used to solve the two-stage robust optimization
problem in this paper (Zeng and Zhao, 2013). The optimization problem
was decomposed into a master problem and subproblem; the master
problem min provided a lower bound for the subproblem max-min by
calculation, whereas the subproblem provided a worst-case environment
in the uncertainty set to provide an upper bound for themodel, and then
iterated the model several times so that the difference between the upper
and lower bounds only decreased gradually. Finally, the result reached
the preset convergence condition to obtain the desired optimization
result. The specific process is as follows:

The main problem provides the lower bound for the model as:

min
x,y

π

st.π ≥ cTyl

Dyl ≥ d#
Kyl � 0#
Fx + Gyl ≥ h#
Iuyl � u*

l#
Myl

���� ����2≤ gTyl

∀l ≤ k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

where k is the number of current iterations, l is the number of
historical iterations, yl is the solution of the subproblem after l
iterations, and u*l is the value of the uncertain variable u under the
worst conditions obtained after the lth iteration.

The objective of the sub-problem was to derive the worst-case
scenario with an objective function expressed as follows:

max
u∈U

min
y∈Ω x,u( )

cTy (42)

With (x,u) given, the subproblem can be viewed as a deterministic
problem, and the equations of the subproblem are transformed into
a dual form by the method mentioned above, thus transforming the
min problem into a max problem for an easy solution, and the
expression obtained is

max
u∈U,α,β,γ,δ,ε,ϵ

dTα + h − Fx( )Tγ + uTδ

DTα + KTβ + GTγ + Iu
Tδ ≤ c

α≥ 0, γ≤ 0, δ ≥ 0
λ‖ ‖≤ μ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (43)

The results obtained from the subproblem provide the upper
bound for the whole model. The specific iteration process is shown
in Figure 3.

5 Example analysis

5.1 Test platform and model parameters
setting

To verify the correctness and effectiveness of this two-stage
robust optimization method for hybrid AC-DC distribution
networks with PET proposed in this study, the YALMIP toolbox
and CPLEX and Gurobi solvers were used to solve the model. The
hardware platform used was AMDRyzen 7 4800 H 2.90 GHz; 16 GB
RAM. The operating system used wasWindows 10, and the software
was R2017b. The structure of the algorithm used in this study is
shown in Figure 4.

As shown in Figure 4, this study adopted a hybrid AC-DC
distribution network model combined with two improved
IEEE33 node models, where the red line indicates the AC part
of the distribution network, and blue indicates the DC part. The
PET connects the AC-DC part as well as the main network, and
even plays the role of an energy hub. The voltage of the AC part
was 12.66 kV and that of the DC part was 15 kV. The limitation
range of the node voltage in the distribution network was
Vi ∈ [0.95, 1.05]pu. The maximum value of the interaction
power of the PET with the superior grid was
SMPET
max � 12000 kVA, and the maximum value of the

interaction power with the AC distribution network was
S ACPET
max � 12000 kVA. The maximum value of the interactive

power with the DC distribution network was
PDCPET

max � 1000 kV, the loss coefficient of PET kp � 0.05, and
the iterative convergence accuracy of the CCG algorithm was
set to εc � 0.01. The network was connected to energy storage
devices ES and MT as controllable distributed power, and WT
and PV as uncontrollable distributed power supplies; the specific
distribution is shown in Figure 4. When the energy supply in the

FIGURE 3
Algorithm flow chart.
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AC or DC sub-network is insufficient, other sub-networks or
higher-level grids can supply energy to them through PET. When
there is a surplus of new energy in the DC sub-network, it can also
be transmitted to the AC sub-network through PET, thus
realizing peak reduction and valley filling in the distribution
network to maximize economic benefits. The line parameters of
the IEEE33 node system are detailed by (Kashem et al., 2000).
The specific parameters of some devices are listed in the following
Table 1, Table 2, Table 3, Table 4.

