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ABSTRACT 
 

Aims: This study is intended to determine which information criterion is more appropriate for 
mixture model selection when considering data sets with both categorical and numerical clustering 
base variables (mixed case). 
Study Design:  In order to select among eleven information criteria which may support the 
selection of the correct number of clusters we conduct a simulation study. The generation of 
mixtures of both multinomial and multivariate normal data supports the proposed analysis. 
Place and Duration of Study: Simulation: Instituto Superior de Ciências Sociais e Políticas 
(ISCSP), Universidade de Lisboa, 2012. 
Methodology: The experimental design controls the number of normal (two and four) and 
multinomial (two and four) variables, the number of clusters (two, four and six), the level of clusters 
separation (ill and well), and for sample size we use three levels (400, 1200, 2000).  
Thus, data sets were simulated with the following factors: two levels for the number of normal 
variables; two levels for the number of multinomial variables; two levels of segment separation, and 
three levels of number of clusters. Thus, the simulation plan uses a 2

3
×3

2
 factorial design with 72 

cells. So with five replications (data sets) per cell, we generate a total of 2
3
×3

2
 5 = 360 

experimental data sets. 
Results: The best overall performance goes to AIC3 (58%), followed by AICu (56%) and AICc 
(54%). About AIC3, AICu and AICc, these criteria evidence a good compromise between underfit 
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and overfit: AIC3, AIC and AICu underfit 11, 7 and 14%, and they overfit on 21, 18 and 18%, 
respectively. The most underfiting criterion is NEC, with 48%, and the most overfiting one is AIC, 
with 42%.  
Conclusion: We run Friedman test for all the criteria, to test the null hypothesis that all the eleven 
populations distributions functions are identical We reject the null hypothesis and we accept the 
alternative (Monte Carlo p-value=0.000). Thus, we conclude that criteria performance was not 
identical for the eleven criteria, and we make multiple comparisons. 
We concluded that AIC3 and AICc have significantly different performances, but AIC3 and AICu 
have similar performances. Thus we may conclude that AIC3 and AICu are the best information 
criteria for selecting the true number of clusters when dealing with finite mixture models, mixed 
data and information criteria for model selection. 
 

 
Keywords: Quantitative methods; cluster analysis; statistical and probabilistic modelling; finite 

mixture model; information theoretical criteria; simulation experiments; mixed variables. 
 

1. INTRODUCTION 
  
Finite mixture models (FMM) have proven to be 
powerful tools for clustering analysis, namely in 
the domain of social and behavioural science 
data [1]. There have been numerous proposals 
of information criteria for the model selection in 
FMM (model selection). Some of them 
traditionally proposed for regression models, 
others for finite mixture models.In the context of 
clustering, applications are common which 
consider not only categorical clustering base 
variables and/or numeric but, frequently, mixed 
(categorical, and numeric) clustering base 
variables. 
 
The objective of this research is to address the 
performance of specific theoretical information 
criteria (for FMM selection) when dealing with 
mixed clustering variables. A simulation study is 
conducted for this purpose which results may 
help to support future analysts’ decisions 
concerning the choice of particular information 
criteria when dealing with specific clustering 
applications. 
 
This paper is organized as follows: in section 2, 
we define notation and review finite mixture 
models, clustering analysis through finite mixture 
models and we review previous work on the EM 
algorithm for the estimation of mixture models; in 
section 3, we review several model selection 
criteria proposed to estimate the number of 
components of a mixture (number of clusters); in 
section 4, we present the proposed simulation 
based approach to compare the performance of 
eleven information criteria; in section 5 we report 
on simulation results, and finally, in section 6 we 
present some concluding remarks. 
 

2. CLUSTERING VIA FINITE MIXTURE 
MODELS 

 
For illustratting the use of finite mixture models in 
the field of cluster analysis, see for instance [2]. 
FMM assume that parameters of a statistical 
model of interest differ across unobserved or 
finite mixture and they provide a useful means for 
clustering observations. In FMM, clustering base 
variables are assumed to be described by a 
different probability (density) distribution in each 
unobserved segment. These probability (density) 
functions typically belong to the same family and 
differ in the corresponding parameters’ values. 
     
This approach to clustering offers some 
advantages when compared with other 
techniques: provides unbiased segment 
memberships’ estimates and consistent 
estimates for distributional parameters [3]; it 
provides means to select the number of clusters; 
it is able to deal with diverse types of data 
(different measurement levels [4]. In order to 
present FMM we give some notation below. 
 
The mixture model approach to clustering 
assumes that data are from a mixture of an 
unknown number S of clusters in some unknown 

proportions, S ,,1  . The data )y,...,y(y
n1

  

are assumed to be a p-dimensional sample of 
size n, from a probability distribution with density 
 

)
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where the mixing probabilities satisfy 

0s , s = 1, ..., S, and 1
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The complete set of parameters we need to estimate, to specify the mixture model is 
 

     ss  ,,   and  , 1,,  , ,  11  

 
n sample size 

S number of (unknown) clusters 

)Y,,Y( P1   
P clustering base variables  

)y,,y(
n1

  measurements  on variables p1 Y,,Y   

i
y  measurements of case i on p1 Y,,Y   

),...,1( nzzz   clusters-label vectors 

iz  vector indicating segment membership 

),(x zy  complete data 

p(d)f 
 

probability (density) function 
 

sθ  all p(d)f parameters of  the s
th
 segment 

 S1...  vector of parameters, without weights 

  vector of weights (mixing proportions) 

is  
Conditional probability  

),(    vector of all unknown parameters  

)ˆ,ˆ(ˆ    estimate of all unknown parameters 

L likelihood function, L( ) 

LL 
 

log-likelihood function, log L( ) 

cLL  complete-data log-likelihood function  

ψn  
number of mixture model parameters 

 
3. MODEL SELECTION 
 
Selection of FMM solutions may rely on multiple 
Information Criteria, which turns opportune the 
specific issue concerning the selection among 
the criteria themselves Table 1. 
 
On the other hand, applications are common in 
the clustering domain, which refer to base 
clustering variables of different types (different 
levels of measurement). This fact turns relevant 
the hypothesis of the existence of a relationship 
between information criteria’s performance and 
the type of base variables’ measurement level 
(categorical, numerical or mixed). In this study 
we propose an approach for evaluating several 
Information Criteria’s performances, taking into 
account theirs relationship with base variables’ 
measurement levels, for mixed case. 
 
Information Criteria look for a trade-off between 

the precision of the ML estimate ̂ , and the 

complexity of parameterization or model 
parsimony. They all balance fitness (trying to 
maximize the likelihood function) and parsimony 
(using penalties associated with measures of 
model complexity), trying to avoid overfit. 
Furthermore, fitting a model with a large number 
of clusters requires estimation of a very large 

number of parameters and a consequent loss of 
precision in these estimates [5]. 
 
The general form of information criteria is as 
follows 
 

 CL  )ˆ(log2  ,                                    (3) 
 

where the first term is the negative logarithm of 
the maximum likelihood which decreases when 
the model complexity increases; the second term 
or penalty term penalizes too complex models, 
and increases with the model number of 
parameters. Thus, the selected mixture model 
should evidence a good trade-off between good 
description of the data and the model number of 
parameters. 
 
AIC [6] and AIC3 [7] are measures of model 
complexity associated with some criteria see 
Table 1 that only depend on the number of 
parameters; some other measures depend on 
both the number of parameters and the sample 
size, as AICc [8], AICu [9], CAIC [10], and 
BIC/MDL, [11,12]; others depend on entropy, as 
CLC [13], and NEC [14]; some of them depend 
on the number of parameters, sample size, and 
entropy, as ICL-BIC [15], and AWE [16]; L [17] 
depends on the number of parameters, sample 
size and mixing proportions, s . 
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Table 1. Some information criteria for model 
selection on Finite Mixture Models 