5.2 Analysis of simulation results

5.2.1 Results of running the two-stage robust
optimization model

This example sets the spatial and temporal uncertainty
regulation parameters ΓSWT � ΓSPV � 2 and ΓTWT � ΓTPV � 12.
Figure 5 show the prediction curves for the wind turbine and
photovoltaic outputs. The peak load was generally concentrated
in the midday and evening hours, and the trough in the early

FIGURE 4
Structure diagram of AC/DC distribution network with PET.

TABLE 1 Output constraint of wind turbine.

No. Of wind turbine Minimum output/kW Maximum output power/kW

1 0 350

2 0 400

3 0 500

TABLE 2 Output constraint of photovoltaic.

No. Of wind photovoltaic Minimum output/kW Maximum output power/kW

1 0 300

2 0 350

3 0 500

TABLE 3 Parameters of micro turbine.

No. Of micro turbine PMTmin
i /kW PMTmax

i /kW QMTmin
i /kW QMTmax

i /kW cMT
1 /cMT

2 /cMT
3

1 125 350 75 210 0.10/30/0

2 80 300 48 180 0.12/29/0

3 150 375 90 225 0.14/22/0

4 50 250 30 150 0.11/25/0
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morning to morning hours. PV generated the most power at noon

and hardly any at night, so wind power, PV, and MT must be

combined to provide the power required by the load, with PET

playing the role of energy router. Figure 6 and Figure 7 show the

power output curves of the PET AC and DC ports and the power

purchased by PET from the main grid, respectively. Figure 6

shows that during the time of high PV power generation around

noon, the energy mainly flowed from the DC to the AC port, and

the power purchased from the main grid during this time

decreased. This reduced the costs of power purchase and

abandonment penalty owing to the new energy consumption,

thus achieving cost saving and new energy consumption. When

there was no PV power at night, such as a DC subgrid power

shortage, energy flowed from the AC to the DC port to ensure

that the power was supplied to the load.
Comparing Figure 5 and Figure 8, the turbine generation was

higher during the 5–10-h period, reducing the micro turbine
generation at this time, thus reducing the system generation cost.
Additionally, the dissipation of excess wind power reduced the

TABLE 4 Energy storage parameters.

No. Of energy storage P ch
min P

dis
min /kW P ch

max P dis
max /kW Ei

min/kW·h Ei
max/kW·h η

1 0 300 0 2000 0.95

2 0 300 0 2000 0.95

3 0 300 0 2000 0.95

FIGURE 5
Output prediction curve of wind turbine and photovoltaic.

FIGURE 6
AC/DC port power of PET.
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cost of the wind abandonment penalty. Figure 9 shows the energy
storage power curves. When the overall new energy generation of
the system was too large, energy could be stored to convert the
power to the AC subnetwork through PET and store the excess
energy in the storage device to reduce the cost of wind and light
abandonment. In addition, when the overall system power was
insufficient, it could also be discharged through energy storage to
reduce power purchase and generation. When the system as a
whole was short of power or when the cost of purchasing power
from the higher grid was lower than the cost of generating power,
power could be purchased from the higher grid through the PET
interaction port with the higher grid to meet the system’s power
demand.

Figure 10 shows the voltage curve of the DC part of this model.
Due the limitation of the number of graphs, we did not depict the
nodal voltage curve of AC part as the AC part is similar to the
DC part.

5.2.2 Comparison with deterministic and
stochastic optimization models

The deterministic and stochastic optimization models were
compared with the two-stage optimization model proposed in
this study. By comparing the cost of operating the distribution
network for one cycle under these conditions, the superiority of
the models was verified. Furthermore, the impact of the
uncertainty parameters on the conservative model was
analyzed by comparing the cost of the models under different
uncertainty parameters and number of iterations. The model

FIGURE 7
Purchased power to the main grid.

FIGURE 8
Power curve of micro turbine.

FIGURE 9
Energy storage curve.

FIGURE 10
Voltage curve of DC section.
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used in this study can be set with different uncertainty
adjustment parameters for different DGs; however, for the
convenience of presentation, the uncertainty adjustment
parameters were the same for each DG in this study.