 
Criteria Definition 

AIC 
ψ2n2LL   

AIC3 
ψ3n2LL   

AICc 1)ψn1))/(nψ(nψ(2nAIC   
AICu 1))ψnnlog(n/(nAICc   
CAIC logn)(1ψn2LL   
BIC/MDL lognψn2LL   
CLC 2EN(S)2LL   

ICL_BIC 2EN(S)BIC   

NEC L(1)))EN(S)/(L(SNEC(S)   

AWE logn)(3/2ψ2nc2LL   
L /12)slog(nλ/2)ψ(nLL 
 

4. METHODOLOGY 
 
4.1 Target Models 
 
In the present work we specifically refer to 
information criteria presented in Table 1, which 
have been referred previously. All are currently in 
use for the estimation of FMM. 
 
Several model selection criteria have been used 
in order to decide on the number of clusters that 
are present in data, when a priori knowledge 
does not exist. However, there is no indication 
concerning the selection of the selection criteria 
themselves. 
 
In this paper we try to establish a relationship 
between type of clustering variables - mixed case 
- and the performance of information-based 
criteria. We also illustrate other factors that may 
influence the outcome, such as clusters’ 
separation and sample size.  
 
When some of the variables are continuous and 
some are categorical, we regard data as a 
random sample from the mixture model  
 








S

s
spip

ysfsi
yf
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P
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where )|( spipysf   is ),(
2
spspN  , p = 1,…,k, 

for each one of the k continuous variables, and 

),...,;1(
pCMult 1 spcsp  , for the (P-k) categorical 

variables, with pC  categories (see, e.g., [18]). 

4.2 Simulation Experiments 
 
Thus, data sets were simulated with the following 
factors: two levels for the number of normal 
variables; two levels for the number of 
multinomial variables; two levels of segment 
separation, and three levels of number of 
clusters see Table 2.  
 
Table 2. Factorial design for mixed variables 

 
Factors  Number 

of levels 
Normal variables 2; 4 2 
Multinom. variables 2; 4 2 
Multinom. categories 5 1 
Separation levels Well; ill 2 
Number of clusters 2; 4; 6 3 
Dimension 400; 1200; 

2000 
3 

Factorial design  23*32 
 
Thus, the simulation plan uses a 2

3
×3

2
 factorial 

design with 72 cells. So with five replications 
(data sets) per cell, we generate a total of 2

3
×3

2
 

5 = 360 experimental data sets. 
 
In order to avoid local optima in the generated 
FMM estimation process, the EM algorithm is 
repeated 50 times with random starting centres, 
and the best solution for ML and model selection 
results are kept, with a tolerance level of 10-6 (the 
criterion for convergence of EM: difference 
between log-likelihood being smaller than 10-6).   
 

5. RESULTS 
 
The results of the comparative experimental 
evaluation of the performance of eleven 
information criteria based on the proposed 
simulation study are presented below. They 
illustrate the relationship between the 
performance of information criteria and the 
clustering base variables’ type.  
 
Table 3 shows the percentage of cases 
(simulated experiments) each criterion 
determines the original (true) number of clusters 
(fit), across the used factors, and also the overall 
percentages underfit (percentage of times each 
criterion selects a model with a few number of 
clusters) and overfit (percentage of times each 
criterion selects a model with a high number of 
clusters). 
 
The best overall performance goes to AIC3 
(58%), followed by AICu (56%) and AICc (54%). 
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Concerning the number of clusters, we can see 
that NEC (98%) AWE (93%) and L (89%) 
outperform all the other criteria, for S=2; the 
same happens with AIC3 (70%), AICu (67%) and 
AICc (64%) for S=4; For S=6, AICc (30%) and 
AIC3 (26%), outperform the other criteria. 
  
About AIC3, AICu and AICc, these criteria 
evidence a good compromise between underfit 
and overfit: AIC3, AIC and AICu underfit 11, 7 
and 14%, and they overfit on 21, 18 and 18%, 
respectively. The most underfiting criterion is 
NEC, with 48%, and the most overfiting one is 
AIC, with 42%. 
 
As far as the type of clustering base variables is 
concerning, we can characterize the situation as 
follows: for clustering base variables with two 
normal and two categorical variables, the criteria 
with best performance are AIC3 (73%), AICu 
(68%) and AICc (66%); for clustering base 
variables with two normal and four categorical 
variables, the criteria with best performance are 
AIC3 (62%), AIC (60%) and AICc and AICu (with 
58 and 57%, respectively); for clustering base 
variables with four normal and two categorical 
variables, the criteria with best performance are 
AWE (57%), L (50%) and AICu (49%); for 
clustering base variables with four normal and 
four categorical variables, the criteria with best 
performance are AIC3 and CAIC (exaquae with 
54%), and L (52%). 
 
Sample size doesn’t show great influence on the 
information criteria performance, because AIC3, 

AICc and AICu show consistently good 
performance, for n=400, n=1200 and n=2000.  
 
About clusters separation we noted that it is 
worthwhile to consider the three levels; it is 
enough the well-separated and ill-separated 
consideration, and empirically we consider well-
separated clusters for Es0.95. We see, in this 
study, that the classification criteria AWE with 
73% and AIC3 with 68% outperform the other 
criteria for well-separated clusters; otherwise, for 
ill-separated clusters, AIC with 54% and AIC3 
and AICc (exaquae, with 48%) was the criterion 
with the best performance. 
 
Sample size doesn’t show great influence                     
on the information criteria performance,           
because AIC3, AICc and AICu show consistently 
good performance, for n=400, n=1200 and 
n=2000. 
 
About clusters separation we noted that it is 
worthwhile to consider the three levels; it is 
enough the well-separated and ill-separated 
consideration, and empirically we consider well-
separated clusters for Es0.95. 
 
We see, in this study, that the classification 
criteria AWE with 73% and AIC3 with 68% 
outperform the other criteria for well-separated 
clusters; otherwise, for ill-separated clusters, AIC 
with 54% and AIC3 and AICc (exaquae, with 
48%) was the criterion with the best 
performance. 
 

 
Table 3. Results of simulation study experiments 

 

Factors   BIC AIC AIC3 AICc AICu CAIC 

  Fit 48 52 58 54 56 44 

Overall  Underfit 26 2 11 7 14 30 

  Overfit 15 42 21 18 18 13 

 

Number of 
Clusters 

 2 81 64 80 71 80 83 

 4 58 58 70 64 67 46 

 6 8 41 26 30 20 4 

2 Normals, 2 Categorical  53 61 73 66 68 44 

2 Normals, 4 Categorical  47 60 62 58 57 47 

4 Normals, 2 Categorical  48 44 48 44 49 44 

4 Normals, 4 Categorical  47 46 54 47 46 54 

Dimension 400 50 62 62 59 57 45 

1200 46 45 54 50 53 43 

2000 48 52 58 54 56 44 

well-separated 

Ill-separated 

 66 50 68 61 66 61 

 30 54 48 48 46 26 
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Table 3. Results of simulation study experiments (cont.) 
 

  CLC ICL-BIC NEC L AWE 
Overall 
 
Number of Clusters  

Fit 46 43 36 40 47 
Underfit 19 31 48 43 38 
Overfit 28 31 4 11 2 

 
 

2 73 79 98 89 93 
4 46 44 8 0 41 
6 15 4 0 23 1 

2 Norm. and 2 Categ.  53 46 31 33 38 
2 Norm. and 4 Categ.  47 42 30 33 37 
4 Norm. and 2 Categ.  44 42 42 50 57 
4 Norm. and 4 Categ.  39 44 40 52 46 
Dimension 400 49 42 35 36 38 

1200 43 41 38 39 48 
2000 46 43 36 40 47 

well-separated 
Ill-separated 

 57 61 55 56 73 
 35 25 16 24 21 

 
 

 
 

Fig. 1. The true number of clusters recovery (Fit), in percent 
 

 
 

Fig. 2. Criteria selecting models with more clusters (overfit), in %) 
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Fig. 3. Criteria selecting models with less clusters (underfit), in %) 
 