To verify the control effect of the uncertainty regulation
parameter on the conservative type of model, several
comparison tests were experimentally designed, as shown in
Table 5, showing that the uncertain model was equivalent to
the deterministic model when the uncertainty parameter was
equal to 0. As the spatial and temporal uncertainty regulation
parameters of the system increased, the number of units
obtaining the worst case simultaneously and the total number
of units that obtained the worst case in one operation cycle also
increased. The uncertainty of the system also increased,
increasing the cost of the model in one operation cycle, but
the computation time and number of iterations decreased. This
indicates that the more uncertainty the model considered, the
worse the simulated operating conditions were, and the more
conservative and costly the model was. Although the
deterministic model had the lowest operating cost, it was not
robust and, thus, could not cope with the uncertainty of new
energy sources. The two-stage robust optimization model used in
this study had a higher cost compared with the deterministic
model, but it was robust because it considered the uncertainty of
new energy. The larger the uncertainty parameter was, the more
robust the model was, and the more it could cope with the
uncertainty.

Compared with the stochastic optimization model commonly
used in the literature mentioned previously, the cost of running
one cycle of the stochastic optimization model was between that
of the two-stage robust optimization and deterministic models.
However, because the stochastic optimization model requires too
many scenarios to be considered in the calculation, the
calculation speed of the algorithm is slower, making its
calculation time longer than that of the model used in this
study. Additionally, the stochastic optimization model cannot
guarantee the conservativeness of the calculation results, and the
results have a certain probability of crossing the limit, which is
not conducive to the safe power supply of the distribution
network. The model used in this study can control the
parameters of time and space uncertainty adjustment
according to the actual situation to control the number of

DGs of bad scenes in one cycle simultaneously, thus
controlling the cost of running the model for one cycle.
Therefore, the model used in this study is considered to have
higher controllability and robustness when dealing with the
actual problem.

5.2.3 Costs for different power supply
configurations

The spatial uncertainty regulation parameter ΓSWT � ΓSPV � 2
and the temporal uncertainty regulation parameter
ΓTWT � ΓTPV � 12. The cost is f = 1,518,673.24 when the power
source in the optimization model contains both MT, ES and
distributed new energy, which is used as a control group to
compare and analyze the change of cost in other cases. When
the model contains only MT and distributed new energy, the cost is
f = 1759756.56. The reason for the increase in cost is that when
there is no ES, it is not possible to reduce the peak and fill the
valley, which makes the cost of wind and light abandonment
penalty higher, and when the new energy output decreases,
there is no energy storage to discharge, so we can only rely on
MT power generation and purchase power from the upper grid,
which increases the cost. When the model contains only MT, the
overall power output of the system is too small to complete the
power balance, resulting in the model cannot be iterated, and the
cost results cannot be obtained.

6 Conclusion

This study established an optimal operation model of hybrid
AC-DC distribution network with PET based on a two-stage robust
optimization method, which considered the uncertainty of scenic
power generation by using two-stage robust optimization. Based on
ensuring the safety and reliability of the distribution network, the
AC-DC part of the distribution network and super grid are
connected by PET to improve the utilization rate of new energy
and ensure the safe and economic operation of the distribution
network. A comparison of the proposed model with deterministic
and stochastic optimization models indicates that the model is more
robust and can regulate the uncertainty of the system through the
uncertainty parameters. However, the method used in this paper has
the disadvantage of high cost, the next step will be to consider how to

TABLE 5 Influence of uncertain parameters on results.

Optimization methods ΓTWT、 ΓTPV ΓSWT、 ΓSPV Cost Number of iterations

Two-stage robust optimization method 12 2 1518673.24 5

12 3 1545173.23 5

6 2 1429048.22 7

6 1 1402673.23 8

18 3 1624073.23 5

Deterministic optimization methods 0 0 842425 —

Stochastic optimization method - — 1269971.12 —
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model the uncertainty of renewable energy output in an AC-DC
distribution network containing PET using a data-driven approach
with a large amount of historical renewable energy data.
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