Table 4. Matrix of rank order differences for multiple comparisons 
 

Criteria  1 2 3 4 5 6 7 8 9 10 11 
  90,5 89,5 128,5 102,5 109,0 70,5 65,0 48,0 26,5 55,0 73,0 
1-BIC 90,5 0,0           
2-AIC 89,5 -1,0 0,0          
3-AIC3 128,5 38,0 39 0,0         
4-AICc 102,5 12,0 13 -26 0,0        
5-AICu 109,0 18,5 19,5 -19.5 6,5 0,0       
6-CAIC 70,5 -20 -19 -58 -32 -38,5 0,0      
7-CLC 65,0 -25,5 -24,5 -63,5 -37,5 -44 -5,5 0,0     
8-ICL_BIC 48,0 -42,5 -41,5 -80,5 -54,5 -61 -23 -17 0,0    
9-NEC 26,5 -64 -63 -102 -76 -82,5 -44 -39 -22 0,0   
10-L 55,0 -35,5 -34,5 -73,5 -47,5 -54 -16 -10 7 28,5 0,0  
11-AWE 73,0 -17,5 -16,5 -55,5 -29,5 -36 2,5 8 25 46,5 18 0,0 

 

6. DISCUSSION AND CONCLUSION 
 
This study indicates the existence of a 
relationship between the performance of some 
information criteria and the mixed clustering 
variables which are considered for clustering with 
FMM. 
 
In the present study, we conclude that AIC3, 
AICu and AICc are preferable for data sets with 
both categorical and continuous clustering base 
variables (they select the right model in 62% of 
the cases). It is quite remarkable the good 
performance of AICu criterion, introduced in 
model selection for mixture model in [19]. 
 
From Fig. 1 which illustrates fit (percentage of 
the true structure recovery) we can see that AIC3 
have the best performance for mixed models. 
  
Fig. 2 (criteria select models with less clusters, in 
%) shows that AIC almost never underfits; next, 
we have AICc, AIC3 and AICu. Otherwise, we 
have NEC, L and AWE as the criteria with most 
underfitting. 

As we can see from Fig. 3 (criteria select models 
with more clusters, in %), AIC is the criterion 
which overfits more, followed by ICL-BIC and 
CLC. On the other side we have criteria such as 
AWE and NEC, which almost never overfit. 
 

Finally, in order to compare the criteria 
performances, we run Friedman tests, because 
the data consist of b mutually independent k-
variate random variables (Xi1,…,Xik), called b 
blocks, i=1,…,b; the random variable Xij.is in 
block i (the factors in analysis) and is associated 
with treatment j (the criteria we use). 
 

We run Friedman test for all the criteria in Table 
3, to test the null hypothesis that all the eleven 
populations distributions functions are identical, 
against the alternative which states that at least 
one of the populations tends to yield larger 
observations than at least one of the other 
populations. We reject the null hypothesis and 
we accept the alternative (Monte Carlo p-value = 
0.000). Thus, we conclude that criteria 
performance was not identical for the eleven 
criteria in Table 3, and we make multiple 
comparisons. 
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Criteria i and j are considered to have different 
performance if the inequality 
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2
1);1)(1(  kbt  is the value of 

distribution t with (b-1)(k-1) degrees of freedom, 
and Rj, F1 and F2 are given by 
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1
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b

i
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where R(Xij) is the rank, from 1 to k, assigned to 
Xij within block i. Because we have 

2
1

21

2 )1)(1(

)(2
1);1)(1( 












 kb

FFb
kbt   = 22.6, 

 
we can conclude, from Table 4 values, that 
because we have |RAIC3-RAICu| =.19.5 < 22.6 and 
|RAIC3-RAICc| =.26 > 22.6, we conclude that AIC3 
and AICc have significantly different 
performances, but AIC3 and AICu have similar 
performances. 
 
Thus we may conclude that AIC3 and AICu are 
the best information criteria for selecting the true 
number of clusters when dealing with finite 
mixture models and information criteria for model 
selection. 
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